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Spin Hall phenomenology of magnetic dynamics

Yaroslav Tserkovnyak and Scott A. Bender
Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA

(Received 24 May 2014; revised manuscript received 8 July 2014; published 22 July 2014)

We study the role of spin-orbit interactions in the coupled magnetoelectric dynamics of a ferromagnetic film
coated with an electrical conductor. While the main thrust of this work is phenomenological, several popular
simple models are considered microscopically in some detail, including Rashba and Dirac two-dimensional
electron gases coupled to a magnetic insulator, as well as a diffusive spin Hall system. We focus on
the long-wavelength magnetic dynamics that experiences current-induced torques and produces fictitious
electromotive forces. Our phenomenology provides a suitable framework for analyzing experiments on
current-induced magnetic dynamics and reciprocal charge pumping, including the effects of magnetoresistance
and Gilbert-damping anisotropies, without a need to resort to any microscopic considerations or modeling.
Finally, some remarks are made regarding the interplay of spin-orbit interactions and magnetic textures.
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I. INTRODUCTION

Several new directions of spintronic research have opened
and progressed rapidly in recent years. Much enthusiasm is
bolstered by the opportunities to initiate and detect spin-
transfer torques in magnetic metals [1] and insulators [2],
which could be accomplished by variants of the spin Hall
effect [3], along with the reciprocal electromotive forces
induced by magnetic dynamics. The spin Hall effect stands
for a spin current generated by a transverse applied charge
current, in the presence of spin-orbit interaction. From the
perspective of angular momentum conservation, the spin Hall
effect allows angular momentum to be leveraged from the
stationary crystal lattice to the magnetic dynamics. A range of
nonmagnetic materials from metals to topological insulators
have been demonstrated to exhibit strong spin-orbit coupling,
thus allowing for efficient current-induced torques.

Focusing on quasi-two-dimensional (2D) geometries, we
can generally think of the underlying spin Hall phenomena
as an out-of-equilibrium magnetoelectric effect that couples
planar charge currents with collective magnetization dynam-
ics. In typical practical cases, the relevant system is a bilayer
heterostructure, which consists of a conducting layer with
strong spin-orbit coupling and ferromagnetic layer with well-
formed magnetic order. In this case, the current-induced spin
torque reflects a spin angular momentum flux normal to the
plane, which explains the spin Hall terminology.

The microscopic interplay of spin-orbit interaction and
magnetism at the interface translates into a macroscopic
coupling between charge currents and magnetic dynamics. A
general phenomenology applicable to a variety of disparate
heterostructures can be inferred by considering a course-
grained 2D system, which both conducts and has magnetic
order as well as lacks inversion symmetry (or else the
pseudovectorial magnetization would not couple linearly to
the vectorial current density). In a bilayer heterostructure, the
latter is naturally provided by the broken reflection symmetry
with respect to its plane.

II. GENERAL PHENOMENOLOGY

Let us specifically consider a bilayer heterostructure with
one layer magnetic and one conducting, as sketched in Fig. 1.
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FIG. 1. (Color online) Heterostructure consisting of a magnetic
top layer and conducting underlayer. The charge current j induces a
torque τ acting on the magnetic dynamics, which quantifies the spin
angular-momentum transfer in the z direction. This can be thought
of as a spin current js entering the ferromagnet at the interface.
Reciprocally, magnetic dynamics ṅ induces a motive force ε acting
on the itinerant electrons in the conductor.

The nonmagnetic layer can be tailored to enhance spin-orbit
coupling effects in and out of equilibrium. Phenomenolog-
ically, we have a quasi-2D system along the xy plane,
which will for simplicity be taken to be isotropic and mirror
symmetric in plane while breaking reflection symmetry along
the z axis. In other words, the structural symmetry is assumed
to be that of a Rashba 2D electron gas (although microscopic
details could be more complex), subject to a spontaneous
time-reversal symmetry breaking due to the magnetic order.
Common examples of such heterostructures include a thin
transition-metal [1] or magnetic-insulator [2] film capped by
a heavy metal, or a layer of 3D topological insulator doped on
one side with magnetic impurities [4].

The course-grained hydrodynamic variables used to de-
scribe our system are the three-component collective spin
density (per unit area) s(r,t) = sn(r,t) ≡ (snx,sny,snz) and
the two-component 2D current density (per unit length)
j(r,t) ≡ (jx,jy) in the xy plane. Considering fully saturated
magnetic state well below the Curie temperature, we treat the
spin density as a directional variable, such that its magnitude

1098-0121/2014/90(1)/014428(8) 014428-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.90.014428


YAROSLAV TSERKOVNYAK AND SCOTT A. BENDER PHYSICAL REVIEW B 90, 014428 (2014)

s is constant and orientational unit vector n parametrizes
a smooth and slowly varying magnetic texture. We will
be interested in slow and long-wavelength agitations of
the ferromagnet coupled to the electron liquid along with
reciprocal motive forces. Perturbed out of equilibrium, the
temporal evolution of the heterostructure is governed by the
forces that couple to the charge flow and magnetic dynamics:
the (planar) electric field and magnetic field, respectively.

A. Decoupled dynamics

A uniform electric-current carrying state in the isolated
conducting film, subject to a constant external vector potential
A, has the free-energy density

F(p,A) = F0(p) − p · A
c

+ O(A2), (1)

where F0 = Lp2/2 is the free-energy density in terms of the
paramagnetic current p (i.e., the current defined in the absence
of the vector potential A), and L is the local self-inductance of
the film (including inertial and electromagnetic contributions).
According to time-reversal symmetry, in equilibrium p = 0
when A = 0. The gauge invariance (which requires that the
minimum of F , as a function of p, is independent of A),
furthermore, dictates the following form of the free energy:

F = L

2

(
p − A

cL

)2

. (2)

Therefore, the phenomenological expression for the full
current density is

j ≡ −cδAF = p − A
cL

, (3)

with δ standing for the 2D functional derivative of the total
electronic free energy F [p] = ∫

d2rF(p). We conclude, based
on Eqs. (2) and (3), that j = L−1δpF , which is thus the
force thermodynamically conjugate to Lp. General quasistatic
equilibration [5] of a perturbed electron system can now be
written as

Lṗ = −�̂j, (4)

or, in terms of the physical current,

Lj̇ + �̂j = E, (5)

where E ≡ −∂tA/c is the electric field, and �̂ is identified as
the resistivity tensor. This is the familiar Ohm’s law, which, in
steady state, reduces to

j = ĝE, (6)

in terms of the conductivity tensor ĝ ≡ �̂−1. Based on the
axial symmetry around z, we can generally write ĝ = g +
gH z×, where g is the longitudinal (i.e., dissipative) and gH

Hall conductivities.
The isolated magnetic-film dynamics, on the other hand,

are described by the Landau-Lifshitz-Gilbert equation [6]:

s(1 + αn×)ṅ = H∗×n, (7)

where H∗ ≡ δnF [n] is the effective magnetic field governed by
the magnetic free-energy functional F [n] = ∫

d2rF(n). The

(dimensionless) Gilbert damping α captures the (time-reversal
breaking) dissipative processes in the spin sector.

The total dissipation power in our combined, but still
decoupled, system is given by

− Ḟ = −
∫

d2r(Lṗ · j + ṅ · H∗) =
∫

d2r(�j 2 + αsṅ2),

(8)

where � = g/(g2 + g2
H ) is the longitudinal resistivity.

According to the fluctuation-dissipation theorem [5],
finite-temperature fluctuations are thus determined
by 〈ji(r,t)ji ′(r′,t ′)〉 = 2gkBT δii ′δ(r − r′)δ(t − t ′) and
〈hi(r,t)hi ′(r′,t ′)〉 = 2αskBT δii ′δ(r − r′)δ(t − t ′). Having
mentioned this for completeness, we will not pursue thermal
properties any further.

B. Coupled dynamics

Having recognized (Lp,j) and (n,H∗) as two pairs of ther-
modynamically conjugate variables, their coupled dynamics
must obey Onsager reciprocity [5]. Charge current flowing
through our heterostructure in general induces a torque τ on the
magnetic moment and, vice versa, magnetic dynamics produce
a motive force ε acting on the current, defined as follows:

s(ṅ + n×α̂ṅ) = H∗×n + τ , (9)

Lj̇ + �̂j = E + ε, (10)

where Lj̇ = Lṗ + E, according to Eq. (3). In general, due
to the spin-orbit interaction at the interface, Gilbert damp-
ing [7] α̂ and resistivity tensor [8] �̂ can acquire anisotropic
n-dependent contributions. Let us start by expanding the
motive force, according to the assumed structural symmetries,
in the Cartesian components of n:

ε = [(η + ϑn×)ṅ]×z, (11)

where η is the reactive and ϑ the dissipative coefficients
characterizing spin-orbit interactions in our coupled system.
While η and ϑ can generally depend on n2

z , we will for
simplicity be focusing our attention on the limit when they
are mere constants. The dimensionless parameter β ≡ ϑ/η

describes their relative strengths. The Onsager reciprocity then
immediately dictates the following form of the torque:

τ = (η + ϑn×)(z×j)×n. (12)

In line with the existing nomenclature [1,2], we can write the
dissipative coefficient as

ϑ ≡ �

2eaN

tan θ, (13)

in terms of a length scale aN , which we take to correspond to
the normal-metal thickness [9], and dimensionless parameter θ

identified as the effective spin Hall angle at the interface. The
coefficient η in Eq. (12) parametrizes the so-called fieldlike
torque, which could arise, for example, as a manifestation of
the interfacial Edelstein effect [10].

Another important effect of the nonmagnetic layer on the
ferromagnet is the enhanced damping of the magnetization
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dynamics by spin pumping [11], such that

α = α0 + a↑↓

aF

. (14)

α0 is the bulk damping, which is thickness aF independent,
and a↑↓ parametrizes the strength of angular momentum
[as well as energy, according to Eq. (8)] loss at the interface.
Spin pumping into a perfect spin reservoir corresponds to [11]
a↑↓ = �g

↑↓
r /4πS, where g

↑↓
r is the (real part of the dimen-

sionless) interfacial spin-mixing conductance per unit area and
S ≡ s/aF is the 3D spin density in the ferromagnet. In reality,
a↑↓ depends on the spin-relaxation efficiency in the normal
metal as well as the spin-orbit interaction at the interface,
and may depend on aN in a nontrivial manner (see Ref. [12]
for a diffusive model), so long as aN � λN , where λN is the
spin-relaxation length in the normal metal [13]. With these
conventions in mind and focusing on the limit of aN 	 λN

and, in the case of a metallic ferromagnet, aF 	 λF , we will
suppose that the coefficients θ , β, and a↑↓ defined above are
thickness independent [14].

Unless otherwise stated, we will disregard anisotropies
in α, which may in general depend on the directions of
n and ṅ, subject to the reduced crystalline symmetries and
the lack of reflection asymmetry at the interface [15]. In
the same spirit, with the exception of Sec. III C, we will
not concern ourselves much with the n-dependent interfacial
magnetoresistance/proximity effects [8], which would enter
through the resistivity tensor �̂(n) in Eq. (10).

We remark that while we considered a nonequilibrium
magnetoelectric coupling in terms of torque τ and force ε in
Eqs. (9) and (10), we had retained the decoupled form of the
free-energy density, F(p) + F(n). We exclude the possibility
of a linear coupling of p to the magnetic order, since it would
suggest a nonzero electric current in equilibrium.

C. Current-induced instability

Equations (9) and (10) encapsulate rich nonlinear dynam-
ics. Of particular interest are the current-induced magnetic
instabilities and switching. For a fixed current bias j, it is
convenient to multiply Eq. (9) by (1 − αn×) on the left to
obtain

s(1 + α2)ṅ = h×n − αn×h′×n. (15)

Here,

h ≡ H∗ + (η + ϑα)z×j, h′ ≡ H∗ + (η − ϑ/α)z×j (16)

are the effective Larmor and damping fields, respectively. A
magnetic instability (bifurcation) at an equilibrium fixed point
may occur, for example, when either the effective field or
effective damping change sign.

To illustrate this, consider a simple case, where a constant
current is applied in the x direction: j = jx, while an external
magnetic field parametrized by H is applied along the y

axis: H∗ = Hy + Knzz, where we also include an easy-plane
magnetic anisotropy K . Equations (16) then become

h = [H + (η + ϑα)j ]y + Knzz, (17)

h′ = [H + (η − ϑ/α)j ]y + Knzz. (18)

In equilibrium, when j = 0: n = −y. When j is ramped
up, however, this fixed point may become unstable. Let us
consider two extreme limits. First, suppose the magnetoelectric
coupling (12) is purely reactive, i.e., ϑ = 0. The effect of the
torque can thus be fully captured by a redefinition of the applied
field as H → H + ηj . We thus see that when −j exceeds
H/η, the effective field switches sign, and the stable magnetic
orientation flips from −y to y.

If, on the other hand, the magnetoelectric coupling (12) is
purely dissipative, i.e., η = 0, then H → H + ϑαj according
to Eq. (17), whereas H → H − (ϑ/α)j according to Eq. (18).
Supposing, furthermore, that α � 1, as is nearly always the
case, the effect of ϑ on h is negligible in comparison to its
effect on h′. We thus rewrite Eqs. (17) and (18) as

h ≈ Hy + Knzz, h′ = [H − (ϑ/α)j ]y + Knzz. (19)

A simple stability analysis gives for the critical current at
which n = −y becomes unstable

jc = α

ϑ

(
H + K

2

)
. (20)

In the presence of comparable reactive and dissipative
torques, i.e., β ∼ 1 so that η ∼ ϑ , while still α � 1, h
remains essentially unaffected by currents of order jc (unless
K � H/α 	 H ), so that the above dissipative magnetic
instability at jc is maintained. We could thus expect Eq. (20)
to rather generally describe the leading spin-torque instability
threshold [16] for the monodomain dynamics.

It is instructive to obtain from Eq. (20) the intrinsic
instability threshold for thin magnetic films, aF � a↑↓/α0,
for which the bulk contribution, α0, to the damping (14) can
be neglected:

j (0)
c = 2e

�

a↑↓

tan θ

aN

aF

(
H + K

2

)
. (21)

Writing, furthermore, j (0)
c = J (0)

c aN , in terms of the 3D current
density J (0)

c ; a↑↓ = �g
↑↓
r /4πS, in terms of the effective

spin-mixing conductance g
↑↓
r (including the effects of spin

backflow from the normal layer [12], in case of an imperfect
spin sink); and converting effective field to physical units:
H = ωBaF S and K = ωKaF S, where ωB = γB in terms of
the gyromagnetic ratio γ and applied field B, ωK = 4πγMs

with Ms = γ S, in case of only the shape anisotropy, we obtain

J (0)
c = e

2π

g
↑↓
r

tan θ

(
ωB + ωK

2

)
. (22)

We recall that the Kittel formula for the ferromagnetic-
resonance frequency is ω = √

ωB(ωB + ωK ). Using quanti-
ties characteristic of the Pt|YIG compound [1,2], θ ∼ 0.1,
g

↑↓
r ∼ 5 nm−2, and ωK ∼ 4×1010 s−1, we would get for the

intrinsic instability threshold (in the absence of an applied
field B): J (0)

c ∼ 3×1010 A m−2. (Threshold currents at this
order were also evaluated in Ref. [17].) In the opposite limit of
thick magnetic films, aF 	 a↑↓/α0 (∼1/2 μm for YIG, using
α0 ∼ 10−4), the bulk Gilbert damping dominates magnetic
dissipation, and

Jc ≈ α0aF

a↑↓ J (0)
c = 2e

�

α0aF S

tan θ

(
ωB + ωK

2

)
(23)

increases linearly with aF beyond the intrinsic threshold.
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III. SIMPLE MODELS

Equations (9)–(14) provide a general phenomenological
framework for exploring the coupled magnetoelectric dynam-
ics in thin-film magnetic heterostructures, which we verify
by considering several simple microscopic models in the
following.

A. Rashba Hamiltonian

One of the simplest models engendering the phenomenol-
ogy of interest is based on a 2D electron gas at a reflection-
asymmetric interface, which, at low energies, is described by
the (single-particle) Rashba Hamiltonian:

ĤR = p2

2m
+ vp · z×σ̂ . (24)

Velocity v here parametrizes the spin-orbit interaction strength
due to structural asymmetry; σ̂ is a vector of Pauli matrices.
When the first (nonrelativistic) term in Hamiltonian (24)
dominates over the second (relativistic) term (i.e., v � vF ,
the Fermi velocity), we can treat v perturbatively.

To zeroth order in v, the velocity operator is ∂pĤR = p/m,
such that the current density is j = −en〈p〉/m, in terms of
the particle-number density n = k2

F /2π = m2v2
F /2π�

2 and
the positron charge e > 0. On the other hand, to first order
in v, Eq. (24) results in the steady-state spin density

ρ = mv

2π�
z×〈p〉 = − m2v

2π�en
z×j, (25)

recalling that the 2D density of states (which defines the spin
susceptibility) is given by m/2π�

2. Equation (25) reflects the
Edelstein effect [10].

Exchange coupling this Rashba 2DEG to an adjacent
ferromagnet according to the local Hamiltonian

H ′ = −
∫

d2r[J (nxρx + nyρy) + J⊥nzρz], (26)

where J and J⊥ are respectively the in-plane and out-of-plane
exchange constants, we get for the torque

τ = δnH
′×n = −[J (ρxx + ρyy) + J⊥ρzz]×n. (27)

Evaluating this torque to leading (i.e., first) order in the
exchange, we need to find ρ to zeroth order, which is given by
Eq. (25). We thus have

τ = η(z×j)×n, (28)

where

η = m2vJ

2π�en
= �

e

vJ

v2
F

. (29)

The dissipative (i.e., spin Hall) coefficient ϑ vanishes in this
model at this level of approximation. We should, however,
expect ϑ to arise at quadratic order in J [whereas at first order
in J , it must vanish for arbitrarily large v, since, in the absence
of magnetism, Eq. (25) here describes the general form of spin
response to dc current].

B. Dirac Hamiltonian

In the opposite extreme, the spin-orbit interaction in
Eq. (24) dominates over the nonrelativistic piece, which
formally corresponds to sending m → ∞. The corresponding
2D Dirac Hamiltonian

ĤD = vp · z×σ̂ (30)

arises physically on the surfaces of strong 3D topological
insulators [18].

Exchange coupling electrons to a magnetic order n, accord-
ing to Eq. (26), gives the single-particle Hamiltonian

Ĥ ′ = −�

2
[J (nxσ̂x + nyσ̂y) + J⊥nzσ̂z], (31)

which can be combined with Eq. (30) as follows:

ĤD + Ĥ ′ = v(p − A∗) · z×σ̂ − m∗σ̂z. (32)

Here,

A∗ ≡ �J

2v
z×n and m∗ ≡ �J⊥

2
nz (33)

are fictitious vector potential and mass. The corresponding
electromotive force (recalling that the electron charge is −e)
is

ε = ∂tA∗

e
= − �J

2ev
ṅ×z, (34)

such that, according to Eq. (11),

η = − �J

2ev
, (35)

which is of opposite sign to Eq. (29). Note that unlike the latter
result, Eq. (35) is derived nonperturbatively.

The reciprocal torque (12) with this η gives

τ = η(z×j)×n. (36)

Using the helical identity between the current and spin
densities,

j = −2ev

�
z×ρ, (37)

according to the velocity operator ∂pĤD = vz×σ̂ , we recog-
nize in Eq. (36) the torque (27) due to the planar exchange
J . The above relations mimic the structure of the preceding
Rashba model. For a vanishing chemical potential, the mass
term opens a gap, in which case the long-wavelength conduc-
tivity tensor is given by the half-quantized Hall response [19]:
ĝ = −sgn(m∗)(e2/4π�)z×. In addition to the in-plane spin
density z×ρ×z entering Eq. (36), the out-of-plane component
ρz should also exert a torque ∝ J⊥, according to the exchange
coupling (27). At the leading order, the latter contributes to the
out-of-plane magnetic anisotropy K , which is absorbed by the
magnetic free-energy density F(n) [20]. At a finite doping, the
J⊥ interaction could in general be also expected to give rise to
a dissipative coupling ϑ .

C. Diffusive spin Hall system

The previous two models naturally produced the reactive
coupling η between planar charge current and magnetic
dynamics. Here, we recap a diffusive spin Hall model [8,21]
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that results in both η and ϑ , which is based on a film
of a featureless isotropic normal-metal conductor in contact
with ferromagnetic insulator. If electrons diffuse through
the conductor with weak spin relaxation, we can develop a
hydrodynamic description based on continuity relations both
for spin and charge densities. We first construct bulk diffusion
equations and then impose spin-charge boundary conditions,
which allows us to solve for spin-charge fluxes in the normal
metal and torque on the ferromagnetic insulator.

The relevant hydrodynamic quantities in the normal-metal
bulk are 3D charge and spin densities, ρ(r,t) and ρ(r,t),
respectively. The associated thermodynamic conjugates are
the electrochemical potential, μ ≡ −eδρF , and spin accumu-
lation, μ ≡ �δρF , where F [ρ,ρ] is the free-energy functional
of the normal metal. Supposing only a weak violation of spin
conservation (due to magnetic or spin-orbit impurities), we
phenomenologically write spin-charge continuity relations as

∂tρ = −∂ıJı, ∂tρj = −∂ıJıj − �μj , (38)

where ı and j label Cartesian components of real and spin
spaces, respectively, and the summation over the repeated
index ı is implied. � = �N /2τs , in terms of the (per spin)
Fermi-level density of states N and spin-relaxation time τs . Jı

are the components of the 3D vectorial charge-current density
and Jıj of the tensorial spin-current density, which can be
expanded in terms of the thermodynamic forces governed by
μ and μ:

Jı = σ

e
∂ıμ − σ ′

2e
εıjk∂jμk, (39)

2e

�
Jıj = −σ+

2e
∂ıμj − σ−

2e
∂jμı − σ ′

e
εıjk∂kμ, (40)

where σ is the (isotropic) electrical conductivity and σ ′ the spin
Hall conductivity of the normal-metal bulk. The last terms of
Eqs. (39) and (40) are governed by the same coefficient σ ′
due to the Onsager reciprocity. The bulk spin Hall angle θ ′ is
conventionally defined by

tan θ ′ ≡ σ ′

σ
. (41)

Bulk diffusion equations (39), (40) are complemented by
the boundary conditions

Jz = 0 at z = −aN,0 (42)

for the charge current, where z = −aN corresponds to the
normal-metal interface with vacuum and z = 0 to the interface
with the ferromagnet, and [11]

Jz = 1

4π

{
0 at z = −aN,

(g↑↓
i + g

↑↓
r n×)μ̃×n at z = 0,

(43)

for the spin current, with Jz standing for Jzj . Here, μ̃ ≡ μ −
�n×ṅ captures contributions from the spin-transfer torque and
spin pumping, respectively.

Having established the general structure of the coupled spin
and charge diffusion, let us calculate the steady-state charge-
current density j driven by a simultaneous application of a
uniform electric field in the xy plane, ∇μ → eE, and magnetic

dynamics, ṅ:

J = σE − σ ′

2e
∇×μ. (44)

The spin accumulation μ is found by solving(
σ+
σ

+ σ−
σ

δzj

)
∂2
z μj = μj

l2
s

, (45)

where ls ≡
√

�σ/4e2� is the spin-diffusion length. Using
Drude formula for the conductivity σ , we get the familiar
ls = l/

√
3ε, where l is the scattering mean free path and

ε ≡ τ/τs � 1 is the spin-flip probability per scattering (τ is
the transport mean free time). The boundary conditions are

σ ′z×E − σ+
2e

∂zμ − σ−
2e

∇μz

= e

h

{
0 at z = −aN,

(g↑↓
i + g

↑↓
r n×)μ̃×n at z = 0,

(46)

where h = 2π� is the Planck’s constant.
In the limit of vanishing spin-orbit coupling, σ+ → σ ,

σ− → 0, and θ ′ → 0. For small but finite spin-orbit interac-
tion, we may expect (σ+ − σ ) ∼ σ− ∼ O(θ ′2). In the follow-
ing, we will neglect these quadratic terms and approximate
tan θ ′ ≈ θ ′ � 1, in the spirit of the present construction.

In the limit of ls � aN , the spin accumulation decays
exponentially away from the interface as μ(z) = μ0e

z/ls ,
where

μ0 = (ξi + ξn×)[�ṅ − 2elsθ
′(z×E)×n] + 2elsθ

′z×E.

(47)

Here, ξ ≡ χ (1 + ζ + ζ 2
i ) and ξi ≡ χζζi , in terms of ζ ≡

σ/gQg
↑↓
r ls , ζi ≡ g

↑↓
i /g

↑↓
r , χ−1 ≡ (1 + ζ )2 + ζ 2

i , and the
quantum of conductance gQ ≡ 2e2/h. The spin accumulation
μ0 consists of the decoupled spin-pumping and spin Hall con-
tributions. Integrating the resultant charge-current density (44)
over the normal-layer thickness aN , we finally get for the 2D
current density in the film:

j = σ

(
aNE − θ ′

2e
z×μ0

)
= ĝ{E + [(η + ϑn×)ṅ]×z}, (48)

where

ĝ

σ
= ãN + lsθ

′2{ξinz(z×) − ξ
[
n2

z + (z×n×z)n · ]}
(49)

is the anisotropic 2D conductivity tensor (ãN ≡ aN + lsθ
′2 ≈

aN ), which is referred in the literature to as the spin Hall
magnetoconductance [8], and

η ≈ �

2eaN

θ ′ξi, ϑ ≈ �

2eaN

θ ′ξ, (50)

neglecting corrections that are cubic in θ ′. If ζi � 1, which
is typically the case [22], we have ϑ 	 η. It could be noted
that restoring σ− ∼ O(θ ′2) in Eqs. (45) and (46) would affect
ĝ only at order O(θ ′3).
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The above spin accumulation can also be used to calculate
the spin-current density injected into the ferromagnet at z = 0:

Jz = �σ

2e

(
θ ′z×E − μ0

2els

)
≈ −sn×α̂ṅ + (η + ϑn×)(z×j)×n, (51)

where

α̂ = �
2σ

4e2lss
(ξ − ξin×), (52)

and we dropped terms that are cubic in θ ′, as before. The
corresponding magnetic equation of motion sṅ = H∗×n + Jz

reproduces Eq. (10), with the current-driven torque of the
form (12) that is Onsager reciprocal to the motive force
in Eq. (48). Writing the Gilbert damping ∝ ξ in Eq. (52)
as a↑↓/aF identifies the interfacial damping enhancement in
Eq. (14). In the formal limit σ → ∞ (while keeping all other
parameters, including ls , fixed), which reproduces the perfect
spin sink, this gives a↑↓ = �g

↑↓
r /4πS. In the general case, ξ

also captures the spin backflow from the normal layer [12].
An anisotropic contribution to the Gilbert damping would
be produced at the cubic order in θ ′, had we not made any
approximations in Eq. (51).

IV. MAGNETIC TEXTURES

For completeness, we also provide some rudimentary
remarks regarding the effect of directional magnetic inhomo-
geneities, such as those associated with, for example, magnetic
domain walls [23]. Expanding the 2D magnetic free-energy
density to second order in spatial derivatives, we have for
a film with broken reflection symmetry in the xy plane
(see Sec. II for a detailed description of the structure shown in
Fig. 1) [24]

F(n) = n · H + K

2
n2

z + �(nz∂ini − ni∂inz) + A

2
(∂in)2,

(53)
where summation over Cartesian coordinates i = x,y is
implied and the dot products are in the 3D spin space. �

here parametrizes the strength of the Dzyaloshinski-Moriya
(DM) interaction and A is the magnetic exchange stiffness. A
nonzero � requires macroscopic breaking of the reflection
symmetry as well as a microscopic spin-orbit interaction
that breaks the spin-space isotropicity. Equation (53) can be
rewritten in a more compact form as ∂xn(y × n) − ∂yn(x ×
n) = −nx∂xnz + nz∂xnx − ny∂ynz + nz∂yny

F(n) = n · H + K̃

2
n2

z + A

2
(Din)2, (54)

where

Di ≡ ∂i + Q(z×ei)× (55)

is the so-called chiral derivative [25], Q ≡ �/A, and
K̃ ≡ K − �2/A. Q is the wave number of the magnetic spiral
that minimizes the texture-dependent part of the free energy.

The DM interaction of the form (53) arises naturally from
the Rashba Hamiltonian (24). In a minimal model [25], where
electrons with the single-particle Hamiltonian (24) magnet-
ically order due to their spin-independent (e.g., Coulombic)

interaction, the spin-orbit term ∝ v can be gauged out at the
first order in v by a position-dependent rotation in spin space.
To see this, we first rewrite Eq. (24) as

ĤR = p2

2m
+ vp · z×σ̂ = (p + mvz×σ̂ )2

2m
− mv2. (56)

It then immediately follows that

Û †ĤRÛ = p2

2m
+ O(v2), where Û = e−iQRr·z×σ̂/2,

(57)

defining

QR ≡ 2mv

�
. (58)

Û is the operator of spin rotation around axis r×z by angle
rQR (recalling that r ∈ xy plane), such that the electron
spin precesses by angle 2π over distance lso ≡ 2π/QR =
h/2mv (the spin-precession length). Since the transformed
Hamiltonian (57) would describe magnetic order that is spin
isotropic, the corresponding free energy is given simply by
(A/2)(∂in)2 (neglecting external and dipolar fields). In the
original frame of reference with Rashba Hamiltonian (56),
the free-energy density is then given by F(n) = (A/2)(∂i ñ)2,
where n = R̂ñ and R̂(r) is the natural SO(3) representation
of Û (r). Differentiating ∂i ñ = R̂T (∂i + R̂∂iR̂

T )n, we finally
obtain F(n) = (A/2)(Din)2, where

Di = ∂i + R̂∂iR̂
T = ∂i + QR(z×ei)× (59)

indeed reproduces Eq. (55) with Q → QR . In Ref. [20], the
free-energy density (53) was also obtained for the Dirac model
of Sec. III B, with the result

�D ∼ − �

8πv
JJ⊥. (60)

As was pointed out in Ref. [25], the chiral derivative (55) is
also expected to govern the nonequilibrium magnetic-texture
properties such as the current-driven torque τ and the spin-
motive force ε. This can either be derived microscopically
or understood on purely phenomenological symmetry-based
grounds. For example, the hydrodynamic (advective) spin-
transfer torque (along with its Onsager-reciprocal motive
force) [26]

τ ∝ (j · ∇)n, (61)

which arises due to spin-current continuity in a model without
any spin-orbit interactions and frozen magnetic impurities,
would be modified by replacing ∇ → D in the perturbative
treatment of the above Rashba model. However, while this
simplifies a phenomenological construction of various terms,
in general, there is no fundamental reason why the same
Q should define the chiral derivatives entering in different
physical properties (such as free energy and spin torque).

V. CONCLUSIONS

In summary, we have developed a phenomenology for slow
long-wavelength dynamics of conducting quasi-2D magnetic
films and heterostructures, subject to structural symmetries
and Onsager reciprocity. The formalism could address both
small- and large-amplitude magnetic precession (assuming it
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is slow on the characteristic electronic time scales), including,
for example, magnetic switching and domain-wall or skyrmion
motion. Owing to the versatility of available heterostructures,
including those based on magnetic and topological insulators,
we have focused our discussion on the case of a ferro-
magnetic/nonmagnetic bilayer, which serves two purposes: it
naturally has a broken inversion symmetry, and the spin-orbit
and magnetic properties could be separately optimized and
tuned in one of the two layers.

In the case when the spin-relaxation length in the normal
layer is short compared to its thickness, we can associate
the interplay between spin-orbit and exchange interactions to
a narrow region in the vicinity of the interface, for which
we define the kinetic coefficients such as the interfacially
enhanced Gilbert damping parametrized by a↑↓ and the spin
Hall angle parametrized by ϑ . Such (separately measurable)
phenomenological coefficients, which enter in our theory, must
thus be viewed as joint properties of both of the bilayer
materials as well as structure and quality of the interface.

We demonstrate the emergence of our phenomenology out
of three microscopic models, based on Rashba, Dirac, and
diffusive normal-metal films, all in contact with a magnetic in-
sulator. In addition to Onsager-reciprocal spin-transfer torques
and electromotive forces, our phenomenology also accom-
modates arbitrary Gilbert-damping and (magneto)resistance
anisotropies, which are dictated by the same structural symme-
tries and may microscopically depend on the same exchange
and spin-orbit ingredients as the reciprocal magnetoelectric
coupling effects.
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