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Electromagnetic and gravitational responses of two-dimensional noninteracting electrons
in a background magnetic field
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We compute electromagnetic, gravitational, and mixed linear response functions of two-dimensional free
fermions in an external quantizing magnetic field at an integer filling factor. The results are presented in the form
of the effective action and as an expansion of currents and stresses in wave vectors and frequencies of the probing
electromagnetic and metric fields. In addition to the well-studied U (1) Chern-Simons and Wen-Zee terms we
find a gravitational Chern-Simons term that controls the correction to the Hall viscosity due to the background
curvature. We relate the coefficient in front of the term with the chiral central charge.
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I. INTRODUCTION

Recent interest in the Hall viscosity in the theory of
the fractional quantum Hall effect (FQHE) and the interest
to the interplay of defects and mechanical stresses with
the electromagnetic properties of materials motivates studies
of gravitational, electromagnetic, and mixed responses in
condensed matter physics. The gravitational field in condensed
matter systems can be understood either as a way to represent
the deformational strains present in the material under consid-
eration or as a technical tool allowing to extract the correlation
functions involving stress tensor components.

It is always important to have a simple model system
for which such responses can be calculated exactly. For
the quantum Hall effect one can consider two-dimensional
electron gas in a constant magnetic field (2DEGM) as such a
model. When the density of fermions is commensurate with
the magnetic field the integer number of Landau levels is filled
and one expects a local and computable response to weak
external fields. This model is an important starting point of
analysis for quantum Hall systems as a free electron gas for
the theory of metals. However, while some electromagnetic
responses for 2DEGM can be found in the literature, we were
not able to find the complete results for mixed and gravitational
linear responses. The goal of this paper is to compute these
responses providing the analog of the Lindhard [1] function,
both electromagnetic (e/m) and gravitational, for 2DEGM. We
compute the effective action encoding linear responses in the
presence of external inhomogeneous, time-dependent, slowly
changing electromagnetic and gravitational fields.

We compare and find an agreement of the obtained
responses with known e/m responses [2–5] and with known
results for Hall viscosity at integer fillings [6,7]. In addition,
we find the stress, charge, and current densities induced by
perturbations of spatial geometry. Another point of compar-
ison is given by phenomenological hydrodynamic models
for FQHE [8–13] and Ward identities following from the
exact local Galilean symmetry (also known as nonrelativistic
diffeomorphism) of the model [14,15].

The main results of this paper are presented in Eqs. (11)
and (30). The first of these states that the low-energy effective
action for the integer quantum Hall system is not completely
captured by the Wen-Zee arguments [16] and the correct

coefficient in front of the gravitational Chern-Simons term
is not completely determined by the orbital spin and the filling
fraction, but, in addition, requires the knowledge of the chiral
central charge. The second of these states that the chiral central
charge manifests itself in a curved space and shifts the value of
the Hall viscosity. In particular, Eq. (30) implies that one could
determine the chiral central charge, and therefore, thermal Hall
conductivity [17,18] from the Hall viscosity computed on a
curved space.

II. MODEL

Our starting point is the system of a two-dimensional free
nonrelativistic fermions interacting with an external gauge Aμ

and spatial metric gij fields. We assume that the spatial metric
can depend on time. The action has the form

S =
∫

d2xdt
√

g

[
i

2
�ψ†∂0ψ − i

2
�(∂0ψ

†)ψ

+ eA0ψ
†ψ − �

2

2m
gij (Diψ)†Djψ + gsB

4m
ψ†ψ

]
. (1)

We assume that the fermions are spin polarized and treat
the ψ field as a complex Grassman scalar. We have also
added a Zeeman term with the g factor gs . For the case
of electrons in a vacuum gs = 2, but it is convenient to
keep it arbitrary for potential condensed matter applica-
tions. The covariant derivative Di = ∂i − i e

�c
(Āi + Ai) and

includes both the vector potential of the constant background
magnetic field B0 = ∂1Ā2 − ∂2Ā1 and a weak perturbation.
In the curved background the magnetic field is defined as
B = 1√

g
(∂1Ā2 − ∂2Ā1 + ∂1A2 − ∂2A1), so it transforms as a

(pseudo)scalar under coordinate transformations. We separate
it into constant part and perturbation as B = B0 + b. In this
work we use the expression linear in fields b = B − B0 ≈
∂1A2 − ∂2A1 − 1

2δgii . Here δgij is a deviation from the flat
background gij = δij + δgij .

We omit the chemical potential term in Eq. (1) for brevity,
but assume throughout the paper that the lowest N Landau
levels are completely filled in the ground state. We use
conventional notations for metric fields so that gij and gij are
reciprocal matrices and an invariant spatial volume is given by√

g d2x with g = det(gij ).
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To find the linear responses of the system (1) with respect
to perturbations in the gauge and metric fields we compute
the effective (induced) action of the theory in quadratic
approximation. The effective action Seff is defined as a path
integral over the fermionic fields

e
i
�

Seff [Aμ,gij ] ≡
∫

D
(
g

1
4 ψ

)
D

(
g

1
4 ψ†)e i

�
S . (2)

The notation [19,20] D(g
1
4 ψ) serves as a reminder that the

path integral is taken over the space of functions ψ(x),ψ†(x)
equipped with the invariant scalar product given by

(ψ,φ) ≡
∫

d2x
√

gψ†φ . (3)

We stress that only a finite number of the Landau levels is filled,
therefore, only a finite number of eigenmodes contributes to
the fluctuation determinant. There are no divergencies and no
renormalization is required.

III. SPIN CONNECTION

In the external magnetic field the electron is moving along
a circular orbit. There is an orbital spin s̄ associated to this
motion. The orbital spin is not a part of the original action
(1), but an emergent phenomenon [6] that appears after the
averaging over the “fast” cyclotron motion of the electron. The
orbital spin couples to the emergent SO(2) spin connection,
just like electric charge couples to the vector potential.

The Levi-Civita SO(2) spin connection can be expressed
in terms of the vielbeins as [14]

ω0 = −εab

2
eaj ∂0e

b
j , ωi = −εab

2
eaj ∂ie

b
j + εjk

2
√

g
∂jgik . (4)

This connection transforms like an abelian gauge field under
the local SO(2) rotations [14].

There are several general arguments that explain why the
spin connection has to be a part of the low-energy description
of the FQH states [16,21,22]. Nevertheless, there is a confusion
in the literature about the Chern-Simons term that can be
constructed from ωμ. Methods based on the local Galilean
invariance cannot say anything about the term or the coefficient
in front of it because it is too far in the gradient expansion. The
methods of the authors of [16] give the wrong prediction for the
coefficient in front of the gravitational Chern-Simons (gCS)
term. The major result of this paper is the direct computation
of the coefficient. We notice that the mismatch between our
computation and the result of [16] is captured precisely by the
gravitational anomaly.

IV. EFFECTIVE ACTION

The effective action defined in Eq. (2) can be computed as
a regular expansion in background fields Aμ(x,t) and gij (x,t)
and their gradients. In the following we expand the effective
action to quadratic order in the external fields. It is convenient
to separate it as

Seff = S
(1)
eff + S

(geom)
eff + S

(2)
eff . (5)

The first contribution is given by

S
(1)
eff =

∫
d2xdt

√
g[−ε0 + ρ0A0 + s0ω0] , (6)

where ω0 is the time component of the spin connection and ε0,
ρ0, and s0 are the energy density, density, and the orbital spin
density in the ground state. They are given, respectively, by

ρ0 = N

2πl2
, ε0 = ρ0 �ωc

2N − gs

4
, s0 = ρ0�

N

2
. (7)

Here and throughout the paper we use conventional notations
for magnetic length and cyclotron frequency given in terms of
the constant part of the background magnetic field B0 as

l2 = �c

eB0
, ωc = eB0

mc
. (8)

We notice here that although Eq. (6) includes all terms linear
in Aμ, gij they also contain several quadratic terms. Indeed,
the expansion of the

√
g in terms of the deviations from the

flat background is
√

g = 1 + 1
2δgii − 1

8

[
(δg11 − δg22)2 + 4δg12δg21

] + · · · (9)

and Eq. (6) should be re-expanded and truncated to the terms
up to the second order in fields.

The second term in Eq. (5) contains the topological and
geometrical contributions to the effective action (with � =
c = e = 1)

S
(geom)
eff = N

4π

∫ (
AdA + NAdω + 2N2 − 1

6
ωdω

)
, (10)

where we used the “form notation”
∫

AdA ≡∫
d2xdtεμνλAμ∂νAλ. The coefficients of the three terms in

Eq. (10) give, respectively, the Hall conductivity σH = N
2π

,
the average orbital spin per particle s̄ = N

2 (corresponding to

the Wen-Zee shift S = N ), and the gCS coefficient N(2N2−1)
24π

.
The following comment is in order. The action (1) is written

in terms of the gauge potential Aμ and metric gij . It does not
require spin connection ωμ as it is already covariant due to
the fact that ψ is a scalar field. Thus, the S

(geom)
eff should also

depend solely on the vector potential and metric. It is, however,
instructive to write S

(geom)
eff in terms of Aμ and ωμ as we did in

Eq. (10). With the accuracy used in this paper the dependence
on ωμ can be restored with the help of linearized version of
(4), i.e., ωi ↔ − 1

2εjk∂j δgik and ω0 ↔ 1
2εjkδgij δġik .

It is illuminating to present Eq. (10) as an explicit sum over
Landau levels

S
(geom)
eff =

N∑
n=1

∫ [
1

4π
(A + s̄nω)d(A + s̄nω) − c

48π
ωdω

]
,

(11)
c = 1,

where s̄n = 2n−1
2 is the orbital spin per particle on the

nth Landau level and the last term is an anomalous gCS
contribution the same for all Landau levels. It is equal to
the nonrelativistic limit of the well-known relativistic gCS
term [23]. This last is related to the gravitational anomaly
via the usual anomaly inflow arguments. Its presence shows
that the spin connection does not simply combine with the
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vector potential in the effective action as suggested in [16,21].
We speculate that the offset is due to the gravitational anomaly
experienced by the chiral edge modes in the curved space.

The physical meaning of Chern-Simons and Wen-Zee
terms have been extensively discussed in the literature. The
relativistic gCS term is usually related to the transverse heat
transport via Luttinger’s argument [23–27]. The last term in
Eq. (5) gives the remaining second-order terms

S
(2)
eff =

∫
d2xdt L(2) ,

L(2) = 1

2

(
AμμνAν + Aμ�

μ

ij δg
ij + δgij�ijklδg

kl
)
, (12)

where differential operators ,�,� encode the electromag-
netic, mixed, and gravitational responses, respectively. These
operators can be computed exactly as infinite series in time
and spatial derivatives or as a series in frequency and wave
vectors in Fourier representation. We will present the details
of the computation elsewhere and give here only the results
obtained in the lowest orders in gradients

4π

N
L(2) = ml2E2

i −
N

m
b2−3N

2
l2b(∂iEi)−2N2 − 1

4m
bR ,

+ 2N2 − 1

6
l2R(∂iEi)+N (N2 − 1)

8m
R2+ · · · ,

(13)

where R is the scalar curvature given by R = ∂i∂j δgij − �δgii

after linearization. While the first three terms of the expansion
(13) can be found in the literature [2] the other terms are new.

The effective action presented above is, probably, the most
compact way to summarize linear responses. However, we
find it convenient to have direct formulas for observables such
as charges, currents, and stresses in a dynamic and inhomo-
geneous background. We present the explicit expressions and
their physical meaning for linear responses in the next sections.
For illustration purposes and to lighten up the equations in the
following we consider only the lowest Landau level filled, i.e.,
N = 1.

V. DENSITY

The expectation value of the electric charge density is given
by the variational derivatives of the action (2) with respect to
the scalar potential

ρ(x) ≡ 1√
g

δSeff

δA0(x)
= 〈ψ†ψ〉. (14)

In the curved background the density has to be understood as
the number of particles per invariant volume element

ρ − ρ0 = 1

2π

(
1 + 3 − gs

4
l2�

)
b

+ 1

8π

(
1 + 1

3
l2�

)
R + ml2

2π

(
1 + 3

8
l2�

)
(∂iEi) ,

(15)

where � is the Laplacian.
Integrating Eq. (15) over a closed manifold we obtain the

shift of the degeneracy of the lowest Landau level due to the

topology of the manifold

Q =
∫

d2x
√

gρ =
∫

d2x
√

g

(
B

2π
+ R

8π

)
= Nφ + 1

2
χ ,

(16)

where Nφ is the total magnetic flux and χ is the Euler
characteristics of the manifold [16]. The correction to the
density due to curvature gradients in Eq. (15) is in agreement
with [13,28]. Extending Eq. (16) to the case of an isolated
conic singularity with the deficit angle θ we find

δQ =
∫

d2x
√

g(ρ − ρ0) = 1

8π

∫
d2x

√
gR = 1

4π
θ . (17)

The points of higher positive curvature suck particles in and
increase local density. Although the derivation presented here
cannot be rigorously applied to the case of conic singularity
where the curvature R = 2θδ(x) is highly singular, the integral
formula (17) is exact and can be checked by direct computation
of the density on a surface of the cone.

A detailed discussion of the dynamic response functions
requires an analysis of the local Galilean invariance and is
beyond the scope of this paper. In the following we illustrate
some structures arising as the time dependence is introduced.

In the flat background and for N = 1, gs = 0 we have

ρ(ω)

ρ0
= 1

1 − ω2

(
1 + l2b + ml4∂iEi

− 3

2
l2�

2l2b + ml4∂iEi

4 − ω2
+ · · ·

)
,

where ω is measured in units of ωc. The overall pole at ω = 1 is
expected even in the presence of interactions as a consequence
of the Kohn’s theorem. The poles at ω = n, n = 2,3, . . . ,

corresponding to transitions between different Landau levels
occur in the next terms of the gradient expansion.

Expanding in frequency and including the gravitational
perturbations we have the leading term (first order in the time
derivative)

ρ(x,t) = ρ(x,0) + 3

16πml2
εij ∂i∂kġik (18)

with ρ(x,0) given by Eq. (15).

VI. ELECTRIC CURRENT

The expectation value of the electric current density is given
by the variational derivative of the action (2) with respect to
the vector potential

J i(x) ≡ 1√
g

δSeff

δAi(x)
=

〈
gij

2mi
[ψ†Djψ − (Djψ)†ψ]

〉
. (19)

We find

〈Ji〉 = εij

[
σHEj + 2 − gs

4πm
∂j

(
b + R

8

)]
, (20)

where the wave-vector-dependent Hall conductivity is
given by

σH (k) = 1

2π

(
1 − 3 − gs

4
|kl|2 + 22 − 9gs

96
|kl|4

)
. (21)
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The correction of the order of k2 is in full agreement with the
general results for Galilean-invariant systems [7,14]. The k4

term calculated here is new.
The second term in Eq. (20) is another new result of this

work. It shows that in low orders of the gradient expansion the
gradient of the magnetic field and curvature affect current
similarly to the electric field. We also point out that in
agreement with [22] the m → 0 limit is regular for gs = 2.

VII. STRESS TENSOR

The expectation value of the stress tensor is given by

Tij ≡ − 2√
g

δSeff

δgij (x)
= 1

2m

〈
(Diψ)†Djψ + (Djψ)†Diψ)

〉

− 1

4m
gij (�g + gsB)〈ψ†ψ〉. (22)

Here �g is the Laplace-Beltrami operator defined as �gρ =
1√
g
∂i(gij√g∂jρ) [29].
Using Eq. (22) we find the stress tensor in the leading order

in gradients

Tij = 1

8π
(∂iEj + ∂jEi)

+ δij

[
ε0 − 4 − gs

8π
∂kEk + 2 − gs

8πml2

(
b + R

8

)]
. (23)

The stress tensor has a regular limit m → 0 limit for gs = 2.
The action (1) is Weyl-invariant. The Weyl symmetry

implies a relation between one-point correlation functions of
the energy density and pressure

ε = 1

2
T i

i , (24)

so Eq. (23) can be used to extract the energy density in the
ground state in the presence of external fields. Keeping only
the lower gradients we obtain the correction to the energy
density

ε − ε0 = −4 − gs

8π
∂iEi + 2 − gs

8πml2

(
b + R

8

)
. (25)

In the case of an isolated conic singularity we get a contribution
to the total energy δE

E0
= θ

8π
per singularity [30].

VIII. HALL VISCOSITY

The time-dependent part of the stress tensor is related to
another quantity of great interest: the Hall viscosity. We are
looking for the parity odd terms in the stress tensor containing
no more than two spatial derivatives.

T odd
ij = 1

2ηH (εikġkj + εjkġki)

+ 1
2η

(2)
H l2[εil∂l∂j + εjl∂l∂i]ġkk, (26)

where ηH = ηH (ω,k) is a generalization of the Hall viscosity
to finite wave number and frequency (here N = 1 and we
measure ω in units of ωc)

ηH (ω,k)

η
(0)
H

= 4

4 − ω2
+ |kl|2

(
1

1 − ω2
− 6

4 − ω2
+ 6

9 − ω2

)
.

Here the conventional Hall viscosity

ηH (ω = 0,k = 0) ≡ η
(0)
H = 1

2ρ0s̄ . (27)

At zero wave vector ηH (ω,k = 0)/η(0)
H = 4/(4 − ω2) is in full

agreement with [7]. For the coefficient in front of the second
tensor [second line of Eq. (26)] we have

η
(2)
H = 1

8
ρ0

(
2

1 − ω2
− 4

4 − ω2

)
. (28)

In the static limit and for general N we rewrite the
expression for the Hall viscosity as a sum over Landau levels

ηH (k,ω = 0) = 1

2πl2

N∑
n=1

(
s̄n

2
+ 1

4

[
s̄2
n − c

12

]
|kl|2

)
. (29)

One has to recall that c = 1 and that the orbital spin per particle
at the nth Landau level is s̄n = 2n−1

2 . We remark here that the
gCS term gives a long wave k2 correction to the Hall viscosity
in a fashion similar to how the Wen-Zee term produces the
long wave correction to the Hall conductivity [14]. In fact,
the k2 correction to the Hall viscosity (29) comes solely from
the gCS term.

We note that the gCS term also corrects the value of the Hall
viscosity in the presence of constant background curvature R0.
Indeed, the gCS term gives a contribution

√
g 1

2R0ω0 to the

effective action, which results in δηH = N(2N2−1)
96π

R0. Then the
total value of the Hall viscosity is given by

ηH = 1

2πl2

N∑
n=1

(
s̄n

2
+ 1

8

[
s̄2
n − c

12

]
R0l

2

)
. (30)

The second term gives the correction due to the curvature
of the background and should be compared to Eq. (29).
If the coefficient c is indeed the chiral central charge then
Eq. (30) suggests a very nontrivial relation. One could
determine the chiral central charge (and, therefore, thermal
Hall conductivity) simply measuring the Hall viscosity on a
sphere.

Equation (30) is also in (somewhat surprising) correspon-
dence with [31], where the same (for N = 1) curvature-
induced shift of the relativistic version of the Hall viscosity
was observed.

IX. CONCLUSION

We have considered noninteracting two-dimensional
fermions in the background electromagnetic and metric fields
(1). We have computed the effective action in the second order
in deviations from the background of flat metric and constant
magnetic field for an integer filling factor. The results are
presented both in terms of the effective action and as linear
response formulas for density, current, and stress. The effective
action features topological Chern-Simons and geometric Wen-
Zee and gravitational Chern-Simons terms. The last of these
controls the correction to the Hall viscosity due to the presence
of the background curvature. The coefficient in front of the
term is related to the chiral central charge. The higher-gradient
corrections to Hall conductivity and Hall viscosity have been
computed.
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The model considered is known to be of fundamental
importance for the understanding of the quantum Hall effect
and topological phases of matter. Our results provide a
good starting point for refined variational and hydrody-
namic approaches to QHE and elucidate phenomenological
and symmetry-based relations between linear responses in
Galilean-invariant systems found recently. A possible gener-
alization of this work is to include torsion into the background
to analyze responses to dislocations [32]. When the paper
was already completed we learned about the work [33] where

some of the results presented here have been extended to
FQHE.
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