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Magnetization dynamics and damping due to electron-phonon scattering in a ferrimagnetic
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We present a microscopic calculation of magnetization damping for a magnetic “toy model.” The magnetic
system consists of itinerant carriers coupled antiferromagnetically to a dispersionless band of localized spins, and
the magnetization damping is due to coupling of the itinerant carriers to a phonon bath in the presence of spin-orbit
coupling. Using a mean-field approximation for the kinetic exchange model and assuming the spin-orbit coupling
to be of the Rashba form, we derive Boltzmann scattering integrals for the distributions and spin conherences
in the case of an antiferromagnetic exchange splitting, including a careful analysis of the connection between
lifetime broadening and the magnetic gap. For incoherent scattering of itinerant carriers with the phonon bath,
i.e., the Elliott-Yafet mechanism, we extract dephasing and magnetization times T1 and T2 from initial conditions
corresponding to a tilt of the magnetization vector and draw a comparison to phenomenological equations such
as the Landau-Lifshitz (LL) or the Gilbert damping. We also analyze magnetization precession and damping
for this system including an anisotropy field and find a carrier mediated dephasing of the localized spin via the
mean-field coupling.
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I. INTRODUCTION

There are two widely-known phenomenological ap-
proaches to describe the damping of a precessing magneti-
zation in an excited ferromagnet: one introduced originally
by Landau and Lifshitz [1] and one introduced by Gilbert
[2], which are applied to a variety of problems [3] involving
the damping of precessing magnetic moments. Magnetization
damping contributions and its inverse processes, i.e., spin
torques, in particular, in thin films, and nanostructures, are
an extremely active field, where currently the focus is on the
determination of novel physical processes/mechanisms. Apart
from these questions there is still a debate whether the Landau-
Lifshitz or the Gilbert damping is the correct one for “intrinsic”
damping, i.e., neglecting interlayer coupling, interface contri-
butions, domain structures and/or eddy currents. This intrinsic
damping is believed to be caused by a combination of spin-
orbit coupling and scattering mechanisms such as exchange
scattering between s and d electrons and/or electron-phonon
scattering [4–6]. Without reference to the microscopic mech-
anism, different macroscopic analyses, based, for example,
on irreversible thermodynamics or near equilibrium Langevin
theory, prefer one or the other description [7,8]. However, the
material parameters of typical ferromagnetic heterostructures
are such that one is usually firmly in the small damping regime
so that several ferromagnetic resonance (FMR) experiments
were not able to detect a noticeable difference between
Landau-Lifshitz and Gilbert magnetization damping. A recent
analysis that related the Gilbert term directly to the spin-orbit
interaction arising from the Dirac equation does not seem to
have conclusively solved this discussion [9].

*baral@rhrk.uni-kl.de
†hcsch@physik.uni-kl.de

The dephasing term in the Landau-Lifshitz form is also
used in models based on classical spins coupled to a bath,
which have been successfully applied to out-of-equilibrium
magnetization dynamics and magnetic switching scenarios
[10]. The most fundamental of these are the stochastic Landau-
Lifshitz equations [10–13] from which the Landau-Lifshitz
Bloch equations [14,15] can be derived via a Fokker-Planck
equation.

Quantum-mechanical treatments of the equilibrium mag-
netization in bulk ferromagnets at finite temperatures are
extremely involved. The calculation of nonequilibrium magne-
tization phenomena and damping for quantum spin systems in
more than one dimension, which include both magnetism and
carrier-phonon and/or carrier-impurity interactions, at present
have to employ simplified models. For instance, there have
been microscopic calculations of Gilbert damping parameters
based on Kohn-Sham wave functions for metallic ferromagnets
[16,17] and Kohn-Luttinger p-d Hamiltonians for magnetic
semiconductors [18,19]. While the former approach uses spin
density-functional theory, the latter approach treats the an-
tiferromagnetic kinetic-exchange coupling between itinerant
p-like holes and localized magnetic moments originating
from impurity d electrons within a mean-field theory. In
both cases, a constant band(and spin)-independent lifetime
for the itinerant carriers is used as an input, and a Gilbert
damping constant is extracted by comparing the quantum-
mechanical result for ω → 0 with the classical formulation.
There have also been investigations, which extract the Gilbert
damping for magnetic semiconductors from a microscopic
calculation of carrier dynamics including Boltzmann-type
scattering integrals [20,21]. Such a kinetic approach, which
is of a similar type as the one we present in this paper, avoids
the introduction of electronic lifetimes because the scattering
is calculated dynamically.

The present paper takes up the question how the spin
dynamics in the framework of the macroscopic Gilbert or
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Landau-Lifshitz damping compare to a microscopic model
of relaxation processes in the framework of a relatively
simple model. We analyze a mean-field kinetic exchange
model including spin-orbit coupling for the itinerant carriers.
Thus the magnetic mean-field dynamics is combined with a
microscopic description of damping provided by the electron-
phonon coupling. This interaction transfers energy and angular
momentum from the itinerant carriers to the lattice. The
electron-phonon scattering is responsible both for the lifetimes
of the itinerant carriers and the magnetization dephasing. The
latter occurs because of spin-orbit coupling in the states that are
connected by electron-phonon scattering. To be more specific,
we choose an antiferromagnetic coupling at the mean-field
level between itinerant electrons and a dispersionless band
of localized spins for the magnetic system. To keep the
analysis simple, we use as a model for the spin-orbit coupled
itinerant carrier states a two-band Rashba model with 2D
wave vectors. As such, it is a single-band version of the
multiband Hamiltonians used for III-Mn-V ferromagnetic
semiconductors [18,22–26]. The model analyzed here also
captures some properties of two-sublattice ferrimagnets, which
are presently investigated because of their magnetic switching
dynamics [27,28]. Our paper is set apart from studies of spin
dynamics in similar models with more complicated itinerant
band structures [20,21] by a detailed comparison of the
phenomenological damping expressions with a microscopic
calculation as well as a careful analysis of the restrictions
placed by the size of the magnetic gap on the single-particle
broadening in Boltzmann scattering integrals.

This paper is organized as follows. As an extended
introduction, we review in Sec. II some basic facts concerning
the Landau-Lifshitz and Gilbert damping terms on the one
hand and the Bloch equations on the other. In Sec. III, we point
out how these different descriptions are related in special cases.
We then introduce a microscopic model for the dephasing
due to electron-phonon interaction in Sec. IV, and present
numerical solutions for two different scenarios in Secs. V
and VI. The first scenario is the dephasing between two spin
subsystems (Sec. V), and the second scenario is a relaxation
process of the magnetization toward an easy axis (Sec. VI). A
brief conclusion is given at the end.

II. PHENOMENOLOGIC DESCRIPTIONS OF DEPHASING
AND RELAXATION

We summarize here some results pertaining to a single-
domain ferromagnet and set up our notation. In equilibrium,
we assume the magnetization to be oriented along its easy axis
or a magnetic field �H , which we take to be the z axis in the
following. If the magnetization is tilted out of equilibrium, it
starts to precess. As illustrated in Fig. 1, one distinguishes the
longitudinal component M‖, in z direction, and the transverse
part M⊥ ≡

√
M2 − M2

‖ , precessing in the x-y plane with the
Larmor frequency ωL.

In connection with the interaction processes that return the
system to equilibrium, the decay of the transverse component is
called dephasing. There are three phenomenological equations
used to describe spin dephasing processes: (1) the Bloch

FIG. 1. (Color online) Illustration of nonequilibrium spin dy-
namics in presence of a magnetic field without relaxation (a) and
within relaxation (b).

(-Bloembergen) equations [29,30]

∂

∂t
M‖(t) = −M‖(t) − Meq

T1
, (1)

∂

∂t
M⊥(t) = −M⊥(t)

T2
(2)

describe an exponential decay towards the equilibrium magne-
tization Meq in z direction. The transverse component decays
with a time constant T2, whereas the longitudinal component
approaches its equilibrium amplitude with T1. These time
constants may be fit independently to experimental results or
microscopic calculations.

(2) Landau-Lifshitz damping [1] with parameter λ,

∂

∂t
�M(t) = −γ �M × �H − λ

�M
M

× ( �M × �H )
, (3)

where γ is the gyromagnetic ratio. The first term models the
precession with a frequency ωL = γ | �H |, whereas the second
term is solely responsible for damping.

(3) Gilbert damping [2] with the dimensionless Gilbert
damping parameter α:

∂

∂t
�M(t) = −γG �M × �H + α

( �M
M

× ∂t
�M
)

. (4)

It is generally accepted that α is independent of the static
magnetic fields �H such as anisotropy fields [18,31], and thus
depends only on the material and the microscopic interaction
processes.

The Landau-Lifshitz and Gilbert forms of damping are
mathematically equivalent [2,7,32] with

α = λ

γ
, (5)

γG = γ (1 + α2), (6)

but there are important differences. In particular, an increase of
α lowers the precession frequency in the dynamics with Gilbert
damping, while the damping parameter λ in the Landau-
Lifshitz equation has no impact on the precession. In contrast
to the Bloch equations, Landau-Lifshitz and Gilbert spin
dynamics always conserve the length | �M| of the magnetization
vector.
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An argument by Pines and Slichter [33] shows that there are
two different regimes for Bloch-type spin dynamics depending
on the relation between the Larmor period and a “correlation
time.” The correlation time as used by Pines and Slichter is
the typical time scale over which the precession frequency
is largely unchanged by interactions with an environment.
As long as this correlation time is much longer than the
Larmor period, the system “knows” the direction of the field
during the scattering process. Stated differently, the scattering
process “sees” the magnetic gap in the band structure.
Thus the transverse and longitudinal spin components are
distinguishable and the Bloch decay times T1 and T2 can differ.
If the correlation time is considerably shorter than the Larmor
period, this distinction is not possible, with the consequence
that T1 must be equal to T2. Within the microscopic approach,
presented in Sec. IV D, this consideration shows up again,
albeit for the energy conserving δ functions resulting from a
Markov approximation.

The regime of short correlation times has already been
investigated in the framework of a microscopic calculation
by Wu and coworkers [34]. They analyze the case of a
moderate external magnetic field applied to a nonmagnetic
n-type GaAs quantum well and include different scattering
mechanisms (electron-electron Coulomb, electron-phonon,
electron impurity). They argue that the momentum relaxation
rate is the crucial time scale in this scenario, which turns
out to be much larger than the Larmor frequency. Their
numerical results confirm the identity T1 = T2 expected from
the Pines-Slichter argument.

III. RELATION BETWEEN LANDAU-LIFSHITZ, GILBERT,
AND BLOCH

We highlight here a connection between the Bloch equa-
tions (1) and (2) and the Landau-Lifshitz equation (3). To this
end, we assume a small initial tilt of the magnetization and
describe the subsequent dynamics of the magnetization in the
form

�M(t) =
⎛
⎝δM⊥(t) cos(ωLt)

δM⊥(t) sin(ωLt)
Meq − δM‖(t)

⎞
⎠, (7)

where δM⊥ and δM|| describe deviations from equilibrium.
Putting this into Eq. (3), one gets a coupled set of equations:

∂

∂t
δM⊥(t) = −λH

Meq − δM‖(t)

| �M(t)| δM⊥(t), (8)

∂

∂t
δM‖(t) = −λH

1

| �M(t)|δM
2
⊥(t). (9)

Equation (8) is simplified for a small deviation from equilib-
rium, i.e., δM(t) � Meq and | �M(t)| ≈ Meq:

δM⊥(t) = C exp(−λHt), (10)

δM‖(t) = C2

2Meq
exp(−2λHt), (11)

where C is an integration constant. For small excitations, the
deviations decay exponentially and Bloch decay times T1 and
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FIG. 2. Dynamics of δM⊥ and δM‖ computed using the Landau-
Lifshitz damping (ωL = 1 ps−1, H = 106 A

m ≈ 1.26 × 104 Oe, and
λ = 10−7 m

A ps ). (a) An angle of 10◦ leads to an exponential decay
with well defined T1 and T2 times. (b) For an angle of 90◦, the decay
(solid line) is not exponential as a comparison with the exponential
fit (dashed line) clearly shows.

T2 result, which are related by

2T1 = T2 = 1

λH
. (12)

Only this ratio of the Bloch times is compatible with a constant
length of the magnetization vector at low excitations. By
combining Eqs. (12) and (5), one can connect the Gilbert
parameter α and the dephasing time T2:

α = 1

T2 ωL
. (13)

This result will be important in the following, but it is not new,
see, e.g., Ref. [35] or the review [36]. We have presented its
derivation here, because it is rarely mentioned anymore when
magnetic damping phenomena are discussed. If the conditions
for the above approximations apply, the Gilbert damping
parameter α can be determined by fitting the dephasing time
T2 and the Larmor frequency ωL to computed or measured
spin dynamics. This dimensionless quantity is well suited to
compare the dephasing that results from different relaxation
processes.

Figure 2 shows the typical magnetization dynamics that
results from (3), i.e., Landau-Lifshitz damping. As an illus-
tration of a small excitation, we choose in Fig. 2(a) an angle
of 10◦ for the initial tilt of the magnetization, which results
in an exponential decay with 2T1 = T2. From the form of
Eq. (3), it is clear that this behavior persists even for large ωL

and λ. Obviously, the Landau-Lifshitz and Gilbert damping
terms describe a scenario with relatively long correlation times
(i.e., small scattering rates), because only in this regime both
decay times can differ. The microscopic formalism in Sec. IV
works in the same regime and will be compared with the
phenomenological results. For an excitation angle of 90◦,
the Landau-Lifshitz dynamics shown in Fig. 2(b) becomes
nonexponential, so that no well-defined Bloch decay times T1

and T2 exist.
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IV. MICROSCOPIC MODEL

In this section, we describe a microscopic model that
includes magnetism at the mean-field level, spin-orbit coupling
as well as the microscopic coupling to a phonon bath treated at
the level of Boltzmann scattering integrals. We then compare
the microscopic dynamics to the Bloch equations (1) and
(2), as well as the Landau-Lifshitz (3) and Gilbert damping
terms (4). The magnetic properties of the model are defined
by an antiferromagnetic coupling between localized magnetic
impurities and itinerant carriers. As a prototypical spin-orbit
coupling, we consider an effectively two-dimensional model
with a Rashba spin-orbit coupling. The reason for the choice
of a model with a two-dimensional wave vector space is
not an investigation of magnetization dynamics with reduced
dimensionality, but rather a reduction in the dimension of the
integrals that have to be solved numerically in the Boltzmann
scattering terms. Since we treat the exchange between the
localized and itinerant states in a mean-field approximation,
our two-dimensional model still has a “magnetic ground
state” and presents a framework, for which qualitatively
different approaches can be compared. We do not aim at
quantitative predictions for, say, magnetic semiconductors
or ferrimagnets with two sublattices. Finally, we include a
standard interaction Hamiltonian between the itinerant carriers
and acoustic phonons. The corresponding Hamiltonian reads

Ĥ = Ĥmf + Ĥso + Ĥe−ph + Ĥaniso. (14)

Only in Sec. VI an additional field Ĥaniso is included, which is
intended to model a small anisotropy.

A. Exchange interaction between itinerant carriers
and localized spins

The “magnetic part” of the model is described by the
Hamiltonian

Ĥmf =
∑
�kμ

�
2k2

2m∗ ĉ
†
�kμ

ĉ�kμ + J �̂s · �̂S, (15)

which we use in the mean-field approximation. The first term
represents itinerant carriers with a k-dependent dispersion.
In the following, we assume s-like wave functions and
parabolic energy dispersions. The effective mass is chosen to
be m∗ = 0.5 me, where me is the free-electron mass, and the
ĉ

(†)
�kμ

operators create and annihilate carriers in the state |�k,μ〉,
where μ labels the itinerant bands, as shown in Fig. 3(a).

The second term describes the coupling between itinerant
spins �s and localized spins �S via an antiferromagnetic exchange
interaction,

�̂s = 1

2

∑
�k

∑
μμ′

〈�k,μ′| �̂σ |�k,μ〉ĉ†�kμ
ĉ�kμ′, (16)

�̂S = 1

2

∑
νν ′

〈ν ′| �̂σ |ν〉
∑

�K
Ĉ

†
�Kν

Ĉ �Kν ′ . (17)

Here, we have assumed that the wave functions of the localized
spins form dispersionless bands, i.e., we have implicitly

k ,k

,k

FIG. 3. (Color online) Sketch of the band structure with localized
(flat dispersions) and itinerant (parabolic dispersions) electrons.
Above the Curie temperature TC, the spin eigenstates are degenerate
(a), whereas below TC a gap between the spin states exists.

introduced a virtual-crystal approximation. Due to the as-
sumption of strong localization, there is no orbital overlap
between these electrons, which are therefore considered
to have momentum independent eigenstates |ν 〉 and a flat
dispersion, as illustrated in Fig. 3(a). The components of the
vector �̂σ are the Pauli matrices σ̂i with i = x,y,z, and Ĉ

(†)
�Kν

are the creation and annihilation operators for a localized spin
state.

The virtual crystal approximation already excludes a direct
interaction among the localized spins and we do not include
any interactions among itinerant carriers either. For simplicity,
we assume both itinerant and localized electrons to have
a spin 1/2 and therefore μ and ν to run over two spin-
projection quantum numbers ±1/2. In the following numerical
calculation, we choose an antiferromagnetic (J > 0) exchange
constant J = 500 meV, which leads to the schematic band
structure shown in Fig. 3(b). Apart from a different sign in
the spin expectation value of one subsystem, a ferromagnetic
coupling constant would yield the same results and the
statements of this paper should qualitatively still be valid.

In the mean-field approximation used here, the itinerant
carriers feel an effective magnetic field Ĥloc,

�Hloc = −JμBμ

g
�S, (18)

caused by localized moments and vice versa. Here, μB is the
Bohr magneton and g = 2 is the g factor of the electron. The
permeability μ is assumed to be the vacuum permeability
μ0. This time-dependent magnetic field �Hloc(t) defines the
preferred direction in the itinerant subsystem and therefore
determines the longitudinal and transverse components of the
itinerant spin at each time.

For the exchange interaction between itinerant carriers
and localized spins, we stay at the mean-field level. In
particular, we do not consider exchange scattering, which in
antiferromagnetic systems might lead to fast demagnetization
processes. Exchange scattering might also contribute consid-
erably to the dephasing between both sublattices. Since for
this kind of dephasing no spin-orbit interaction is necessary,
it cannot extract any spin from the system and it is not an
Elliott-Yafet like scattering process (see the discussion in
Sec. IV D below). Therefore it does not fit into the framework
of this paper.
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B. Rashba spin-orbit interaction

The Rashba spin-orbit coupling is given by the Hamiltonian

Ĥso = αR(σ̂xky − σ̂ykx). (19)

A Rashba coefficient of αR = 10 meV nm typical for semi-
conductors is chosen in the following calculations. This value,
which is close to the experimental one for the InSb/InAlSb
material system [37], is small compared to the exchange
interactions, but it allows the exchange of angular momentum
with the lattice.

C. Coherent dynamics

From the above contributions (15) and (19) to the Hamil-
tonian, we derive the equations of motion containing the
coherent dynamics due to the exchange interaction and Rashba
spin-orbit coupling as well as the incoherent electron-phonon
scattering. We first focus on the coherent contributions. In
principle, one has the choice to work in a basis with a fixed
spin-quantization axis or to use single-particle states that
diagonalize the mean-field (plus Rashba) Hamiltonian. Since
we intend to use a Boltzmann scattering integral in Sec. IV D
we need to apply a Markov approximation, which only works
if one deals with diagonalized eigenenergies. In our case,
this is the single-particle basis that diagonalizes the entire
one-particle contribution of the Hamiltonian Ĥmf + Ĥso. In
matrix representation, this one-particle contribution for the
itinerant carriers reads

Ĥmf + Ĥso =
(

�
2k2

2m∗ + 
loc
z (
loc

+ + R�k)∗


loc
+ + R�k

�
2k2

2m∗ − 
loc
z

)
, (20)

where we have defined 
loc
i = J 1

2 〈Ŝi〉 and R�k =
−iαRk exp(iϕk) with ϕk = arctan(ky/kx). The eigenenergies
are

ε±
�k = �

2k2

2m∗ ∓
√∣∣
loc

z

∣∣2 + |R�k + 
loc+ |2 (21)

and the eigenstates

|�k,+〉 =
(

1
ξ�k

)
; |�k,−〉 =

(−ξ ∗
�k

1

)
, (22)

where

ξ�k = 
loc
+ + R�k


loc
z +

√
| �
loc|2 + |R�k|2

. (23)

In this basis, the coherent part of the equation of motion for
the itinerant density matrix ρ

μμ′
�k ≡ 〈ĉ†�kμ

ĉ�kμ′ 〉 reads

∂

∂t
ρ

μμ′
�k

∣∣∣
coh

= i

�

(
ε

μ

�k − ε
μ′
�k

)
ρ

μμ′
�k . (24)

No mean-field or Rashba terms appear explicitly in these
equations of motion since their contributions are now hidden
in the time-dependent eigenstates and eigenenergies. Since
we are interested in dephasing and precessional dynamics,
we assume a comparatively small spin-orbit coupling, that
can dissipate angular momentum into the lattice, but does not
have a decisive effect on the band structure. Therefore we
use the spin mixing only in the transition matrix elements

of the electron-phonon scattering M
�k′μ′
�kμ

(31). For all other
purposes, we set R�k = 0. In particular, the energy-dispersion
ε±

�k is assumed to be unaffected by the spin-orbit interaction
and therefore it is spherically symmetric.

With this approximation, the itinerant eigenstates are
always exactly aligned with the effective field of the localized
moments �Hloc(t). Since this effective field changes with time,
the diagonalization and a transformation of the spin-density
matrix in “spin space” has to be repeated at each time step. This
effort makes it easier to identify the longitudinal and transverse
spin components with the elements of the single-particle
density matrix: the off-diagonal entries of the density matrix
ρ±∓

�k , which precess with the k-independent Larmor frequency

ωL = 2
loc/�, always describe the dynamics of the transverse
spin component. The longitudinal component, which does not
precess, is represented by the diagonal entries ρ±±

�k . Since both
components change their spatial orientation continuously, we
call this the rotating frame. The components of the spin vector
in the rotating frame are

〈ŝ‖〉 = 1

2

∑
�k

(
ρ++

�k − ρ−−
�k

)
, (25)

〈ŝ⊥〉 =
∑

�k

∣∣ρ+−
�k

∣∣. (26)

The components in the fixed frame are obtained from Eq. (16):

〈�̂s〉 = 1

2

∑
�k

∑
μμ′

〈�k,μ′| �̂σ |�k,μ〉 ρ
μμ′
�k . (27)

In this form, the time-dependent states carry the information
how the spatial components are described by the density matrix
at each time step. No time-independent “longitudinal” and
“transverse” directions can be identified in the fixed frame.

In a similar fashion, the diagonalized single-particle states
of the localized spin system are obtained. The eigenenergies
are

E± = ∓| �
itin|, (28)

where 
itin
i = J 1

2 〈ŝi〉 is the localized energy shift caused by the
itinerant spin component si . The eigenstates are again always
aligned with the itinerant magnetic moment. In this basis,
the equation of motion of the localized spin-density matrix
ρνν ′

loc ≡ ∑
�K〈Ĉ†

�Kν
Ĉ �Kν ′ 〉 is simply

∂

∂t
ρνν ′

loc = i

�
(Eν − Eν ′

)ρνν ′
loc (29)

and does not contain explicit exchange contributions.
Equations (25)–(27) apply in turn to the components
〈S‖〉 and 〈S⊥〉 of the localized spin and its spin-density
matrix ρνν ′

loc .

D. Electron-phonon Boltzmann scattering with spin splitting

Relaxation is introduced into the model by the interaction
of the itinerant carriers with a phonon bath, which plays
the role of an energy and angular momentum sink for the
carriers. Our goal here is to present a derivation of the
Boltzmann scattering contributions using standard methods,
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see, e.g., Refs. [38,39], and to show that the use of a standard
spin-dependent Boltzmann scattering integral is limited by the
size of the magnetic gap. As a technical simplification, we keep
the spin-mixing due to Rashba spin-orbit interaction only in
the scattering integral, but not in the coherent dynamics of
the spin-density matrix, as done, e.g., by Shen and Wu [21].
Since spin relaxation due to incoherent scattering processes
is often referred to as the Elliott-Yafet mechanism, this
approximation means we effectively include only Elliott-
Yafet type spin relaxation. The Dyakonov-Perel mechanism
[20,34], which essentially works with coherent dynamics
due to a spin-orbit induced anisotropic spin splitting, is
excluded here. The electron-phonon interaction Hamiltonian
reads [38]

Ĥe−ph =
∑

�q
�ωph

q b̂
†
�q b̂�q

+
∑
�k�k′

∑
μμ′

(
M

�k′μ′
�kμ

ĉ
†
�kμ

b̂�k−�k′ ĉ�k′μ′ + H.c.
)
, (30)

where b̂
(†)
�q are the bosonic operators that create or annihilate

acoustic phonons with momentum �q and linear dispersion
ωph(q) = cph|�q|. The sound velocity is taken to be cph = 40
nm/ps and we use an effectively two-dimensional transition
matrix element [40]

M
�k′μ′
�kμ

= D

√
|�k − �k′| 〈�k,μ|�k′,μ′〉, (31)

where the deformation potential is chosen to be D =
60 meV nm1/2. The scalar product between the initial state
|�k′,μ′〉 and the final state |�k,μ〉 of an electronic transition
takes the spin mixing due to Rashba spin-orbit coupling into
account.

The derivation of Boltzmann scattering integrals for the
itinerant spin-density matrix (24) leads to a memory integral
of the following shape:

∂

∂t
ρj (t)

∣∣∣
inc

= 1

�

∑
j ′

∫ t

−∞
ei(
Ejj ′ +iγ )(t−t ′) Fjj ′[ρ(t ′)] dt ′,

(32)
regardless whether one uses Green’s function [39] or equation-
of-motion techniques [38]. Since we go through a standard
derivation here, we highlight only the important parts for the
present case and do not write the equations out completely.
In particular, for a scattering process j ′ = |μ′,�k′〉 → j =
|μ,�k〉, we use Fjj ′[ρ(t ′)] as an abbreviation for a product of
dynamical electronic spin-density matrix elements ρ, evalu-
ated at time t ′ < t , and equilibrium phononic distributions.
The corresponding energy difference is denoted by 
Ejj ′ =
Ej − Ej ′ ± �ωph(|�k − �k′|), and γ describes the decay of
the exponential function due to dissipation and/or higher
order correlation functions. In general, the integral has to be
evaluated numerically and contains memory effects. To apply
the Markov approximation one needs to compare two time
scales: the “memory depth” 1/γ , i.e., the time scale on which
the exp[−γ (t − t ′)] factor essentially cuts off the integral, and
the typical time scale on which the F term changes. In this
paper, we deal with relaxation processes not too far away from
equilibrium, so that the typical time scale of the components of

the spin-density matrix contained in F is set by the Bloch times
T1 and T2. We can thus approximate Fjj ′[ρ(t ′)] by Fjj ′[ρ(t)],
for all transitions labeled by j and j ′, if the memory depth is
shorter than the Bloch time(s), or

γ � 1

T1
. (33)

Provided condition (33) holds, the integral (32) can be done
using the Markov approximation Fjj ′[ρ(t ′)] � Fjj ′[ρ(t)]:

∂

∂t
ρj (t)

∣∣∣
incoh

= i

�

∑
j ′

Fjj ′[ρ(t)]
1


Ejj ′ + i�γ
. (34)

As it is customary, we neglect in the following the real part
of the complex energy denominator, which results in shifts
of the single-particle energies. While these shifts may play
an important role in non-Markovian problems with discrete
energy levels [41], the imaginary parts yield the relaxation
contributions that are important for the present paper:

∂

∂t
ρj (t)

∣∣∣
incoh

=
∑
j ′

Fjj ′[ρ(t)]
�γ

(
Ejj ′)2 + (�γ )2 . (35)

All transitions are thus weighted by a Lorentzian peaked at
resonant transitions (
Ejj ′ = 0) with a broadening of �γ that
may be interpreted as an energy uncertainty. For relaxation
processes in a system with a spin splitting (due to internal
fields and/or spin-orbit coupling), this broadening must not
be so large as to blur the distinction between the split bands.
Consequently, only if the broadening γ is smaller than the
magnetic splitting, i.e., if γ � ωL, it is possible to distinguish
between longitudinal and transverse components of the spin-
density matrix. With Eq. (33) the inequality γ � ωL yields
the condition

ωL � 1

T1
(36)

for the Larmor frequencies and Bloch times, for which it is
permissible to replace the Lorentzian by an energy conserving
δ function

�γ

(
Ejj ′)2 + (�γ )2

γ→0−→ π δ(
Ejj ′). (37)

This reduces the numerical effort very considerably because
it allows one to eliminate an integration from the scattering
term.

The considerations leading to the connection between
Eqs. (36) and (37) are a microscopic version of an argument
due to Pines and Slichter [33], according to which T1 and T2 can
differ only for correlation times that are long in comparison
to a Larmor period. The microscopic Boltzmann scattering
terms, which contain the energy conserving δ functions and
will be used in the following, do not apply in a regime outside
of condition (36). If ωL � 1/T1, the Markov approximation
becomes questionable. We thus obtain the full equation of
motion

014427-6



MAGNETIZATION DYNAMICS AND DAMPING DUE TO . . . PHYSICAL REVIEW B 90, 014427 (2014)

for the itinerant-carrier spin density matrix in the regime (36):

∂

∂t
ρ

μμ′
�k = i

�

(
ε

μ

k − ε
μ′
k

)
ρ

μμ′
�k

+ π

�

∑
k′

∑
μ1μ2μ3

M
�kμ

�k′μ1
M

�k′μ2

�kμ3
δ
(

E�k′μ2�kμ3

) [(
1 + N

ph

|�k′−�k|

)
ρ

μ1μ2

�k′
(
δμ3μ′ − ρ

μ3μ
′

�k
) − N

ph

|�k′−�k|ρ
μ3μ

′
�k

(
δμ1μ2 − ρ

μ1μ2

�k′
)]

− π

�

∑
�k′

∑
μ1μ2μ3

M
�kμ

�k′μ1
M

�k′μ2

�kμ3
δ
(

E�kμ3 �k′μ2

) [(
1 + N

ph

|�k−�k′|

)
ρ

μ3μ
′

�k
(
δμ1μ2 − ρ

μ1μ2

�k′
) − N

ph

|�k−�k′|ρ
μ1μ2

�k′
(
δμ3μ′ − ρ

μ3μ
′

�k
)]

+ π

�

∑
�k′

∑
μ1μ2μ3

M
�k′μ1

�kμ′ M
�kμ3

�k′μ2
δ
(

E�k′μ2�kμ3

) [(
1 + N

ph

|�k′−�k|

)
ρ

μ2μ1

�k′
(
δμμ3 − ρ

μμ3

�k
) − N

ph

|�k′−�k|ρ
μμ3

�k
(
δμ2μ1 − ρ

μ2μ1

�k′
)]

− π

�

∑
�k′

∑
μ1μ2μ3

M
�k′μ1

�kμ′ M
kμ3

�k′μ2
δ
(

E�kμ3 �k′μ2

) [(
1 + N

ph

|�k−�k′|

)
ρ

μμ3

�k
(
δμ2μ1 − ρ

μ2μ1

�k′
) − N

ph

|�k−�k′|ρ
μ2μ1

�k′
(
δμμ3 − ρ

μμ3

�k
)]

.

(38)

Here, 
E�kμ�k′μ′ = ε
μ

k − ε
μ′
k′ − �ω

ph

|�k−�k′| and N
ph
q is the occu-

pation function of a thermalized phonon bath, given by a
Bose-Einstein distribution:

Nph
q = 1

eβ�ωph − 1
, (39)

where β = 1/(kBTph). The numerical results for the micro-
scopic dynamics in the following sections are obtained by
numerically solving the equations of motion (29) and (38).
In the numerical calculations, the spin-density matrix is
transformed to the single-particle basis of the instantaneous,
diagonalized eigenstates (22).

V. DEPHASING BETWEEN LOCALIZED AND ITINERANT
SPINS: NUMERICAL RESULTS

Since we are interested in this paper in a comparison of
the model described above with Landau-Lifshitz and Gilbert
damping, we investigate magnetization dynamics with an ini-
tial spin-density matrix that corresponds to a tilting of the spins
out of their equilibrium position without changing the kinetic
energy of the carriers, because we need initial conditions
that lead to generic magnetization dephasing without carrier
heating and the corresponding demagnetization dynamics.

A. Initial state and spin dynamics

Thus we take as the equilibrium initial state the steady
state that is reached for the coupled spins interacting with the
phonon bath at a low temperature of Tph = 1 K, as shown in
Fig. 4(a). The chosen temperature has only a negligible impact

FIG. 4. (Color online) (a) Localized spin 〈�S〉 and itinerant spin
〈�s〉 in thermal equilibrium. (b) Itinerant spin tilted relatively to the
localized spin by an angle β.

on the resulting dynamics as long as it is small compared
to the Curie temperature TC , which avoids heat-induced
demagnetization dynamics. In this equilibrium state, the spin
density matrix is characterized by shifted Fermi functions
for the distributions ρ

μμ

�k = f (εμ

k − EF,Tph) and vanishing

coherences ρ+−
�k = 0. Due to the dispersion of the carriers,

in equilibrium, the itinerant spin �s is shorter than the localized
spin �S, which is completely polarized.

We then change the itinerant density matrix to that corre-
sponding to an itinerant spin tilted by β = 10◦ relative to its
equilibrium orientation determined by the localized spin, see
Fig. 4(b). This initial condition achieves a tilting of the spins
without heating and avoids generic de- and remagnetization
dynamics. Microscopically, the tilted spin corresponds to the
spin density matrix shown in Fig. 5. The perturbation for
distributions and coherences exists only between the two Fermi
wave vectors for the μ = + and μ = − bands. For smaller tilt
angles, the deviation is much less pronounced.

From this initial condition, both spins start to precess
around the instantaneous direction, along which the exchange
interaction tries to align them. This direction is determined
for the itinerant carriers by the localized spins and vice versa.
The precession frequencies of both spins are different, because
of the different polarizations. A return back into equilibrium
requires the scattering of itinerant electrons with phonons. If
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FIG. 5. (Color online) Initial spin density-matrix (occupations
and coherences) for itinerant electrons corresponding to a relative
tilt β = 50◦. The deviation from equilibrium occurs only between the
Fermi wave vectors of the “+” and “−” bands.
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FIG. 6. (Color online) Nonequilibrium dynamics of localized
(red) and itinerant (blue) spins including electron-phonon scattering
without (a) and with (b) spin mixing.

we switch off spin mixing, the dynamics shown in Fig. 6(a)
results: no angular momentum is exchanged with the phonon
bath, the excited system cannot relax into equilibrium, and
the precession goes on indefinitely. Figure 6(b) shows the
same result including spin-mixed itinerant states. Now, angular
momentum can be transferred from the itinerant subsystem
into the lattice and the total spin �S + �s changes. In the
presence of spin-orbit coupling, electron-phonon scattering,
which is by itself spin-diagonal, can return the spin system
into equilibrium, characterized by aligned spins and vanishing
transverse components. Since we consider here a small Rashba
coupling, the interaction with the phonon bath removes energy
much faster than angular momentum. The carrier temperature
therefore stays practically equal to the phonon temperature
Tph during the entire relaxation process, and no heat-induced
demagnetization processes occur. The final magnetization is,
however, not necessarily oriented in the z direction of the fixed
frame, because in the results discussed in this section there is
no external field or anisotropy to induce such an alignment.

We plot the resulting dynamics of the itinerant spins during
the dephasing process in Fig. 7, which shows that all itinerant
spatial components precess, and no spatially fixed component
can be considered to be longitudinal. First, the localized spin
turns away from the z direction due to the tilted itinerant
spin and subsequently both spin systems precess around each
other because the quantization axis of each system changes
continuously due to the mutual interaction. During the entire
relaxation process the absolute value of the itinerant spin is
conserved to better than 1%. Figure 8 shows the same dynamics
in the rotating frame, where the longitudinal and transverse
dynamics can be seen clearly. Both itinerant components show
exponential dynamics, which are therefore well described by
decay times T1 and T2. If well-defined decay times exist, one
expects a ratio T2/T1 = 2 as long as the length of the spin
is conserved. The fit for our numerical results indeed gives
2T1 � T2.

Figure 9 plots the T1 and T2 values extracted from the
dynamics as a function of the strength of the electron-phonon
coupling, or deformation potential D. The dependence of
the decay times on D can be fit extremely well by a 1/D2

relation, which demonstrates the proportionality of the Bloch
decay times T1,2 ∝ 1/D2. Further, the ratio T2/T1 stays equal
to 2 for all coupling strengths. As discussed in Sec. IV D
about the Markov approximation, our microscopic description
cannot reach regimes where T1 and T2 are indistinguishable
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FIG. 7. (Color online) Relaxation dynamics of itinerant spins in
the fixed frame.

and therefore equal. However, these results show that for small
tilting angles, not even a pronounced electron-phonon coupling
leads to a noticeable deviation from the T2 = 2T1 behavior.
Because this relation between T1 and T2 holds, the dynamics
in Fig. 8 can be equally well described by a Landau-Lifshitz or
Gilbert damping terms. By fitting the dephasing time T2 ≈ 1 ps
and the Larmor frequency ωL ≈ 281 ps−1 of the itinerant spin,
Eq. (13) yields the corresponding itinerant Gilbert damping
parameter αiso ≈ 3.6 × 10−3. In Ref. [21], Shen and Wu
extracted a Gilbert parameter from a microscopic calculation
of hole-spin dynamics in a bulk magnetic semiconductor. Due
to a larger phase space and a stronger spin-orbit coupling, they
find a value of about α ≈ 0.05, i.e., one order of magnitude
larger than ours.
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FIG. 8. (Color online) Relaxation dynamics of itinerant spins in
the rotating frame. An exponential fit determines the Bloch decay
times to T1 = 0.5 ps and T2 = 1.0 ps.
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FIG. 9. (Color online) (Top) Longitudinal (black squares) and
transverse (blue circles) Bloch decay times vs electron-phonon
coupling strength D together with two fit curves ∝1/D2 (solid lines).
To a good approximation T1,2 ∝ 1/D2. (Bottom) Ratio T2/T1 of both
decay times vs coupling strength.

B. Precession-frequency shift due to dephasing

In the Landau-Lifshitz equation, the contributions de-
scribing, respectively, the precession and the damping are
completely independent, so that the damping constant λ has
no impact on the precession. By contrast, an increase of α in
the Gilbert equation does not only increase the dephasing rate,
it lowers the precession frequency as well.

In this section, we investigate the change of the precession
frequency of the itinerant spin in the microscopic calculation
and compare it with the macroscopic descriptions. To this end,
we use the off-diagonal components of the itinerant density
matrix ρ+−(t) = ∑

�k ρ+−
�k (t), which describe the dynamics of

the transverse spin components in the rotating frame. The
modulus of its Fourier transform |ρ+−(ω)| shows a distinct
peak, which is exactly at the precession frequency.

To compare the precession frequency for different damping
parameters, we use the dependence on T2, because all de-
phasing parameters can be related to T2 for small excitations.
Figure 10 plots the Larmor frequency of the itinerant spin
versus the transverse relaxation rate 1/T2. The precession
parameters of the Landau-Lifshitz and the Gilbert equations
are chosen such that the Larmor frequency in the undamped
limiting case is equal to that of the microscopic simulation.
In order to stay within the bounds set by condition (36), we
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279

279.5
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s−
1 )

LL
Gilbert
Microscopic

FIG. 10. (Color online) Precession frequency with respect to the
damping strength in terms of the decay rate 1/T2.

do not extend the plot in Fig. 10 to higher dephasing rates.
Figure 10 shows that the microscopic calculation yields a
reduction of the precession frequency with the damping rate.
Although the Gilbert dynamics also shows such a reduction,
it occurs only at shorter T2. As mentioned above, for the
Landau-Lifshitz damping, the frequency is independent of the
damping parameter. Even though the change of precession
frequency in the microscopic calculation is small, the Landau-
Lifshitz damping completely fails to include this effect.
While Gilbert damping does show a reduction of precession
frequency, it is not at all close to the microscopic calculation on
the frequency scale considered here. Both phenomenological
damping expressions thus do not reproduce the dependence
of the precession frequency on T2. Even though the numerical
differences are small, these differences already occur in the
small-excitation regime and may perhaps be detectable.

C. Dephasing at larger excitation angles

The phenomenological Landau-Lifshitz and Gilbert damp-
ing contributions describe an exponential decay only for small
excitation angles, as studied in the previous section. In this
section, we investigate the effect of larger excitation angles
(>10◦) on the spin dynamics in the microscopic calculation.
Apart from this, the initial condition of the dynamics is the
same as before, in particular, the itinerant spin is tilted such
that the absolute value of the spin is unchanged.

Figure 11 shows the time development of the s‖ and s⊥
components of the itinerant spin in the rotating frame for an
initial tilt angle β = 140◦. While the transverse component s⊥
in the rotating frame can be well described by an exponential
decay, the longitudinal component s‖ shows a different behav-
ior. It initially decreases with a time constant of less than 1 ps,
but does not reach its equilibrium value. Instead, the eventual
return to equilibrium takes place on a much longer timescale,
during which the s⊥ component is already vanishingly small.
The long-time dynamics is therefore purely collinear. For the
short-time dynamics, the transverse component can be fit well
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FIG. 11. (Color online) Dynamics of the longitudinal and trans-
verse itinerant spin components in the rotating frame (solid lines)
for a tilt angle of β = 140◦, together with exponential fits toward
equilibrium (dashed lines). The longitudinal equilibrium polarization
is shown as a dotted line. For s⊥, the fit cannot be distinguished from
dynamics on this scale.
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FIG. 12. (Color online) T2 time extracted from an exponential fit
to s⊥ dynamics in rotating frame for different initial tilting angles β.

by an exponential decay, even for large excitation angles.
This behavior is different from Landau-Lifshitz and Gilbert
dynamics, cf. Fig. 2, which both exhibit nonexponential decay
of the transverse spin component.

In Fig. 12, the dependence of T2 on the excitation angle
is shown. From small β up to almost 180◦, the decay time
decreases by more than 50%. This dependence is exclusively
due to the “excitation condition,” which involves only spin
degrees of freedom (“tilt angle”), but no change of temperature.
Although one can fit such a T2 time to the transverse decay, the
overall behavior with its two stages is, in our view, qualitatively
different from the typical Bloch relaxation/dephasing picture.

To highlight the similarities and differences from the Bloch
relaxation/dephasing, we plot in Fig. 13 the modulus of the
itinerant spin vector |�s| for four different excitation angles.
Over the 2 ps, during which the transverse spin in the rotating
frame essentially decays, the modulus of the spin vector
undergoes a fast initial decrease and a partial recovery. The
initial length of �s is recovered only over a much larger time
scale of several hundred picoseconds (not shown). Thus the
dynamics can be seen to differ from a Landau-Lifshitz or
Gilbert-like scenario because the spin does not precess toward
equilibrium with a constant length. Additionally, they differ
from Bloch-like dynamics because there is a combination of
the fast and slow dynamics that cannot be described by a single
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FIG. 13. (Color online) Dynamics of the modulus |�s| of the
itinerant spin for different initial tilt angles β. Note the slightly
different time scale compared to Fig. 11.

set of T1 and T2 times. We stress that the microscopic dynamics
at larger excitation angles shows a precessional motion of the
magnetization without heating and a slow remagnetization.
This scenario is somewhat in between typical small angle
relaxation, for which the modulus of the magnetization is
constant and which is well described by Gilbert and Landau-
Lifshitz damping, and collinear de/remagnetization dynamics.

The effects that occur after the excitation with a large angle
β, i.e., the enhanced T2 time in Fig. 12 and the reduction of
the length of the itinerant spin in Fig. 13, might be detectable
in future experiments.

VI. EFFECT OF ANISOTROPY

So far, we have been concerned with the question how
phenomenological equations describe dephasing processes
between itinerant and localized spins, where the magnetic
properties of the system were determined by a mean-field
exchange interaction only. Oftentimes, phenomenological
models of spin dynamics are used to describe dephasing
processes toward an “easy axis” determined by anisotropy
fields [31].

In order to capture in a simple fashion the effects of
anisotropy on the spin dynamics in our model, we simply
assume the existence of an effective anisotropy field �Haniso,
which enters the Hamiltonian via

Ĥaniso = −gμBμ �̂s · �Haniso (40)

and only acts on the itinerant carriers. Its strength is assumed
to be small in comparison to the field of the localized moments
�Hloc. This additional field �Haniso has to be taken into account

in the diagonalization of the coherent dynamics as well, see
Sec. IV C.

For the investigation of the dynamics with anisotropy, we
choose a slightly different initial condition, which is shown in
Fig. 14. In thermal equilibrium, both spins are now aligned,
with opposite directions, along the anisotropy field �Haniso,
which is assumed to point in the z direction. At t = 0, they
are both rigidly tilted by an angle β = 10◦ with respect to the
anisotropy field.

Figure 14 shows the time evolution of both spins in the fixed
frame, with z axis in the direction of the anisotropy field for
the same material parameters as in the previous sections and
an anisotropy field �Haniso = −108 A

m · �ez. The dynamics of the
entire spin system is somewhat different now, as the itinerant
spin precesses around the combined field of the anisotropy and

FIG. 14. (Color online) Dynamics of the localized spin �S and
itinerant spin �s. At t = 0, the equilibrium configuration of both spins
is tilted (β = 10◦) with respect to an anisotropy field �Haniso. The
anisotropy field is only experienced by the itinerant subsystem.
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FIG. 15. (Color online) Relaxation dynamics of the localized
spin toward the anisotropy direction for longitudinal component Sz

and transverse component
√

S2
x + S2

y . An exponential fit yields Bloch

decay times of T aniso
1 = 67.8 ps and T aniso

2 = 134.0 ps.

the localized moments. The localized spin precesses around the
itinerant spin, whose direction keeps changing as well.

Figure 15 contains the dynamics of the components of the
localized spin in the rotating frame. Both components show an
exponential behavior that allows us to extract well defined
Bloch-times T aniso

1 and T aniso
2 . Again, we find the ratio of

2T aniso
1 ≈ T aniso

2 , because the absolute value of the localized
spin does not change, as it is not coupled to the phonon bath.
Accordingly, the itinerant spin relaxes within the exact same
time scale T aniso

1 and T aniso
2 .

In Fig. 16, the Larmor frequency ωaniso
L , which is the

common precession frequency of both the localized and the
itinerant spin due to the anisotropy field, and the Bloch decay
times T aniso

2 are plotted versus the strength of the anisotropy
field �Haniso. The Gilbert damping parameter αaniso for the
dephasing dynamics, which is the same in the localized and

0 5 10 15
0

5

10

Haniso (107A/m)

ω
a
n
is

o
L

(p
s−

1
)

0 5 10 15
0

500

1000

Haniso (107A/m)

T
a
n
is

o
2

(p
s)

0 5 10 15
0

10

20

Haniso (107A/m)

α
a
n
is

o
(1

0−
4
)

FIG. 16. (Color online) Larmor frequency ωaniso
L and Bloch decay

time T aniso
2 extracted from the spin dynamics vs anisotropy field Haniso,

as well as the corresponding damping parameter αaniso.
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FIG. 17. (Color online) Damping parameter αaniso vs coupling
constant D (black diamonds). The red line is a quadratic fit, indicative
of αaniso ∝ D2.

the itinerant subsystem, is computed via Eq. (13) and is also
presented in this figure.

The plot reveals a decrease of the dephasing time T aniso
2 and

an almost linear increase of the Larmor frequency ωaniso
L with

the strength of the anisotropy field Haniso. The Gilbert damping
parameter αaniso shows only a negligible dependence on the
anisotropy field Haniso. This confirms the statement that, in
contrast to the dephasing rates, the Gilbert damping parameter
is independent of the applied magnetic field. In the investigated
range, we find an almost constant value of αaniso � 9 × 10−4.

The Gilbert damping parameter αaniso for the dephasing
of both spin systems toward the anisotropy field is about
four times smaller than αiso, which describes the dephasing
of the itinerant spin toward the field of the localized spin
�Hloc. This disparity in the damping efficiency (αaniso < αiso)

is obviously due to a fundamental difference in the dephasing
mechanism. In the anisotropy case, the localized spin dephases
toward the z direction without being involved in scattering
processes with itinerant carriers or phonons. The dynamics
of the localized spins is purely precessional due to the
time-dependent magnetic moment of the itinerant carriers
�Hitin(t). Thus only this varying magnetic field that turns

out to be slightly tilted against the localized spins during
the entire relaxation causes the dephasing, in presence of
the coupling between itinerant carriers and a phonon bath,
which acts as a sink for energy and angular momentum. The
relaxation of the localized moments thus occurs only indirectly
as a carrier-meditated relaxation via their coupling to the
time-dependent mean-field of the itinerant spin.

Next, we investigate the dependence of the Gilbert param-
eter αaniso on the bath coupling. Figure 17 shows that αaniso

increases quadratically with the electron-phonon coupling
strength D.

Since Fig. 9 establishes that the spin-dephasing rate 1/T2

for the fast dynamics discussed in the previous sections is
proportional to D2, we find αaniso ∝ 1/T2. We briefly compare
these trends to two earlier calculations of Gilbert damping that
employ p-d models and assume phenomenological Bloch-type
rates 1/T2 for the dephasing of the itinerant hole spins toward
the field of the localized moments. In contrast to the present
paper, the localized spins experience the anisotropy fields.
Chovan and Perakis [42] derive a Gilbert equation for the
dephasing of the localized spins toward the anisotropy axis,
assuming that the hole spin follows the field �Hloc of the
localized spins almost adiabatically. Tserkovnyak et al. [19]
extract a Gilbert parameter from spin susceptibilities. The
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FIG. 18. (Color online) Precession frequency of the localized
spin around the anisotropy field vs Bloch decay time 1/T aniso

2 .

resulting dependence of the Gilbert parameter αaniso on 1/T2

in both approaches is in qualitative accordance and exhibits
two different regimes. In the low spin-flip regime, where
1/T2 is small in comparison to the p-d exchange interaction,
a linear increase of αaniso with 1/T2 is found, as is the
case in our calculations with microscopic dephasing terms.
If the relaxation rate is larger than the p-d dynamics, αaniso

decreases again. Due to the restriction (36) of the Boltzmann
scattering integral to low spin-flip rates, the present Markovian
calculations cannot be pushed into this regime.

Even though the anisotropy field �Haniso is not coupled to the
localized spin �S directly, both spins precess around the z di-
rection with frequency ωaniso

L . In analogy to Sec. V B, we study
now the influence of the damping process on the precession
of the localized spin around the anisotropy axis and compare
it to the behavior of Landau-Lifshitz and Gilbert dynamics.
Figure 18 reveals a similar behavior of the precession fre-
quency as a function of the damping rate 1/T aniso

2 as in the
isotropic case. The microscopic calculation predicts a distinct
drop of the Larmor frequency ωaniso

L for a range of dephasing
rates where the precession frequency is unchanged according
to the Gilbert and Landau-Lifshitz damping models. Although
Gilbert damping eventually leads to a change in precession
frequency for larger damping, this result shows a qualitative
difference between the microscopic and the phenomenological
calculations.

VII. CONCLUSION AND OUTLOOK

In this paper, we investigated a microscopic description of
dephasing processes due to spin-orbit coupling and electron-

phonon scattering in a mean-field kinetic exchange model. We
first analyzed how spin-dependent carrier dynamics can be
described by Boltzmann scattering integrals, which leads to
Elliott-Yafet-type relaxation processes. This is only possible
for dephasing rates small compared to the Larmor frequency,
see Eq. (36). The microscopic calculation always yielded
Bloch times 2T1 = T2 for low excitation angles as it should
be due to the conservation of the absolute value of the
magnetization. A small decrease of the effective precession
frequency occurs with increasing damping rate, which is a
fundamental difference to the Landau-Lifshitz description and
exceeds the change predicted by the Gilbert equation in this
regime.

We modeled two dephasing scenarios. First, a relaxation
process between both spin subsystems was studied. Here,
the different spins precess around the mean-field of the other
system. In particular, for large excitation angles, we found a
decrease of the magnetization during the precessional motion
without heating and a slow remagnetization. This scenario
is somewhat in between typical small angle relaxation, for
which the modulus of the magnetization is constant and which
is well described by Gilbert and Landau-Lifshitz damping,
and collinear de/remagnetization dynamics. Also, we find
important deviations from a pure Bloch-like behavior.

The second scenario deals with the relaxation of the
magnetization toward a magnetic anisotropy field experienced
by the itinerant carrier spins for small excitation angles. The
resulting Gilbert parameter αaniso is independent of the static
anisotropy field. The relaxation of the localized moments
occurs only indirectly as a carrier-meditated relaxation via
their coupling to the time-dependent mean-field of the itinerant
spin.

To draw a meaningful comparison with Landau-Lifshitz
and Gilbert dynamics, we restricted ourselves throughout the
entire paper to a regime where the electronic temperature is
equal to the lattice temperature Tph at all times. In general,
our microscopic theory is also capable of modeling heat
induced de- and remagnetization processes. We intend to
compare microscopic simulations of hot electron dynamics
in this model, including scattering processes between both
types of spin, with phenomenological approaches such as the
Landau-Lifshitz-Bloch (LLB) equation or the self-consistent
Bloch equation (SCB) [43].

ACKNOWLEDGMENT

Svenja Vollmar is a recipient of funding through the
Excellence Initiative (DFG/GSC 266).

[1] L. Landau and E. Lifshitz, Phys. Z. Sowjetunion 8, 153 (1935).
[2] T. L. Gilbert, IEEE Trans. Magn. 40, 3443 (2004).
[3] D. L. Mills and R. Arias, The damping of spin motions in

ultrathin films: Is the Landau-Lifschitz-Gilbert phenomenology
applicable? Invited paper presented at the VII Latin American
Workshop on Magnetism, Magnetic Materials and their Appli-
cations, Renaca, Chile, 2005.

[4] D. A. Garanin, Physica A 172, 470 (1991).

[5] V. V. Andreev and V. I. Gerasimenko, Sov. Phys. JETP 35, 846
(1959).

[6] A. Brataas, Y. Tserkovnyak, and G. E. W. Bauer, Phys. Rev.
Lett. 101, 037207 (2008).

[7] W. M. Saslow, J. Appl. Phys. 105, 07D315 (2009).
[8] N. Smith, Phys. Rev. B 78, 216401 (2008).
[9] M.-C. Hickey and J. S. Moodera, Phys. Rev. Lett. 102, 137601

(2009).

014427-12

http://dx.doi.org/10.1109/TMAG.2004.836740
http://dx.doi.org/10.1109/TMAG.2004.836740
http://dx.doi.org/10.1109/TMAG.2004.836740
http://dx.doi.org/10.1109/TMAG.2004.836740
http://dx.doi.org/10.1016/0378-4371(91)90395-S
http://dx.doi.org/10.1016/0378-4371(91)90395-S
http://dx.doi.org/10.1016/0378-4371(91)90395-S
http://dx.doi.org/10.1016/0378-4371(91)90395-S
http://dx.doi.org/10.1103/PhysRevLett.101.037207
http://dx.doi.org/10.1103/PhysRevLett.101.037207
http://dx.doi.org/10.1103/PhysRevLett.101.037207
http://dx.doi.org/10.1103/PhysRevLett.101.037207
http://dx.doi.org/10.1063/1.3077204
http://dx.doi.org/10.1063/1.3077204
http://dx.doi.org/10.1063/1.3077204
http://dx.doi.org/10.1063/1.3077204
http://dx.doi.org/10.1103/PhysRevB.78.216401
http://dx.doi.org/10.1103/PhysRevB.78.216401
http://dx.doi.org/10.1103/PhysRevB.78.216401
http://dx.doi.org/10.1103/PhysRevB.78.216401
http://dx.doi.org/10.1103/PhysRevLett.102.137601
http://dx.doi.org/10.1103/PhysRevLett.102.137601
http://dx.doi.org/10.1103/PhysRevLett.102.137601
http://dx.doi.org/10.1103/PhysRevLett.102.137601


MAGNETIZATION DYNAMICS AND DAMPING DUE TO . . . PHYSICAL REVIEW B 90, 014427 (2014)

[10] S. Wienholdt, D. Hinzke, K. Carva, P. M. Oppeneer, and U.
Nowak, Phys. Rev. B 88, 020406(R) (2013).

[11] U. Atxitia, O. Chubykalo-Fesenko, R. W. Chantrell, U. Nowak,
and A. Rebei, Phys. Rev. Lett. 102, 057203 (2009).

[12] Z. Li and S. Zhang, Phys. Rev. B 69, 134416 (2004).
[13] O. Chubykalo-Fesenko, Appl. Phys. Lett. 91, 232507 (2007).
[14] D. A. Garanin, Phys. Rev. B 55, 3050 (1997).
[15] U. Atxitia and O. Chubykalo-Fesenko, Phys. Rev. B 84, 144414

(2011).
[16] I. Garate and A. MacDonald, Phys. Rev. B 79, 064403

(2009).
[17] K. Gilmore, I. Garate, A. H. MacDonald, and M. D. Stiles, Phys.

Rev. B 84, 224412 (2011).
[18] J. Sinova, T. Jungwirth, X. Liu, Y. Sasaki, J. K. Furdyna, W. A.

Atkinson, and A. H. MacDonald, Phys. Rev. B 69, 085209
(2004).

[19] Y. Tserkovnyak, G. A. Fiete, and B. I. Halperin, Appl. Phys.
Lett. 84, 5234 (2004).

[20] K. Shen, G. Tatara, and M. W. Wu, Phys. Rev. B 81, 193201
(2010).

[21] K. Shen and M. W. Wu, Phys. Rev. B 85, 075206 (2012).
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