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Equilibrium and nonequilibrium properties of synthetic metamagnetic films: A Monte Carlo study
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Synthetic antiferromagnets with strong perpendicular anisotropy can be modeled by layered Ising anti-
ferromagnets. Accounting for the fact that in the experimental systems the ferromagnetic layers, coupled
antiferromagnetically via spacers, are multilayers, we propose a description through Ising films where
ferromagnetic stacks composed of multiple layers are coupled antiferromagnetically. We study the equilibrium
and nonequilibrium properties of these systems where we vary the number of layers in each stack. Using numerical
simulations, we construct equilibrium-temperature-magnetic-field phase diagrams for a variety of cases. We find
the same dominant features (three stable phases, where one phase boundary ends in a critical end point, whereas
the other phase boundary shows a tricritical point at which the transition changes from first to second order) for
all studied cases. Using time-dependent quantities, we also study the ordering processes that take place after a
temperature quench. The nature of long-lived metastable states are discussed for thin films, whereas for thick
films we compute the surface autocorrelation exponent.
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I. INTRODUCTION

Heterostructures formed by ferromagnetic multilayers that
are coupled antiferromagnetically via spacers have a wide
range of possible applications, ranging from high-density
storage technology to spintronic devices [1–4]. Cases with
strong perpendicular anisotropy (as encountered, for example,
in [Co/Pt]/Ru or [Co/Pt]/NiO with ferromagnetic [Co/Pt]
multilayers) have been the objects of intensive studies, both
experimentally [5–10] and theoretically [9,11–16]. Due to the
overall structure of these antiferromagnetically coupled multi-
layers, they are sometimes referred to as synthetic or artificial
metamagnets. In phenomenological approaches, these systems
are commonly modeled by layered antiferromagnets, where a
ferromagnetic multilayer is described by a single variable,
namely, the total magnetization of the multilayer. For strong
perpendicular anisotropy, this naturally leads to the description
via an Ising metamagnet where layers with ferromagnetic
in-layer interactions are coupled antiferromagnetically. Ising
bulk metamagnets have been the subject of many studies in the
past, and their properties are well understood by now [17–30].
Surprises show up, however, when studying Ising metamagnets
in thin-film geometry. In systems with an even number of layers
and a magnetic field applied perpendicular to the surfaces,
the temperature-field phase diagram exhibits a new phase in
addition to the two phases of the bulk system (the low-field
antiferromagnetic and the high-field paramagnetic phases):
for intermediate field strengths, the surface layer, which is
magnetized opposite to the applied magnetic field in the ground
state, aligns with the magnetic field. The phase transition
between the antiferromagnetic phase and this intermediate
phase is discontinuous and ends in a critical end point [31].

The characterization of the ferromagnetic multilayers by
only their overall magnetization is reasonable at low tem-
peratures where thermal fluctuations are irrelevant. However,
at higher temperatures, thermal properties will change with
the width of the ferromagnetic stacks. In this paper, we
address how the extent of these stacks changes the properties
of Ising metamagnetic films. Motivated by the desire to
better model the experimental synthetic metamagnets with

ferromagnetic multilayers, we numerically study the thermal
properties of films composed of ferromagnetic stacks that are
coupled antiferromagnetically. Using large-scale numerical
simulations, we determine the phase diagrams for systems
with stacks of different sizes. A comparison of different
cases reveals many common features as well as quantitative
differences.

In addition to this study of equilibrium properties, we also
investigate relaxation processes. Nonequilibrium processes in
systems undergoing phase ordering, including domain growth
and aging phenomena, have been the source of continuous
interest in recent decades. The majority of studies were either
restricted to simple ferromagnets [32–35], yielding a rather
comprehensive understanding of these processes in this type of
systems, or to more complex situations where glassy dynamics
result from competition and frustration effects [36,37], such
as in the case of spin glasses. However, similar processes also
take place in other systems, and the metamagnets discussed in
this work provide an interesting example. A further motivation
for studying relaxation processes in the layered antiferro-
magnets comes from an experimental study that observed
aging phenomena in Co/Cr superstructures where the Cr
spacer layers provide an antiferromagnetic exchange coupling
between the ferromagnetic Co films [38]. Since Co films have
an in-layer anisotropy, the Co/Cr superstructures are not well
described by the models discussed here. Still, the observation
of magnetic metastability and of slow dynamic relaxation in
these superstructures is very intriguing and reveals a need
to better understand ordering and relaxation processes in
layered antiferromagnets. In the second part of this paper,
we present first steps in the study of nonequilibrium processes
encountered in our systems during a temperature quench. After
preparing the system in a disordered state, corresponding to
high temperature, we bring it in contact with a heat bath at a
temperature at which the equilibrium system is ordered. This
temperature quench may be done in the presence or absence
of an applied external magnetic field. Besides analyzing thin
films, we also consider the nonequilibrium surface properties
of thick films in order to extract the value of the surface
autocorrelation exponent.
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This paper is organized in the following way: In the next
section we introduce the models under investigation. Sec-
tion III is devoted to a comprehensive study of the equilibrium
properties of metamagnetic Ising films where ferromagnetic
stacks are coupled antiferromagnetically. We discuss the
changes in the temperature-magnetic-field phase diagram that
result from varying the thickness of the ferromagnetic stacks.
In Sec. IV we study some aspects of nonequilibrium relaxation
taking place after a temperature quench. We conclude in
Sec. V.

II. MODELS

In the following, we consider Ising films where every lattice
site (x,y,z) is characterized by an Ising spin s(x,y,z) = ±1.
We realize the film geometry by considering N layers along the
z direction, using free boundary conditions in that direction so
that the layers at z = 1 and z = N form surfaces. In the other
two directions we have periodic boundary conditions. Our
layered systems are composed of ferromagnetic stacks that are
coupled antiferromagnetically (see Fig. 1 for an example). In
the case of single ferromagnetic layers, this yields the standard
Ising metamagnet. In our study, we allow for stacks of varying
sizes n. The results discussed in the following have been
obtained for systems with n = 1, 2, 3, and 4.

The number of layers n in a stack and the number of stacks
N/n in the films studied in this work are close to those found in
experimental systems. For example, for [Co/Pt]/Ru the number
of Co/Pt repeats per stack is 1 < n < 14, whereas the number
of stacks in a film is in the range 1 < N/n < 20 [6].

FIG. 1. (Color online) Sketch of a system where ferromagnetic
stacks formed by n = 3 layers are coupled antiferromagnetically. The
black and green bonds indicate ferromagnetic and antiferromagnetic
couplings, respectively.

We can write the Hamiltonian of the system as

H = −J
∑

inlayer

s(x,y,z)s(x ′,y ′,z)

−
N−1∑

z=1

Jz

∑

x,y

s(x,y,z)s(x,y,z + 1) − h
∑

x,y,z

s(x,y,z),

(1)

where the third term, which is the product of the mag-
netic field with strength h > 0 and the magnetization M =∑

x,y,z s(x,y,z), follows when applying a magnetic field
pointing in the positive-z direction. The first term is the fer-
romagnetic in-layer nearest-neighbor coupling with strength
J > 0, whereas the second term describes the interaction
between spins located in two consecutive layers. These two
terms together form the internal energy E. The coupling
constant Jz can be either positive, yielding a ferromagnetic
coupling between layers in the same stack, or negative,
yielding an antiferromagnetic coupling between stacks. For the
example shown in Fig. 1, we have Jz < 0 when z is a multiple
of 3 and Jz > 0 otherwise. For simplicity, we consider in this
work only the case |Jz| = J , where J is the strength of the
in-layer interaction.

The ground-state phase diagrams as a function of magnetic
field strength are readily obtained. We first note that we
need to distinguish between cases where the number of
ferromagnetic stacks is odd or even. For an odd number of
stacks (each composed of n layers), we have only two phases:
the low-magnetic-field phase where the stacks are coupled
antiferromagnetically and the high-field paramagnetic phase
where all spins are aligned with the field. The transition
between these phases takes place when the field strength h =
2J/n. As an example, consider the case with n = 2 and N = 6.
If h < J , then the stable phase is + + − − ++, where the
signs represent the signs of the magnetization in the different
layers. For h > J the stable phase is given by + + + + ++.
The more interesting situation is that of a system composed
of an even number of stacks. In that case, the phase diagram
displays an intermediate phase where both surfaces and the
stacks they belong to align with the field. For example, for
the case n = 2 and N = 8 the phase sequence for increasing
magnetic field is + + − − + + −−−→ + + − − + + ++
−→ + + + + + + ++. The transitions take place at h = J/n

and h = 2J/n. In the following, we focus on situations with
an even number of stacks.

III. EQUILIBRIUM PROPERTIES

In order to clarify the thermal equilibrium properties of the
different systems we compute a variety of global quantities
through extensive Monte Carlo simulations. These quantities
include the average magnetization density

m = 〈M〉/V, (2)

the average energy density

e = 〈E〉/V, (3)
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the magnetic susceptibility

χ = 1

V T
(〈M2〉 − 〈M〉2), (4)

and the specific heat

c = 1

V T 2
(〈E2〉 − 〈E〉2). (5)

Here V is the total number of sites in the system, whereas
T is the temperature measured in units such that J/kB = 1.
The brackets in these equations indicate both a time and an
ensemble average. The time average is done after the system
has reached equilibrium.

We simulate the systems using the heat-bath algorithm [39].
As usual the time unit is one Monte Carlo step (MCS) during
which, on average, every spin is considered once for an update.

In order to relax rapidly to equilibrium we prepare the
system in an initial state which has the same magnetization
profile as the h = 0 ground state but with a small magnetization
density (for our production runs we used a density of ±0.04).
The advantages of this initial state are twofold. First, as
discussed in the next section, when starting from a fully
disordered state the relaxation time to reach equilibrium can be
very large, as the system can get stuck in long-lived metastable
states. Second, when starting from one of the ground states
with fully magnetized layers, it becomes very difficult to flip
whole layers deep inside the ordered phase. As a result it is not
easy to obtain reliable data close to the phase transitions. We
found that our initial state is a good compromise that yields in
each case a fast relaxation towards the equilibrium state.

We consider films of different thicknesses that contain an
even number of stacks of width n (with n = 1, 2, 3, or 4). The
layers within the stacks are composed of K × K spins, with
K ranging from 20 to 320. After having reached equilibrium
we take a time average over at least 50 000 MCSs. The data
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FIG. 2. (Color online) The magnetization density as function of
the magnetic field strength for a system with stacks containing four
ferromagnetically coupled layers. The system is composed of 80 ×
80 × 24 spins. At low magnetic fields a first partial ordering takes
place, followed by the alignment of all the layers with the field for
a larger value of h. Data for different temperatures are shown. Here
and in the following error bars are smaller than the symbol sizes.
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FIG. 3. (Color online) The energy density as a function of the
magnetic field strength for a system with three layers per stack. The
size of the system is 80 × 80 × 18. The two successive transitions
show up as sudden increases followed by a decrease of the energy
with increasing field strength.

discussed in the following result from averaging over an
ensemble of typically 100 independent runs.

Figures 2–4 show examples of the data obtained in our
simulations. Figure 2 displays the magnetization density as a
function of the magnetic field strength in a system of N = 24
layers with n = 4 layers in each ferromagnetically coupled
stack. The two phase transitions, from the antiferromagnetic
arrangement of the stacks with vanishing total magnetization
to the intermediate phase and from the intermediate phase to
the paramagnetic phase where all layers are aligned with the
magnetic field, are clearly visible through the steplike changes
in the magnetization. The values of m in the intermediate phase
and in the paramagnetic phase depend on the temperature.
Whereas the steps are very abrupt for small temperatures,
at higher temperatures they become much smoother due to
an increase of thermal fluctuations. As shown in Fig. 3 for
a system with N = 18 and n = 3, both transitions provide
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FIG. 4. (Color online) The magnetic susceptibility vs the mag-
netic field strength for a system where every stack contains two
layers. The system is composed of 20 × 20 × 8 spins.

014438-3



JAMES MAYBERRY, KEITH TAUSCHER, AND MICHEL PLEIMLING PHYSICAL REVIEW B 90, 014438 (2014)

2 2.5 3 3.5 4 4.5
T

0

0.2

0.4

0.6

0.8

1

h

FIG. 5. (Color online) Temperature-magnetic-field phase dia-
grams for three different systems: N = 16 and n = 2 (black squares),
N = 18 and n = 3 (red circles), N = 24 and n = 4 (blue triangles).
The open symbols indicate the phase transition between the anti-
ferromagnetically aligned stacks at low fields and the intermediate
phase with a partial alignment to the magnetic field. For all studied
cases this transition is discontinuous and ends in a critical end
point. The lines with closed symbols show the phase transitions to
the high-field paramagnetic phase. The large cyan circles indicate
the tricritical points separating the discontinuous transition at low
temperatures from the continuous transition at high temperatures.
The phase diagrams have been obtained through a finite-size scaling
analysis of the susceptibility and specific heat for systems with layer
sizes ranging from 20 × 20 to 320 × 320 spins.

a similar clear signal when plotting the energy density as a
function of h. These changes also show up as peaks in the
susceptibility χ (T ,h) (see Fig. 4 for an example with N = 8
and n = 2) and in the specific heat c(T ,h).

In order to obtain the temperature-magnetic-field phase
diagrams for fixed values of N and n, we analyze data for
systems with layer sizes ranging from 20 × 20 to 320 × 320.
Finite-size scaling, where we compare systems with different
layer sizes, allows us to take into account the shift of the
positions of the maxima in the response functions (the suscep-
tibility and the specific heat) with the lateral size of the system.

Figure 5 summarizes our results of the finite-size scaling
analysis of the susceptibility and specific heat for three cases,
namely, a system with two-layer stacks that form a film of
width N = 16 (black squares), a system that contains six
stacks containing three layers (red circles), and a system with
six stacks of four layers (blue triangles). The phase diagrams
for all three cases have the same qualitative features (which
are similar [31] to those encountered in the phase diagram
of the metamagnetic film with n = 1), with three phases (the
phase with an antiferromagnetic ordering of the stacks at low
fields, the intermediate phase with alignment of one additional
surface with the magnetic field for intermediate field strengths,
and the paramagnetic phase for large fields) filling the phase
diagram. The fields at which the transitions take place strongly
depend on the number n of layers in the ferromagnetic stacks,
in agreement with the exactly known values at T = 0; see the
discussion in Sec. II. At low temperatures all transitions are

discontinuous, whereas at higher temperatures the transition
to the paramagnetic phase changes its character and becomes
continuous. The cyan circles in Fig. 5 indicate our estimations
for the location of the tricritical points where this change takes
place. The transition lines at smaller fields, which separate
the phase with antiferromagnetically coupled stacks from the
intermediate phase, keep their discontinuous character until
they end in a critical end point. Increasing the size of the stacks
extends this transition line to higher temperatures and lower
fields. Already for our system with four layers in each stack,
the lower transition line approaches closely the paramagnetic
transition line before it stops (see open blue triangles in Fig. 5).

IV. NONEQUILIBRIUM RELAXATION

In order to monitor the nonequilibrium processes, we
prepare the system in a disordered initial state (corresponding
to infinite temperatures). Then, the system is quenched deep
into the ordered phase by bringing it in contact with a heat
bath at the corresponding temperature. This protocol assures
that no correlations are present at the beginning of the ordering
process. In an experimental situation, some correlations will
build up even during a very rapid quench, but this is a
complication that we do not consider in the following.

Having prepared our system in this way, we let it evolve
with time. A good understanding of the nonequilibrium
processes can only be achieved when looking at local, i.e.,
layer-dependent, quantities. For that reason we focus in the
following on the time-dependent magnetization in each layer,
given by

M(z,t) =
∑

x,y

s(x,y,z; t). (6)

In addition to analyzing individual runs, we also extract
the typical behavior from the average time-dependent planar
magnetization density

m(z,t) = M(z,t)/A, (7)

where · · · indicates the ensemble average and A = K × K is
the number of sites in each layer.

We also study the spin-spin autocorrelation in each layer,
defined by

C(z,t) =
∑

x,y

s(x,y,z; t)s(x,y,z; 0)/A, (8)

which compares configurations at time t with the initial state.
The surface autocorrelation can then be obtained by averaging
over the surfaces located at z = 1 and z = N :

Cs(t) = [C(1,t) + C(N,t)]/2, (9)

whereas for the thick films the corresponding bulk quantity
can be extracted from the middle of the sample:

Cb(t) = [C(N/2,t) + C(N/2 + 1,t)]/2. (10)

A. Ordering processes

Preparing a system in an initially disordered (high-
temperature) state before quenching it down to below the
critical temperature is a protocol which is often used, both
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FIG. 6. (Color online) Temporal evolution of the layer magnetization densities for a metamagnetic film (n = 1) composed of eight layers.
Whereas the left column presents runs where the system rapidly relaxes toward equilibrium, the middle and right columns show cases where
the system gets trapped in a long-lived metastable state. The magnetic field strength is (a)–(c) h = 0, (d)–(f) h = 0.6, and (g)–(i) h = 1.1, with
the temperature being held constant at T = 2.5. The system is prepared in a disordered initial state. Each layer contains 80 × 80 spins.

experimentally [38] and theoretically [35], in the study of
ordering processes and aging phenomena in magnets. In simple
ferromagnets, small domains are formed immediately after the
quench. It is generally thought that at a later stage, during the
coarsening process, the larger domains grow at the expense
of the smaller ones until the system ends up in one of the
stable equilibrium states. However, a series of papers on
zero-temperature coarsening in the Ising model revealed that
this is a too naive picture [40–44], as the system often ends
up in an infinitely long-lived metastable state (in three space
dimensions this is, in fact, the generic situation [43,44]). At
higher temperatures the system will eventually find its way out
of these metastable states and end up in equilibrium, but the
time spent in these states can be very large.

In the following, we discuss the ordering processes in
metamagnetic films exposed to an external magnetic field. The
competition between the antiferromagnetic interstack coupling
and the magnetic field adds another level of complexity to the
coarsening process. We focus on the cases with n = 1 and
n = 2 as no fundamentally new aspects emerge for the larger
values of n.

Figures 6 and 7 give examples of our results for the
metamagnetic films with antiferromagnetic coupling between
neighboring layers (n = 1). The data in Figs. 6 and 7 have been
obtained for films with N = 8 layers and a fixed temperature
of T = 2.5. Besides the case without applied magnetic field,

we also consider field strengths of h = 0.6, still inside the
low-field antiferromagnetic phase, and h = 1.1, where the
system is in the intermediate phase.

Figures 6(a), 6(d), and 6(g) show the time evolution of
the layer magnetization for the generic case where the system
rapidly (within a few thousand MCSs) relaxes and ends in an
equilibrium state. However, in roughly 35% of the cases the
system is caught in a metastable state from which it escapes
only after a very long time. For every value of the external
field we provide examples of runs with long-lived metastable
states in the middle and right columns of Fig. 6.

For h = 0 this observation of long-lived metastable states
is in agreement with the known properties of the Ising model.
Indeed, inspection of the Hamiltonian (1) in the absence of
a magnetic field, i.e., with h = 0, reveals that changing the
signs of the antiferromagnetic couplings and the signs of every
second layer at the same time yields the Hamiltonian of the
standard three-dimensional Ising model. Because of that, the
properties of the metamagnets in a vanishing magnetic field
are identical to those of the corresponding Ising model. This
symmetry is, of course, broken when adding a magnetic field.
For h = 0.6 the time evolution of the planar magnetizations
is similar to that at h = 0. As h > 0 in this case, there is a
bias towards positive magnetizations as minus spins flip more
easily than plus spins. However, the long-lived configurations
are of the same type as those found for h = 0 (see the spin
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z=1
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z=3

h=0

z=4

h=0.6 h=1.1

FIG. 7. Spin configurations in layers 1 to 4 at the end of some of the runs shown in Fig. 6 for which the system has not yet reached
equilibrium after t = 10 000 MCSs. The left column shows Fig. 6(b), the middle column shows Fig. 6(e), and the right column shows Fig. 6(h).
Spins with a value of +1 are shown as black squares.

configurations shown in the first two columns of Fig. 7). As
long as the antiferromagnetic phase is the equilibrium phase,
the long-lived metastable phase results from the presence
of very straight and stable domain walls that separate two
domains formed by the two equilibrium states.

For h = 1.1 and T = 2.5 (see the last row in Fig. 6
and the last column in Fig. 7), the equilibrium phase is the
intermediate phase where both surface layers are aligned with
the magnetic field, resulting in five layers with positive and
three layers with negative magnetization [31]. The metastable
phases [see Figs. 6(h) and 6(i)] are those where in the middle
two layers, with z = 4 and z = 5, domain walls separate
positively and negatively magnetized domains. See the z = 4
configuration in the right column of Fig. 7. It is interesting
to note that these domain walls are not straight but instead
are oriented predominantly in the diagonal direction. The
resulting configuration, + − + · · · + −+, can be explained by

the observation [shown in the time evolution in Figs. 6(g)–6(i)]
that the ordering starts at the two surfaces and progresses
from there into the film. Starting from the outside, the system
might end up in either the state + − + − + + −+ or the state
+ − + + − + −+, so that the two middle layers can either
have positive or negative magnetization. As a result, it can
happen that in these layers long-lived domain walls form due to
the competition between the two equilibrium phases, yielding
the observed metastable states.

Finally, for large values of h where the paramagnetic
phase prevails, the system rapidly forms positively magnetized
layers, and no long-lived metastable phases are observed.

Figures 8 and 9 show the results of a similar study for
systems with N = 8 layers where each ferromagnetic stack
contains two layers (n = 2). Overall, the phenomenology is
very similar to that of the n = 1 systems. In the low-field phase
(as encountered for h = 0 and h = 0.2) the metastable states
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FIG. 8. (Color online) Temporal evolution of the layer magnetization densities for a film of N = 8 layers composed of four two-layer
stacks (n = 2). Whereas the left column presents runs where the system rapidly relaxes toward equilibrium, the middle and right columns
show cases where the system gets trapped in a long-lived metastable state. The magnetic field strength is (a)–(c) h = 0, (d)–(f) h = 0.2, and
(g)–(i) h = 0.55, with the temperature being held constant at T = 2.5. The system is prepared in a disordered initial state. Each layer contains
80 × 80 spins.

are again characterized by straight domain walls. The only
apparent difference comes from the two-layer structure of the
ferromagnetic stacks and can be seen by comparing Figs. 7 and
9. As seen in Figs. 8(g)–8(i) and the last column in Fig. 9, inside
the intermediate phase, the mechanism yielding metastable
states is the same as for the n = 1 case. The ordering
grows from the outside to the inside, yielding a competition
between the states + + − − + + ++ and + + + + − − ++.
As a result, long-lived domain walls might form in the four
innermost layers, resulting in the observed metastable states.
Contrary to the n = 1 case where the domain walls are pointed
mainly in the diagonal direction (see the third column in
Fig. 7), the n = 2 case (as well as other cases with n > 1)
presents domain walls that are predominantly oriented in the
axial direction.

B. Surface autocorrelation exponent

Whereas in the previous discussion we focused on thin
films, we now consider the situation of very thick films such
that the film thickness is much larger than the bulk correlation
length. In that case, the two surfaces are uncorrelated, and the
system can be considered to model the behavior of a semi-
infinite system. This allows us to extract properties of the
surface layer during the relaxation process without having to

worry about possible effects due to the presence of the second
surface.

Relaxation processes close to surfaces have been studied
in a few instances in the past. Most of these studies focused
on quenches to the critical point of a magnetic system [34,45–
49]. In [50] the two-dimensional semi-infinite Ising model
quenched below the critical point was studied, and the local
relaxation processes close to the surface were investigated with
the help of correlation and response functions.

Systems with coarsening are characterized by a growing
correlation length (typical domain length) L(t). In the regime
where L(t) is large compared to the microscopic length
scales but small compared to the system size, the bulk
autocorrelation (10) decays algebraically with L(t):

Cb(t) ∼ [L(t)]−λb , (11)

where λb is the bulk autocorrelation exponent [35,51,52].
For the two-dimensional Ising model, it was found that
a surface locally changes this behavior, yielding a surface
autocorrelation (9) that decays in the same regime as

Cs(t) ∼ [L(t)]−λs , (12)

with a surface autocorrelation exponent λs > λb [50]. We
measured the autocorrelation in our systems in order to see
whether a similar relationship holds in three dimensions.
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z=1

z=2

z=3

h=0

z=4

h=0.2 h=0.55

FIG. 9. Spin configurations in layers 1 to 4 at the end of some of the runs shown in Fig. 8 for which the system has not yet reached
equilibrium after t = 10 000 MCSs. The left column shows Fig. 8(b), the middle column shows Fig. 6(e), and the right column shows Fig. 6(h).
Spins with a value of +1 are shown as black squares.

The symmetry of the Hamiltonian (1) in the absence of
a magnetic field yields the Hamiltonian of the standard
three-dimensional Ising model when changing the signs of
the antiferromagnetic couplings and the signs of the spins in
every other stack of ferromagnetically coupled layers at the
same time. This symmetry makes sure that the autocorrelation
exponents measured in the synthetic metamagnets with h = 0
are the same as those of the three-dimensional Ising model. We
verified this by also directly simulating the three-dimensional
Ising model (see below).

In our simulations, we consider large systems consisting
of 100 × 100 × 80 spins. The dimensions of our samples are
large enough to avoid the appearance of finite-size effects
during the nonequilibrium relaxation process. Data of high
quality are needed in order to be able to reliably extract
values for the autocorrelation exponents from time-dependent

correlation functions. The data discussed in the following
result from averaging over at least 75 000 independent runs.

We carefully checked that during the simulation the
time-dependent correlation length L(t), extracted from the
exponentially decaying spatial correlations, remained much
smaller than the extent of the system. We also verified that
the correlation length in our systems increases as the square
root of time, L(t) ∼ t1/2, as expected for a system with
curvature-driven coarsening [53].

Figure 10 shows the temporal evolution of the auto-
correlation at the surface and in the bulk for the layered
antiferromagnet with n = 1 at T = 3 as well as for the
three-dimensional Ising model at T = 2. Due to the difference
in temperature, differences are observed in the early time
behavior (see the inset in Fig. 10). However, in the long-
time limit, the slopes for the different quantities are found
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FIG. 10. (Color online) Time-dependent bulk and surface auto-
correlation in the absence of a magnetic field for the metamagnet
(n = 1) and the three-dimensional Ising model quenched inside the
ordered phase. The slopes in the log-log plot yield the ratio between
the bulk and surface autocorrelation exponent and the dynamic
exponent z (i.e., λb/z and λs/z). The solid line indicates a slope
of 0.774, whereas the dashed line has a slope of 0.854. The size of
the simulated systems is 100 × 100 × 80.

to be the same for the two situations under investigation.
Thus for the bulk autocorrelation exponent we find for the
metamagnet λb = 1.550(6), whereas for the Ising model we
have λb = 1.546(6). Our estimates for λb refine the values
of 1.59 and 1.60(2), respectively, obtained in earlier studies
of nonequilibrium relaxation in the three-dimensional Ising
model [52,54]. For the surface autocorrelation exponent, for
which no previous estimates are available, we obtain the values
λs = 1.706(8) for the metamagnet and λs = 1.712(8) for the
Ising model. We note that λs > λb, so that the situation is
similar to that encountered in the two-dimensional Ising model
[50]. However, the values for the surface and bulk exponents
are much closer in three than in two dimensions.

V. CONCLUSION

Bulk metamagnets have been the topic of intensive research
for many years, and by now, their properties are well un-
derstood. The recent emergence of artificial antiferromagnets
in the form of superstructures in thin-film geometry has
resulted in a need to also better understand the properties of
metamagnetic thin films. In a realistic description one should
take into account the fact that artificial antiferromagnets are
composed of ferromagnetic multilayers, with an antiferromag-
netic exchange coupling between the multilayers provided by
the spacer layers.

In this paper, we took into account the finite ex-
tent of these multilayers and used an Ising model where

ferromagnetic stacks composed of a certain number of layers
are coupled through an antiferromagnetic interstack inter-
action. Using large-scale numerical simulations, we studied
stacks of different sizes and investigated both their equilibrium
and nonequilibrium properties.

The equilibrium phase diagrams as a function of temper-
ature and applied magnetic field have the same qualitative
feature for any size of the stacks, albeit quantitative differ-
ences are observed. As already found for the standard Ising
metamagnet in thin-film geometry [31], a third phase, called
the intermediate phase, is stabilized due to the finiteness of
the film. In this phase, both surfaces (and the stacks they
belong to) align with the magnetic field, whereas inside the
film an antiferromagnetic ordering of the stacks still prevails.
The transition between the low-field antiferromagnetic phase
and the intermediate phase is discontinuous, and the transition
line ends in a critical end point. The second phase transition,
from the intermediate phase to the paramagnetic phase stable
at high fields, is of first order at low temperatures and of second
order at high temperatures. The existence of a tricritical point
is a feature that is common to the films and the bulk systems.

The nonequilibrium relaxation is complicated by the com-
petition between antiferromagnetic coupling and the magnetic
field. Whereas in most cases the system relaxes rapidly to the
equilibrium state, in roughly 35% of the cases with low and
intermediate field strengths the system ends up in a long-lived
metastable state. The nature of the metastable state can be
understood through the analysis of the time-dependent planar
magnetization as well as through the inspection of typical
spin configurations. Starting from a disordered initial state,
the surfaces order first. As the ordering progresses from
the outside to the inside, competition between different spin
configurations can take place in the middle of the sample,
yielding long-lived domain walls in the innermost layers. We
note that for n = 1 these domain walls are predominantly in the
diagonal direction. This is an unexpected result, and a more
in-depth investigation, especially at very low temperatures,
will be needed to gain a better understanding of the mechanism
behind this.

Finally, we studied thick films in the absence of a magnetic
field in order to compute the surface autocorrelation function.
We found that this quantity decays algebraically, with the
surface autocorrelation exponent taking on a value that differs
from that of its bulk counterpart. Due to the symmetry of the
Hamiltonian for vanishing magnetic fields, this exponent is the
same as that for the three-dimensional Ising model.
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