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Ab initio calculation of the solution enthalpies of substitutional and interstitial impurities
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In the framework of disordered local moment approach by using magnetic sampling method, we suggested a
model that takes into account the magnetic disorder in paramagnetic Fe with point defects. We calculate solution
enthalpies of substitutional (Nb, V) and interstitial (C, N) impurities in paramagnetic face-centered cubic Fe
and obtain results that are in agreement with available experimental data. It is found that both interstitial and
substitutional atoms may favor the local magnetic polarization of the Fe host around the impurities by decreasing
the potential energy of the system. The possibility of a formation of predominantly ferromagnetic Fe clusters
around carbon in the temperature range of overcooled austenite is discussed.
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I. INTRODUCTION

Theoretical methods based on density functional theory
(DFT) give solid ground to predict solution enthalpies Hsol of
impurities from first principles for nonmagnetic and magneti-
cally ordered materials. At the same time, calculations for point
defects in paramagnetic hosts, like in Fe above the magnetic
ordering temperature, are quite challenging for the theory.
Because of the existence of local magnetic moments above the
magnetic transition temperature in the itinerant magnets [1],
one deals with a many-electron problem whose solution goes
beyond the standard DFT implementations. In principle, one
could use the dynamical mean-field theory (DMFT) [2], com-
bined with local or semilocal DFT band structure calculations.
It has been used in papers on finite-temperature magnetism
in body-centered cubic (bcc) [3,4] and face-centered cubic
(fcc) Fe [5], as well as structural Fe [6] and electronic [7]
phase transition in this metal. However, reducing symmetry
of a system by introducing defects makes DMFT calculations
quite time consuming. A successful approach that has become
quite popular in practical applications is given by the so-
called disordered local moment (DLM) model, introduced
by Hubbard [8] and Hasegawa [9] and combined with the
local spin density approximation DFT by Gyorffy et al. [10].
Within DLM, the magnetically disordered state is described
as a pseudoalloy of equal amounts of atoms with spin-up and
spin-down orientations of their magnetic moments. However,
until recently, the DLM was used exclusively in the framework
of the coherent potential approximation (CPA) [10]. This
made it unsuitable in papers on defects that induce large local
distortions of the crystal lattice, such as interstitial impurities.
A formal generalization of the DLM approach towards the
supercell techniques has been presented recently by Alling
et al. [11], where the method has been successfully applied for
simulations of CrN compound. Here, we extend the technique
towards applications for solids with defects.

The impurities and alloying elements play a decisive
role in the microstructure formation, and they have strong
influence on many key properties of, e.g., steels. In particular,
a precipitation of carbides and nitrides of V and Nb is an

important tool in tailoring the low-alloyed steels for pipe
and ship applications [12]. The formation of these particles
increases strength and prevents the austenite grain growth
during hot rolling. Thus, understanding of thermodynamic and
kinetic of the carbide/nitride precipitation is highly important
for an optimization of technological schemes and improvement
of the steel properties [13]. Solubility of the carbides and
nitrides is usually expressed as a product of solubility limits
of their components by an empiric relation ln(CMeCX) = A −
B/T [13], where Me = Nb, V; X = C, N; and B is determined
by formation energies of carbides or nitrides and solubility
enthalpies of their components. In principal, these values can
be deduced from computational thermodynamic (CALPHAD)
approach, which uses the sophisticated interpolation of exper-
imental data. Unfortunately, the reliability of the description
is restricted by a huge dispersion of experimental values of
solubility [13] that originated from the mutual effect of C, N,
or other alloying elements on carbonitride thermodynamics.
Recently, the solubility product of NbC in ferromagnetic (FM)
bcc Fe has been computed from DFT [14]. At the same
time, the technologically important temperature of, e.g., NbC
precipitation corresponds to the austenite region, i.e., to the
paramagnetic fcc Fe.

It is known [15] that the solubility of interstitial impurities
(C, N) in the fcc Fe is much higher than in the bcc phase
(ferrite). This is so because the stronger lattice distortions near
the impurity result in the higher solution energies for the bcc
Fe. However, changes due to the impurities in electronic and
magnetic properties may be also important [16]. Moreover,
the strain energy is much smaller for substitutional atoms
(especially for V), and electronic contribution should dominate
the solution enthalpy. As a result, one can expect that the
presence of the substitutional impurities will also influence
the magnetic state of iron.

However, there have been only a few attempts to calculate
Hsol of C in fcc Fe [14,16,17]. The situation is complicated
by the magnetic ground state being described incorrectly by
the DFT calculations in the local or semilocal approximation.
At low temperature, the spin spiral states have been observed
experimentally in γ -iron from the precipitates of fcc Fe in
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Cu matrix [18,19], which has been only partly confirmed
by first-principles noncollinear calculations [20–23]. The γ

phase of iron is stable at temperatures above the magnetic
order-disorder transition, where thermal fluctuations can be
very strong. In Ref. [17], the DFT calculations were performed
for dissolution and diffusion of carbon in iron. For γ -Fe, which
was modeled as a FM high-spin phase, Hsol = −0.17 eV. This
indicated that the dissolution of carbon in fcc Fe should be
exothermic. On the other hand, the experimental value is about
0.4 eV [24]. It was also shown in Ref. [17] that the calculated
value of the diffusion barrier for carbon in nonmagnetic fcc
Fe (2.7 eV) was quite different from the experimental value
(1.59 eV [25]), underlining that the nonmagnetic state is not
suitable for a description of austenite. Magnetic structure
and local perturbations near carbon impurity in γ -iron were
investigated by ab initio electronic structure calculations in
Ref. [16], where the authors found that Hsol is �0.55 eV in the
double antiferromagnetic state. The authors concluded that in
γ -iron, there is the complex magnetic structure with strong
tetragonal distortions and a strong tendency to formation
of local FM clusters near carbon impurities. This result
highlights the important role of magnetism in thermodynamics
of Fe-based alloys (see Refs. [26,27]).

In this paper, the results of calculations of solution en-
thalpies of substitutional (Nb, V) and interstitial (C, N) impu-
rities in paramagnetic γ -Fe are presented. In the framework
of the DLM approach and by using the magnetic sampling
method (MSM) [11] we introduce a model that allow us to
account for the magnetic disorder in the system and investigate
its effect on impurity dissolution enthalpy. An influence of
impurities on local and global properties of γ -Fe and a
possibility to induce magnetic polarization around the impurity
in the paramagnetic state in the premartensitic temperature
region are discussed.

II. METHOD

A. General computational details

We carried out calculations using a supercell technique
and an all-electron projector-augmented wave (PAW) method
as implemented in the Vienna Ab initio Simulation Package
(VASP) code [28–30]. C and N atoms were located in
octahedral interstitial sites, while V and Nb atoms occupied
substitutional positions. Simulations were carried using Fe108,
Fe107X1 (X = V, Nb), and Fe108X1 (X = C, N) periodic su-
percells. The generalized gradient approximation (GGA) [31]
was used for treating electron exchange-correlation effects.
The convergence criterion for the electronic subsystem was
chosen to be equal to 10−4 eV for two subsequent iterations,
and the ionic relaxation loop within the conjugated gradient
method was stopped when forces became on the order of
10−3 eV/Å. Each supercell considered in this paper is relaxed
according to its Hellmann-Feynman forces [32,33]. Brillouin
zone sampling was performed using the Methfessel-Paxton
smearing method with SIGMA = 0.1 [34]. The volume and
shape of the cell were fixed during the iterations. The energy
cutoff for plane waves included in the expansion of wave
functions was set to 500 eV. Sampling of the Brillouin zone
was done using a Monkhorst-Pack scheme [35] on a grid of
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FIG. 1. (Color online) Calculated (calc.) and experimental (exp.)
[36,37] (T � 1100 K) lattice constants as a function of the carbon
content in fcc Fe.

2 × 2 × 2 k-points. We checked that 4 × 4 × 4 k-mesh
calculations changed values of impurity solution enthalpy by
less than 0.002 eV. All electronic structure calculations were
carried out at zero electronic and ionic temperatures.

B. Choice of lattice parameter

At high temperature, effects of thermal expansion and
magnetic entropy are important. They are not captured in DFT
total energy calculations at T = 0 K. The lattice parameter in
this case does not correspond to the total energy minimum.
We solve this problem by carrying out simulations at the
experimental lattice parameter fixed to its high-temperature
value in fcc Fe and at constant zero-temperature pressure
corresponding to this lattice parameter. In this case, possible
variations of lattice parameter between pure Fe and supercell
with an impurity become more important than for T =
0 K calculations, because one cannot rely on variational
cancellation of errors present near the total energy minima.
In principle, if the supercell is large enough, this should
not be a problem. However, computational costs scale as N3

with the supercell size, and it may become impractical to do
calculations at such big supercells.

To check the accuracy of the constant zero-temperature
pressure calculations at the experimental lattice parameter,
we compared the theoretical and experimental variations of
the lattice parameter with increasing carbon fraction. Results
are presented in Fig. 1. The experimental data were acquired
using neutron diffraction, which seems to be a more suitable
technique for determining the lattice parameter of austenite
in Fe-C alloys at high temperature due to reduced sensitivity
to surface decarburization [36,37]. The lattice parameters of
Fe108C1 and Fe108C2 supercells were chosen so that their
pressure corresponded to that of the Fe supercell. From Fig. 1,
we can see that constant pressure calculations provide the
correct value of da/dc, which justifies the procedure described
above and increases the possibility for a good convergence of
our results with the size of the supercell.

For practical calculations of the solution enthalpy, we
adjusted the lattice constant of pure fcc Fe to equalize the
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pressure between Fe and Fe-X periodic cells, while the latter
was fixed to experimental lattice parameter of paramagnetic
γ -Fe at T � 1200 K and a = 3.647 Å [38]. Thus, within our
procedure, the zero-temperature pressure was fixed to that of
a system with an impurity rather than to that of a pure fcc
Fe. This greatly reduced computational costs in comparison
to adjusting the lattice constant of Fe-X supercells to equalize
their pressure with that of pure Fe. Lattice parameter for the
latter turned out to fluctuate slightly around the mean value
3.64 Å. One may wonder whether this computational scheme
introduced an additional error. To answer this question, we
analyzed how small variations of pressure affected the results
of the solution enthalpy calculations. We observed that within
the reasonable pressure interval, the effect turned out to be
negligible (see the Appendix, particularly Table II).

C. Simulation of magnetic disorder

Generally, the high-temperature paramagnetic phase cannot
be adequately reproduced by a nonmagnetic state [39]. A more
adequate description is provided by the DLM model [10]
adopted in this paper. Moreover, we go beyond the original
implementation of the DLM in the framework of the CPA [10]
and, in this paper, simulate the paramagnetic state of pure γ -Fe
(without impurities) using the magnetic special quasirandom
structure (SQS) technique [40]. We consider Fe↑

50Fe↓
50 alloy

as a collinear system with an equal amount of spin-up and
spin-down atoms and the spin correlation functions, which
are close to zero for the first six coordination shells. Because
fcc Fe is thermodynamically stable well above its estimated
Neel temperature, the effects of magnetic short-range order
should be negligible. It was demonstrated earlier [10] that for a
completely uncorrelated magnetic subsystem, the two pictures,
collinear and noncollinear, lead to the same thermodynamic
descriptions.

The SQS model describes a static picture of the “frozen”
magnetic disorder and does not account for the spin dynamics.
However, atomic diffusion processes are several orders of
magnitude slower than the magnetic degrees of freedom;
therefore, on the timescale associated with the diffusion,
magnetic fluctuations are almost instant. This means that the
impurity will sense many different magnetic configurations
rather than only one. The latter would be the case if the
magnetic SQS method is used straightforwardly for the
description of paramagnetic γ -Fe with the impurity. To catch
the dynamic behavior of the magnetic system, we should
approximate the paramagnetic material by a set of many
magnetic configurations and average the obtained result over
them. In Ref. [11], the MSM has been proposed to treat the
magnetic disorder and the thermodynamics of paramagnetic
materials. In MSM, one creates a large set of supercells
with randomly generated magnetic configurations and with
a vanishing net magnetic moment. The running average of
their energies is taken as the potential energy of the disordered
paramagnetic state. The MSM has been applied for the de-
scription of the high-temperature paramagnetic CrN (without
defects) in Ref. [11]. It was shown that MSM calculations
converged already for 40 different magnetic distributions and
that the two methods, the MSM and SQS, gave almost identical
results [11]. Moreover, the MSM results for thermodynamic

properties of CrN were in good agreement with those obtained
in DLM-molecular dynamics simulations by Steneteg et al.
[41], where the dynamical behavior of a paramagnetic system
was treated explicitly.

We base our calculations for γ -Fe with impurities on the
idea behind the MSM but combine it with the magnetic SQS
method used for pure Fe to allow for an accurate description
of small energy differences between the impure and the
reference states. The proposed MSM-SQS scheme for the
calculation of solution enthalpies is as follows. First, we
use the magnetic SQS method for paramagnetic Fe. Next,
we calculate energies of different magnetic distributions of
Fe spins around impurity by changing the impurity positions
inside the SQS used for the pure Fe. In our case, we used
50 positions of the impurity at different sites of the magnetic
SQS. Finally, the obtained energies are averaged, giving the
potential energy of the paramagnetic alloy 〈E (Fe1−cXc)〉 with
concentration c determined by the size of the SQS. Our goal
is to approximate the potential energy of the paramagnetic
alloy at high temperature T . Thus, 〈E (Fe1−cXc)〉 should be
defined as a thermal average over the “fast” magnetic degrees
of freedom:

〈E (Fe1−cXc)〉 = −∂ln (Z)

∂β
=

∑
σ

PσEσ , (1)

where Z = ∑
σ

Zσ = ∑
σ

gσ exp {−βEσ } is the canonical par-

tition function, Pσ is the thermal probability of a particular
MSM-SQS (magnetic) configuration σ , and β = 1

kBT
, where

kB is the Boltzmann’s constant. Eσ and gσ are the energy (per
atom) and the multiplicity of each MSM-SQS configuration,
respectively. In our calculations, all MSM samples are unique;
thus, gσ = 1.

The solution enthalpy is then defined as

〈Hsol〉 = ∂�Hf

∂c
, (2)

where

�Hf = 〈E (Fe1−cXc)〉 − (1 − c) 〈E (Fe)〉 − cE (X) (3)

is the mixing enthalpy of the alloy, 〈E (Fe)〉 = ESQS (Fe)
is energy (per atom) of the magnetic SQS representing the
paramagnetic Fe, 〈E (Fe1−cXc)〉 is given by Eq. (1), and E(X)
denotes the energy of the reference state for X (X = C, N, V,
Nb) impurity.

In the dilute limit, we find

〈Hsol〉 = ∂ 〈E (Fe1−cXc)〉
∂c

∣∣∣∣
c→0

+ 〈E (Fe)〉 − E (X)

= 〈E (Fe1−cXc)〉 − 〈E (Fe)〉
c

+ 〈E (Fe)〉 −E (X). (4)

For the supercell with a single interstitial impurity (C or N),
Eq. (4) can be written as

〈Hsol〉 = (N + 1) 〈E (Fe1−cXc)〉 − N 〈E (Fe)〉 − E (X), (5)

where N is the number of atoms in the magnetic SQS
representing pure Fe.

For substitutional impurities (V, Nb) we use

〈Hsol〉 = N 〈E (Fe1−cXc)〉 − (N − 1) 〈E (Fe)〉 − E (X). (6)
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It is important to underline that the DLM picture neglects
the magnetic short-range effects. Therefore, it is applicable at
temperatures that are much higher than the magnetic transition
temperature. While for the bcc Fe this may be a problem [42],
the magnetic transition temperature for the fcc Fe is believed
to be quite low, around room temperature. However, we aim to
describe the impurities in high-temperature austenite, stable at
T > 1183 K [43]. Thus, the DLM picture should be adequate
for our purpose. To further test the applicability of the latter,
we compare the results of the solution enthalpies calculations
using Eq. (1) for 〈E (Fe1−cXc)〉 term with those where
〈E (Fe1−cXc)〉 is obtained by an arithmetic average over MSM-
SQS configurations. We find that for the two averaging meth-
ods the results differ by no more than 0.04 eV. This indicates
that variations of energy between different magnetic configu-
rations σ are much smaller than kBT , and it justifies the use of
the DLM picture, as well as the proposed MSM-SQS approach.

The effect of lattice vibrations is not treated explicitly in this
paper. However, it is included, at least partly, via the thermal
expansion of Fe lattice, as discussed in Sec. II.B. Also, in
modeling the properties of pure γ -Fe using static calculations
for the magnetic SQS, there is an unphysical effect of local re-
laxations between Fe atoms with different spin orientations, as
discussed in detail in [41]. This error can be estimated from the
energy difference δE between unrelaxed and statically relaxed
SQS for pure (paramagnetic) fcc Fe. Our calculations give δE

= 6.7 meV/atom. The error due to the static approximation
appears to be quite large. However, it should be to a large
degree canceled in impurity solution enthalpy calculations,
as the unphysical local lattice relaxations should be similar
in Fe-X and Fe supercells. Indeed, resent calculations by
Alling et al. [44] demonstrated the above error cancellation
in calculations of the mixing enthalpy of (Cr-Al)N, and we
do not expect that the situation should be drastically different
in our case. Thus, the accuracy of our approach should be
sufficient for the purpose of this paper.

III. RESULTS

A. Influence of impurities on local geometry and magnetic
properties of Fe host: Local and global effects

Though MSM-SQS configurations live time is �1 fs, it is
still interesting to analyze our results for each magnetic sample.
The lattice distortions around the impurity, in contrast to arti-
ficial local lattice relaxations due to the static approximation
of the magnetic disorder discussed in Sec. II.C, is a physical
effect, and they are highly important for the solution process.
The local relaxations around impurity in Fe-X have been
calculated as the average over a number of MSM realizations
shifts of atomic positions R̄i from the ideal sites of the fcc
crystal lattice for a specified coordination shell i:

R̄i = 1

n

N∑
σ=1

1

mi

mi∑
i=1

(r (i) − r (0))
r (0)

, (7)

where mi is the number of Fe atoms in the coordination shell i,
the inner sum is taken over the coordination shell, the outer sum
is taken over n MSM-SQS configurations σ, and r(i) and r(0)
are the relaxed and the ideal Fe-X distances, respectively. In
Eq. (7), we use arithmetic rather than the thermal average.
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FIG. 2. (Color online) The average distortion R̄i (%) of host
atoms in the first five coordination shells around C (red squares),
N (blue triangles), V (black circles), and Nb (green diamonds)
impurities in paramagnetic fcc Fe.

Our results are shown in Fig. 2. Analyzing the figure, one
can see that the interstitial impurities, C and N, impose a tensile
stresses on the surrounding lattice, while substitutional atoms,
V and Nb, cause an oscillating stresses. Maximum relaxation
for the first coordination sphere is found for carbon impurity
(�6% relative to nondistorted Fe-C distance). Considering
specific MSM-SQS configurations, we observe that in some
cases Fe atoms surrounding impurity have large outward shifts
(up to 9% for C), but sometimes there are small inward shifts
(up to −2% for V substitutional impurity). We conclude that
for the considered impurities, the local lattice distortions are
in general sufficiently high, and they should influence the
calculated solution enthalpies.

Let us next analyze the magnetic properties of the impu-
rities, as well as their influence on magnetic moments of the
host atoms. Figure 3 shows local magnetic moments induced
at the impurity atoms plotted as a function of the net magnetic
moment of Fe atoms located in the first coordination shell
of the impurity (Fe nearest-neighbor, or NN, cluster). We
observe that for all systems, the magnitudes of the impurity
magnetic moments are nearly proportional and their directions
are antiparallel to the net magnetic moment of the Fe NN
cluster, indicating that the impurity moments are induced by
the host. Magnetic moments on the impurity atom vary from 0
to −0.15 μB for carbon and from 0 to −0.09 μB for nitrogen
interstitial impurities. For the substitutional impurities, they
are in the range 0 to −1.0 μB and 0 to −0.4 μB for V
and Nb, respectively. Interestingly, the local lattice distortions
do not seem to influence the general dependence of impurity
magnetic moments on the net magnetic moment �μFe of Fe
atoms located in the first coordination shell of the impurity.
However, when relaxations are turned on, one clearly observes
a clustering of the calculated results around certain values of
�μFe. This indicates that the influence of the lattice distortions
on the impurity magnetic moments comes mostly through their
influence on the magnetism of the host Fe atoms.

In Fig. 4, we show mean magnetic moments at Fe atoms
located near the impurity as a function of coordination shell
i around the impurities. The averaging is carried out over the
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FIG. 3. (Color online) Local magnetic moments μi (in μB ) induced at the impurity atoms plotted as a function of the net magnetic moment∑
μFe (in μB ) of Fe atoms located in the first coordination shell of (a) C, (b) N, (c) V, and (d) Nb impurities. Red triangles and black squares

denote calculations with and without local lattice distortions around the impurities, respectively.

MSM-SQS realizations used in our simulations. The calculated
mean magnetic moment for Fe atoms in pure paramagnetic fcc
iron with experimental lattice parameter a = 3.64 Å is �2.09
μB . In all cases considered in this paper, the values of magnetic
moments of the Fe atoms that are NN to the impurities are

reduced compared to those for the pure Fe matrix. The effect
is especially strong for C and N impurities (Fig. 4(a) and 4(b)).

Similar behavior of magnetic moments as in Fig. 4 has
been found at the grain boundaries in Ni by Vsianska and Sob
[45] and in the neighborhood of isolated impurities in Ni by
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FIG. 4. (Color online) Mean absolute value of magnetic moments on Fe atoms as a function of coordination shell i around (a) C, (b) N,
(c) V, and (d) Nb impurities. Averaging is done over the MSM-SQS realizations used in our simulations. Calculated mean magnetic moment
for Fe atoms in pure paramagnetic fcc iron with experimental lattice parameter a = 3.64 Å is shown with horizontal dashed line. Red triangles
and black squares denote calculations with and without local lattice distortions around the impurities, respectively.
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FIG. 5. (Color online) Calculated site-projected DOS of impurity atoms (C, N, V, and Nb; black dotted, two-dashed lines) and NN Fe
atoms with different values of magnetic moments (Fe in 1 c.s.; blue dashed lines and cyan dashed-dotted lines). For comparison, the DOS of
iron atoms located in the fifth coordination shell of the impurity (Fe in 5 c.s.; red lines) are also included. Values in parentheses correspond to
the magnetic moments of the corresponding atoms.

Stefanou et al. [46]. According to those papers, the decrease
of magnetic moments in the neighborhood of sp impurities is
due to hybridization of the sp states of the impurity atom and
d states of nickel atoms. Our calculations of density of states
(DOS) of individual Fe and impurity atoms are consistent with
results of Ref. [45]. Figure 5 shows site-projected DOS of
impurity atoms (C, N, V, and Nb) and Fe atoms located in the
first coordination shells of the impurity in relaxed supercells.
Due to inhomogeneous strain around the impurity and the
different magnetic environment, the magnetic moments of
iron atoms differ even for the same coordination sphere, so in
Fig. 5 we show the DOS of NN Fe atoms for two qualitatively
different environments corresponding to the minimum and the
maximum magnetic moments. Also the DOS of iron atoms
located in the fifth coordination shell of the impurity are shown
for comparison.

Analyzing results in Fig. 5, we see that for Fe atoms with
a minimum magnetic moment occupying the first impurity
sphere, there is the charge redistribution between up and down
bands due to hybridization of sp (C, N) or d (V, Nb) electrons
of the impurities with d electrons of Fe (Fig. 5). This leads to
an increase of the DOS at the Fermi energy in the minority-
spin subbands of iron and thus to lower magnetic moments.
Interstitial impurities (C, N) have stronger influence on the
DOS of the nearest Fe atoms than do substitution impurities
(V, N); consequently, the decrease of the magnetic moment
is more pronounced in Fe-C and Fe-N alloys. Also, in the
relaxed state, reduction of the Fe magnetic moment around
the impurity is less than in the case of the ideal, undistorted
crystal lattice because the tensile stresses (Fig. 2) increase

Fe-X distances and reduce the hybridization between the
orbitals of iron and the impurities. Note however that the
analysis presented above should be taken with care. It is based
on the electronic structure calculations at zero temperature,
and therefore does not include temperature induced electronic
and magnetic excitations. Here it is used primarily for the
explanation of the trends seen in the behavior of magnetic
moments on the host atoms around the impurity in Fig. 4,
which are obtained within the same set of approximations.

We also see that the screening of the impurities is quite
effective. The perturbation of the magnetic moments becomes
very small already at the third shell of Fe atoms surrounding
the impurity. The lattice distortions also decay by the third
shell (Fig. 2). Interestingly, while the latter seem to have little
effect in the induced magnetic moment of the impurity, they
significantly reduce the perturbation of magnetic properties of
the host, especially for NN Fe atoms (Fig. 4).

This effect can be understood if we consider the behavior
of magnetic moments on Fe individual atoms. Figure 6 shows
the dispersion of magnetic moments for all Fe atoms located
in the first coordination shell of the impurities. The most
remarkable features seen in Fig. 6 are that the dispersion is
really large and that values of magnetic moments show much
greater dispersion when they are calculated for ideal lattice
positions than they do in the relaxed state. For V impurity,
the lattice distortions are minimal, as is the dispersion of
magnetic moments for NN Fe around the impurity, as well
as the difference in the dispersion between the nondistorted
and the relaxed states. The opposite is seen for interstitial
impurities. The point is that local magnetic moments on Fe
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FIG. 6. (Color online) Calculated absolute values of magnetic
moments of all Fe atoms located in the first coordination shell of
C, N, V, and Nb impurities. Red squares and green circles denote
calculations with and without local lattice distortions around the
impurities, respectively.

are quite stable at the experimental lattice parameter. Indeed,
even in the disordered state, their amplitude is above 2 μB

for the pure Fe. Recent local density approximation +DMFT
calculations by Igoshev et al. [5] showed that while at low
temperature magnetism of fcc Fe is better described in terms
of the itinerant picture, in the stability range of austenite it
can be characterized by temperature-dependent effective local
moments, which yield relatively narrow peaks in the real part
of the local magnetic susceptibility as a function of frequency.
Fixed spin moment calculations carried out for FM fcc Fe
show that with increasing lattice parameter, a deep minimum is
developing in the energy versus magnetic moment dependence
[47], corresponding to increasing localization of the magnetic

moment. The situation should be similar in the DLM case.
Therefore, substantial changes of Fe local magnetic moments
have significant energy cost. Because the local distortions
optimize the atomic positions to reduce the total energy,
one achieves the most beneficial electronic structure and
magnetization for each atom, bringing the magnetic moments
closer to their values in pure Fe and reducing the heterogeneity
of the magnetic structure. The magnetic moments at the
impurities are obviously much less localized. They just follow
the effective field induced by Fe NN moments.

Next, Fig. 7 shows the total energy calculated for all MSM
supercells considered in this paper. The total energy is plotted
versus the total magnetic moment of Fe atoms located in the
first coordination sphere of impurity. First, for each specific
magnetic configuration, we observe that results of calculations
depended on the local magnetic environment of the impurity
atom. This holds for the supercells with atoms at the ideal
fcc positions, as well as for the calculations including local
lattice relaxations. Second, we see that for the ideal supercells,
the distribution of values of total energies versus the total
magnetic moment of Fe NN cluster is more uniform, while
in the relaxed state it is more discrete. A similar trend is
observed for the distribution of magnetic moments on impurity
atoms (Fig. 3), and it has been explained above. Our results
therefore illustrate very high sensitivity of the energetic of
the impure system on the local magnetic surrounding of the
impurity. Thus, the effects of magnetic disorder must be treated
explicitly in calculations of the solution enthalpy in magnetic
materials above the magnetic transition temperature.

B. Impurity solution enthalpies

Using the SQS-MSM described in Sec. II, we calculated
the averaged impurity solution enthalpies for C, N, V, and
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TABLE I. Theoretical (〈Hsol〉) and experimental values of im-
purity solution enthalpy (in electron volts) of C, N, V, and Nb in
paramagnetic fcc iron.

Theory, MSM-SQS paramagnetic

Supercells with Supercells with
ideal fcc positions local lattice relaxations Experiment

C 1.50 0.20 0.40 [24]
0.43 [48]
0.36 [49]
0.41 [50]

N 0.60 −0.39 −0.18 [51,52]
V −0.20 −0.24
Nb 1.2 0.36

Nb in the paramagnetic fcc Fe. The results are presented in
Table I. For the reference state energies in Eqs. (5) and (6),
we used paramagnetic fcc Fe simulated within the magnetic
SQS method and bcc crystals of V and Nb with theoretically
calculated lattice parameters 3.03 and 3.30 Å, respectively,
which turned out to coincide with experimental ones (aV

exp =
3.02 Å [53] and aNb

exp = 3.30 Å [53]). An isolated dimer with

the experimental bond length 1.1 Å was used as a reference
state for N [54]. Because the van der Waals forces between
graphite layers are not reproduced properly in the DFT-GGA
calculations, for the reference state of C in Eq. (5) we used the
hexagonal close-packed structure with the experimental lattice
parameter a = 2.46 Å and the lattice parameters c/a ratio
6.65 Å [55].

The results from Table I show that for impurities with strong
local distortions of the host lattice in the first coordination
shells (C, N, and Nb; Fig. 2), values of 〈Hsol〉 calculated
for MSM-SQS supercells with atoms at ideal fcc sites are
strongly overestimated. They correspond to an endothermic
process of the impurities dissolution for all three impurities.
However, the calculations of the impurity solution enthalpies
that include local lattice relaxations give lower values, which
are significantly closer to the known experimental data.
Moreover, the dissolution reaction of N is predicted to be
exothermic, in agreement with experiment. For V impurity in
fcc Fe, the influence of local lattice relaxations is smaller, in
agreement with relatively small distortions introduced by V
into the host lattice (Fig. 2).

Comparing our results with the experiment more carefully,
data from Ref. [24] for the heat of the solution were obtained
from carbon activity (aC) in Fe austenite in the temperature
range T = 1056–1120 K and for the carbon fraction xC =
2.5–3.5 at.%. In this interval of xC , the solution enthalpy
changes from 0.41 to 0.43 eV [24]. In that paper, empirical
equations, representing Hsol and aC as a function of T

and xC , were derived. Using these equations, we obtain the
experimental value of Hsol = 0.38 eV for carbon concentration
xC = 0.92 at.% used in our calculations, which is somewhat
closer to our theoretical value. The experimental value of the
heat of solution for N in fcc Fe presented in Table I was
obtained in Ref. [51] using experimental data of Ref. [52],
where a thermogravimetric technique was used to determine

the solubility of nitrogen gas in solid iron. Unfortunately, we
did not find any experimental data for dissolution enthalpies
of substitutional impurities (V, Nb) in fcc Fe. Here, the
literature information was limited to the values corresponding
to dissolution of the carbides and nitrides and thermodynamic
data on liquid and bcc phases of Fe. Thus, for the substitutional
impurities, our values should be viewed as predictions.

To judge the quality of these predictions, we calculate the
so-called solubility products of carbides VC, NbC and nitrides
VN, NbN in austenite following the model proposed in Ref.
[14]. A solubility product for a certain compound forming
from a solution is the greatest value that the product of the
concentrations of the constituents of the compound can take
in that solution. Experimentally, solubility products appear
over some temperature range to be rather well represented
by straight lines in Arrhenius plots, and there are numerous
estimations for this parameter, which is important for ther-
modynamic modeling, e.g., within the CALPHAD approach.
Neglecting vibrational contributions to the free energy, and
using Eqs. (19) and (21) from Ref. [14], we can write the
Arrhenius temperature dependence of the solubility product
for stoichiometric MeX (Me = V, Nb and X = C, N) in fcc Fe
as

log10Ks = A − B

T
≈ log10

(
104mMemX

m2
Fe

)

+ [�Ef (MeX) − 〈Hsol〉(Me) − 〈Hsol〉(X)]

ln10 · kB · T
, (8)

where �Ef (MeX) is the formation energy of MeX relative
to the pure elements, 〈Hsol〉 (Me) is the calculated solution
enthalpy of V and Nb, 〈Hsol〉 (X) is the calculated solution
enthalpy of C or N, and mFe,Me,X is atomic mass of Fe or
the impurities. For �Ef (MeX), we used standard enthalpy
of formation: −1.05 eV for VC [56], −2.2 eV for VN [57],
−1.4 eV for NbC [56], and −2.4 eV for NbN [56].

In Fig. 8, the calculated and experimental values of
solubility product of MeX are displayed as a function of inverse
temperature. One can see that the agreement between the
calculated and the experimental values is quite good, especially
for vanadium. Moreover, the calculated values of log10Ks show
that in γ -Fe the nitrides are more stable than carbides, which
coincides with experimental observations [12].

To illustrate the effect of the underlying magnetic state
on the calculated impurity solution enthalpies, we carried out
their calculations for FM fcc Fe. In principle, the magnetic
ground state of the fcc Fe is believed to be a spin spiral,
with a wave-vector q = [0,ξXW ,1] , where ξXW = 0.127.

However, at the lattice parameter that corresponds to the high-
temperature paramagnetic state, first-principles calculations
show that there are nearly degenerate FM and double- and
triple-layer antiferromagnetic solutions along [001] directions
[64,65]. We therefore choose the former one, because it was
the simplest and because our purpose was just to see how
much the solution enthalpies change due to the magnetic order.
The calculated values of 〈Hsol〉 in FM fcc Fe for C, N, V,
and Nb were found to be −0.10, −0.72, −0.40, and −0.04
eV, respectively. A comparison of these values with 〈Hsol〉
obtained for paramagnetic fcc Fe (Table I) showed that for all
considered impurities, the values became significantly lower
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FIG. 8. (Color online) Solubility products of VC, VN, NbC, and NbN in paramagnetic γ -Fe. Experimental data are taken from aRef. [58],
bRef. [12], cRef. [59], dRef. [60], eRef. [61], fRef. [62], and gRef. [63].

and in worse agreement with the experiment. Thus, a proper
treatment of the magnetic disorder was essential for theoretical
determination of the impurity solution enthalpies.

The neglect of vibrational contribution in Eq. (8) may
represent a serious approximation in the case of modeling the
impurity solubility process [66]. Unfortunately, an evaluation
of the relative importance of magnetic and vibrational disorder
requires full-scale free-energy calculations for a magnetically
disordered system, which cannot be carried out within the
theoretical framework suggested here. Shulumba et al. [67]
proposed a technique that allows one to achieve this goal
and demonstrated that the magnetic disorder represents the
major contribution, with respect to a vibrational one, for the
description of phase stability of paramagnetic CrN. Good
agreement of our calculations for the solubility product with
the experiment may indicate that the situation is similar for the
system considered in this paper.

In summary, we conclude that the proposed MSM-SQS
approach gives reliable estimation of the impurity solution
enthalpy in the paramagnetic state of fcc Fe. Possible sources
of errors in calculations include limited supercell sizes, which
do not capture long-range magnetic interactions in fcc Fe [26],
the static description of the paramagnetic state [41], and an
incomplete account of effects due to lattice vibrations, strong
electron correlations, and longitudinal spin fluctuations.

IV. DISCUSSION

Let us discuss a possibility of induced magnetization
around impurity in the paramagnetic state in the premartensitic
temperature region. For instance, in our simulations of C
impurity in paramagnetic fcc Fe, we sometimes observed a
spin-flip (SF) transition, which occurs at Fe sites located in the

first coordination shell of the impurity atom. The SF transition
is manifested by a change of orientation of a local magnetic
moment during self-consistent iterations as compared to its
original direction in the MSM-SQS supercell. This indicates
that the carbon atom can induce the local magnetic polarization
of the NN cluster in the paramagnetic fcc Fe. To further analyze
this effect, we display in Fig. 9 the total magnetic moment on
Fe sites, which are NNs to the impurity as a function of the
total magnetic moment on the same Fe atoms in the pure
matrix, that is, with the original orientations of disordered
magnetic moments. The color map shows variations of Hsol

for each MSM-SQS realization obtained in our calculations.
Because average absolute values of magnetic moments of the
Fe NN atoms are reduced for all impurities considered in
this paper (Fig. 4), it could be expected that the final total
magnetic moments of the Fe NN clusters also decrease, and
calculated points in Fig. 9 should be located below the line
y = x. However, in the case of the C impurity, one can see
that a significant amount of calculated points (�40% of the
total number of realization) show an increase of the magnetic
moments of the Fe NN clusters, indicating an appearance of
polarization around the impurity. These points are located in
Fig. 9 above the line y = x. The reason for the increase is
the observed SF transitions that occur at some Fe sites located
in the first coordination shell of the carbon atom. Also, for
Nb, V, and N, we found �15%, 8%, and 7% of MSM-SQS
realizations with the polarization, respectively. At the same
time, there are some cases in which SFs lead to a decrease
of the magnetic moments of the cluster around the impurities,
i.e., to a depolarization. Almost all SF transitions are observed
in calculations with fully relaxed atomic positions in the
supercells. For supercells with atoms located at their ideal
fcc positions, magnetic SFs around the impurities are either
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FIG. 9. (Color online) The total magnetic moment
(�μFe, in μB ) of Fe NN sites to the impurity as a function
of the total magnetic moment of the same Fe atoms in the host SQS
supercell. The color map shows variations of Hsol (in electron volts)
for each MSM realization of the impure supercells. It smoothly
ranges from black (minimum of Hsol, in electron volts), through
violet and brown, to yellow (maximum of Hsol, in electron volts).
The first and second columns correspond to calculations without and
with local lattice distortions around the impurities, respectively.

absent (V) or appear seldom (2–4 MSM-SQS realizations for
N, Nb, and C). These latter are supercells in which Fe atoms
surrounding the impurity have large number of neighbors with
parallel magnetic moments.

The appearance of the SF transitions in calculations with
optimized atomic positions in the supercells can be explained
as follows. It was established [26] that the NN pair exchange
parameter J Fe-Fe of the classical Heisenberg Hamiltonian H

= −∑
Jij eiej in the FM state of γ -Fe at T = 0 K is strongly

volume dependent. Indeed, J was found to be negative for
lattice parameter a between �3.53 and �3.62 Å and positive
for a > 3.62 Å. Similar behavior of the exchange parameters
was observed in Ref. [23] from calculations based on spin
spiral states of γ -Fe. Our calculations by the exact muffin-
tin orbitals (EMTO) method combined with the CPA [68–
72] using the DLM model for the paramagnetic state show
that the tendency is similar even in paramagnetic pure γ -Fe:
J Fe-Fe < 0 for a between 3.50 and 3.63 Å, and it sharply
increases and becomes positive for larger values of lattice
parameters (Fig. 10). The experimental value of the lattice
parameter of pure fcc Fe (3.64 Å) is located in the transition
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FIG. 10. (Color online) Calculated average pair exchange param-
eter 〈J Fe-Fe〉 in fcc Fe in a static DLM state for first, second, and
third coordination shells as a function of the lattice parameter. The
EMTO-CPA method has been employed for the calculations. The
inset shows the relative atomic displacements RFe−Fe (%) between the
iron atoms Fe-Fe within the Fe NN cluster for some Fe-X realizations.

region, with nearly zero value of the exchange integral for the
first coordination shell (Fig. 10).

As has been shown above (Fig. 2), the average relaxations
of atomic positions in Fe-X on the first coordination shell
are tensile for all impurities. At the same time, changes in
the distances between the iron atoms (RFe-Fe) within each Fe
NN cluster are not homogeneous, with either large outward or
inward atomic displacements (inset of Fig. 10).

It can be assumed that due to strong dependence of J Fe-Fe

on interatomic distance, the sign of the exchange parameter
can change for such a distorted pair of Fe atoms. In the case of
large outward relaxations, the exchange interactions between
neighboring atoms of iron should be shifted towards positive
values, which could lead to a formation of partially or com-
pletely FM Fe clusters around the impurity via SFs. However,
inward relaxations can shift the exchange interactions into the
antiferromagnetic region. In this case, a depolarization of the
Fe NN cluster should occur.

In our calculations, the maximal change of the local
magnetic structure due to the polarization effect described
above is found for the carbon impurity, for which outward
Fe-Fe atomic displacements are also maximal. In addition, we
can trace a direct link between the occurrence of polarization
in Fe-C and a decrease of solution enthalpy Hσ

sol (Fe-C). If
we exclude from the summation in Eq. (4) the configurations
with SF, the solution enthalpy of carbon becomes equal to
0.27 eV; i.e., it increases by almost 35%. Here, the polarization
in its static form is unlikely to be seen in the high-temperature
paramagnetic state of fcc Fe-X alloys. But in the temperature
range of overcooled austenite, one should expect the formation
of a local Fe cluster around carbon with predominantly FM
coupling. In this case, the polarization effect may cause a
change in the interatomic bonding between C and Fe atoms,
which in turn may lead to a change of macroscopic properties,
for example, thermodynamic activity of carbon.
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TABLE II. Solution enthalpies Hσ
sol for one Fe-X configuration calculated either at fixed volume

(V ) or at fixed pressure (P ) of both Fe-X and Fe supercells in relaxed states.

Hσ
sol, eV

P1(Fe-X) = P1(Fe) P2(Fe) = P2(Fe-X) V1(Fe-X) = V2(Fe)
V1(Fe-X) �= V1(Fe) V2(Fe-X) �= V2(Fe) P (Fe-X) �= P (Fe)

Fe-C P1 = 128.2 kbar, 0.27 0.25 −0.33
P2 = 132.4 kbar

Fe-N P1 = 127.7 kbar, −0.42 −0.44 −1.08
P2 = 132.4 kbar

Fe-V P1 = 132.2 kbar, −0.20 −0.24 −0.26
P2 = 132.4 kbar

Fe-Nb P1 = 126.6 kbar, 0.43 0.42 −0.38
P2 = 132.4 kbar

V. SUMMARY

The solution enthalpy of substitutional (V, Nb) and inter-
stitial (C, N) impurities in paramagnetic fcc Fe (austenite)
has been investigated by means of first-principles electronic
structure calculations using (PAW-GGA) VASP. The param-
agnetic state was modeled by a supercell realization of the
DLM model in the framework of MSM combined with the
SQS approach. In the proposed technique, the magnetic SQS
supercell was created for the host, fcc Fe, and then calculations
for impurities located at different positions of the supercell
were performed, followed by the averaging of the results as
supposed by the MSM. We show that the SQS-MSM approach
gives estimations of solution enthalpies with accuracy similar
to what is expected for first-principles calculations in mag-
netically ordered and nonmagnetic materials (see, e.g., [73]),
although, as the calculated and measured solution enthalpies
are small, relative deviations between them are significant
in cases of C and N. Nevertheless, solubility products for
corresponding carbides and nitrides in the paramagnetic state
calculated with the proposed approach are in agreement with
available experimental data. We found that all impurities can
induce a local magnetic polarization of Fe atoms neighboring
the impurity by the SF transitions. Induced magnetization is
especially pronounced for a carbon atom and can lead to a
change of the magnetic structure in overcooled austenite. In
addition, for carbon, we have established a correlation between
the occurrence of polarization and the decrease of solution
enthalpy.
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APPENDIX

A. Solution enthalpy for one configuration: V = const
and P = const

In this paper, the solution enthalpy calculations were
carried out at the experimental lattice parameters and constant
theoretical pressure. To demonstrate the specific features
of carrying out impurity calculations at the experimental
high-temperature lattice parameter, which differ significantly
from the one corresponding to the zero-temperature energy
minimum, we show in Table II the solution enthalpies
Hσ

sol for one specific magnetic configuration in each Fe-X
system calculated either at fixed volume (V ) or at fixed
zero-temperature pressure (P ) for both Fe-X and pure Fe SQS
supercells, that is, for the V (Fe-X) =V (Fe) and the P (Fe-X) =
P (Fe) cases, respectively. Atom positions in the supercells
are optimized by allowing for the local lattice relaxations.
Also, for the fixed zero-temperature pressure calculations,
we check whether the solution enthalpies change depending
on small variations of pressure. Here, P1 corresponds to the
zero-temperature pressure of the Fe-X supercell with the ex-
perimental volume and P2 corresponds to the zero-temperature
pressure of the pure Fe magnetic SQS supercell with the same
volume.

We see that for a calculation at the fixed volume, the solution
enthalpy is much lower for all impurities except for vanadium.
At the same time, a slight shift of the pressure has little effect on
Hσ

sol. For C and N calculations, values of Hσ
sol at a fixed volume

do not agree with available experimental data (Table I). For
the Fe-V case, we find that pressure in V = const and P =
const simulations are almost equal. Thus, the calculations of
solution enthalpy give comparable results.
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V. Prakapenka, F. Tasnádi, M. Ekholm, M. Aichhorn, V.
Vildosola, A. V. Ruban, M. I. Katsnelson, and I. A. Abrikosov,
Phys. Rev. Lett. 110, 117206 (2013).

[8] J. Hubbard, Phys. Rev. B 19, 2626 (1979); ,20, 4584 (1979); ,23,
5974 (1981).

[9] H. Hasegawa, J. Phys. Soc. Jpn. 46, 1504 (1979); ,49, 178 (1980).
[10] B. L. Gyorffy, A. J. Pindor, J. Staunton, G. M. Stocks, and

H. Winter, J. Phys. F 15, 1337 (1985).
[11] B. Alling, T. Marten, and I. A. Abrikosov, Phys. Rev. B 82,

184430 (2010).
[12] T. Gladman, The Physical Metallurgy of Microalloyed Steels

(The Institute of Metals, Institute of Materials Press, London,
1997).

[13] R. Lagneborg, T. Siwecki, S. Zajac, and B. Hutchinson, Scand.
J. Metall. 28, 186 (1999).

[14] T. Klimko and M. H. F. Sluiter, J. Mater. Sci. 47, 7601 (2012).
[15] W. F. Smith and J. Hashemi, Foundations of Materials Science

and Engineering, 4th ed. (McGraw-Hill, Dallas, TX, 2005).
[16] D. W. Boukhvalov, Yu. N. Gornostyrev, M. I. Katsnelson, and

A. I. Lichtenstein, Phys. Rev. Lett. 99, 247205 (2007).
[17] D. E. Jiang and E. A. Carter, Phys. Rev. B 67, 214103 (2003).
[18] Y. Tsunoda, J. Phys.: Condens. Matter 1, 10427 (1989).
[19] Y. Tsunoda, Y. Nishioka, and R. M. Nicklow, J. Magn. Magn.

Mater. 128, 133 (1993).
[20] O. N. Mryasov, A. I. Liechtenstein, L. M. Sandratskii, and V. A.

Gubanov, J. Phys.: Condens. Matter 3, 7683 (1991).
[21] M. Körling and J. Ergon, Phys. Rev. B 54, R8293 (1996).
[22] S. Shallcross, A. E. Kissavos, S. Sharma, and V. Meded, Phys.

Rev. B 73, 104443 (2006).
[23] S. V. Okatov, Yu. N. Gornostyrev, A. I. Lichtenstein, and M. I.

Katsnelson, Phys. Rev. B 84, 214422 (2011).
[24] J. A. Lobo and G. H. Geiger, Metall. Mater. Trans. A 7, 1359

(1976).
[25] R. P. Smith, Trans. Metallurg. Soc. AIME 230, 476 (1964).
[26] A. V. Ruban, M. I. Katsnelson, W. Olovsson, S. I. Simak, and

I. A. Abrikosov, Phys. Rev. B 71, 054402 (2005).
[27] A. Reyes-Huamantinco, P. Puschnig, C. Ambrosch-Draxl, O. E.

Peil, and A. V. Ruban, Phys. Rev. B 86, 060201 (2012).
[28] G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996);

,Phys. Rev. B 54, 11169 (1996).
[29] G. Kresse and J. Joubert, Phys. Rev. B 59, 1758 (1999).
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