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α-ε transition pathway of iron under quasihydrostatic pressure conditions
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We have carefully investigated the α-ε transition pathway of iron under quasihydrostatic pressures. For this
purpose, combined measurements of extended x-ray absorption fine structure (EXAFS) and x-ray magnetic
circular dichroism at the Fe K edge were performed using a helium pressure-transmitting medium. Collapse
of the ferromagnetism simultaneously occurs with the α-ε structural transition, which is in contrast to the
scenario that the transition is driven by the pressure-induced instability of the ferromagnetism in α phase of
iron. We conclude that shear stress is important to initiate the α-ε transition. Our model to fit the EXAFS profile
demonstrates that the local atomic arrangement in ε phase is slightly distorted due to unfinished shuffle motion,
whereas shear motion finishes at the beginning of the transition.
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I. INTRODUCTION

Iron undergoes a pressure-induced bcc (α) to hcp (ε)
transition at about 14 GPa. The transition has attracted great
interest after its discovery by Bancroft in 1953 [1], because the
ε phase of iron is one of the important materials for both solid
state physics and geosciences. The ferromagnetism in iron is
suppressed during the transition, and the ε phase is considered
to be nonmagnetic or antiferromagnetic. The α-ε transition
is a martensitic transformation, wherein the reconstructive
structural transition occurs via shear and shuffle motion of
the (110)α planes. Although various transition pathways of
iron have been proposed by many researchers, the driving
mechanism of the structural and magnetic transitions is not
fully understood. The α and ε phases have equal enthalpies
at about 10 GPa [2]; however, a pronounced barrier exists be-
tween the two phases in the enthalpy surface. The application
of pressure up to 50 GPa, which is considerably higher than the
experimental value, is predicted for the excitations beyond the
barrier at room temperature [2]. Therefore an understanding
of how to overcome the barrier is a major problem of the α-ε
transition.

The first scenario is magnetism-driven transition due to
the thermodynamical instabliliy of the ferromagnetism in the
α phase under pressure. This scenario has been discussed
theoretically [2,3] and experimentally [4–6]. Based on the
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idea that the magnetism is strongly coupled with the crystal
structure, a recent paper has pointed out that even a partial
spin disorder in the α phase can result in a decrease in
the energy of lattice fluctuations required for transition to
the ε phase [3]. It has also been predicted that intermediate
structures with complicated magnetic structures such as spin
spirals can lower the barrier between the α and ε phases
[2]. Using x-ray absorption spectroscopy and x-ray magnetic
circular dichroism (XMCD), Mathon et al. have reported that
the magnetic collapse precedes the structural phase transition
[5]. This is because the XMCD signal significantly decreases
before the transition to the ε phase, which is regarded as
an experimental signature of this scenario. In the case of
iron nanoparticles, the precedence is reported to be more
pronounced [6].

The second scenario is the transition driven by shear stress
or shuffle motion. Although hydrostatic pressure conditions
cannot produce shear, a shuffle-only mode [T1(N ) mode in
α phase] is theoretically allowed to reach the barrier below
30 GPa [7]. It has also been suggested that shear stress is
required to initiate the α-ε transition, and the transition appears
at larger volumes and lower applied pressure with increasing
shear [8,9]. The importance of shear is consistent with the
experimental observations that the onset and the pressure
range of the transition strongly depend on nonhydrostaticity
of the material used for the pressure-transmitting medium
[10]. In contrast to the first scenario, the collapse of the
ferromagnetic order in the ε phase is attributed to change in
the structural symmetry, i.e., the spontaneous shear strains
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and the shuffle motion involved in the Burgers reconstructive
transition mechanism lead to the disappearance of the ferro-
magnetic order [11].

In this paper, the two controversial scenarios are exper-
imentally examined by combined measurements of XMCD
and extended x-ray absorption fine structure (EXAFS). The
combined measurement is a very suitable method to investigate
the relationship between the α-ε and magnetic transition
pathways, because EXAFS and XMCD probe the local crystal
structure and magnetism of the same irradiated area, respec-
tively. In this study, we have measured the EXAFS and XMCD
spectra at the Fe K edge under quasihydrostatic pressures using
a helium pressure-transmitting medium. Helium provides the
most suitable pressure condition to minimize the shear stress
because helium remains soft and nearly hydrostatic even after
its solidification at 11.5 GPa [12]. We note that an excellent
EXAFS study in this regard has been already performed by
Wang and Ingalls [13], and they observed structural anomalies
at the transition of iron, such as a distorted ε phase with
a large c/a ratio and expanded lattice constant in the α

phase. We verify that these anomalies remain stable under
quasihydrostatic pressures because previous EXAFS study
was not performed under hydrostatic conditions [13]. In this
study, sharp changes in both EXAFS and XMCD spectra
are observed simultaneously at the onset of the transition,
indicating that the precedence of the magnetic transition over
the structural one does not occur. Furthermore, a model with
an orthorhombic crystal structure is tested to fit the EXAFS
profiles in order to demonstrate how shear and shuffle motions
progress at the martensitic α-ε transition. We conclude that
shear stress is important to initiate the α-ε transition.

II. EXPERIMENTAL AND THE EXAFS
FITTING PROCEDURES

The EXAFS and XMCD measurements at the Fe K edge
were performed on beamline 39XU at SPring-8 [14]. XMCD
spectra were measured by the helicity modulation technique
using circularly polarized beam from a diamond λ/4 wave
plate. The EXAFS spectra were measured after removing the
λ/4 wave plate from the x-ray path, so that incident x ray
was horizontally polarized for the EXAFS measurements. We
repeated this sequence at all pressures measured in this study.
The incident x-ray beam was focused by Kirkpatrick and Baez
mirrors and set to a size of 9(h)×2(v) μm2 at the sample
position. Diamond anvil cells were used for applying pressure.
We used nanopolycrystalline diamond (NPD) anvils to remove
Bragg diffraction from the anvil, which frequently appears
during the EXAFS measurements [15,16]. A polycrystalline
iron foil 4 μm in thickness was placed inside a Re gasket
hole. We measured the pressure dependence of the EXAFS
and XMCD spectra again after loading a new iron foil to
confirm reproducibility. All measurements were done at room
temperature. A magnetic field H of 0.6 T was applied parallel
to the incident x-ray beam and in the direction of the surface
normal of the sample foil. The conventional ruby fluorescence
method was used for pressure calibration.

The software packages, ATHENA and ARTEMIS using the
IFEFFIT library were used for the analysis of EXAFS [17].
The theoretical standards were outputted by the built-in FEFF

code (FEFF6 [18]), and the local structure around the iron atom
was determined from curve fitting in the radial space. The
normalized EXAFS profile χ (k) to model the experimental
data is represented by a sum over j th path as [19]

χ (k) =
∑

j

S2
0Njfi(k)

kR2
j

sin(2kRj + φj (k))e−2k2σ 2
j −2Rj /λ(k),

(1)

where Rj is the distance from the central absorbing atom
to the j th shell, Nj is the coordination number, fj (k) is the
complex backscattering amplitude, φj is the phase shift, σj is
the Debye-Waller factor (DWF), λ(k) is the mean free path
of the photoelectron, and S0 is the overall amplitude reduction
factor due to many-body effects. The wave number k is defined
as k =

√
2m
�2 (E − E0), where m is the mass of electron, E is

the incident photon energy, E0 is the photon energy at the
absorption edge, � is the Plank constant divided by 2π . The
higher cumulants C3j and C4j were not taken into account
in this study. The k range used for Fourier transformation
was 2.0–13.3 Å−1, and the curve-fitting R range was set to
1.2–6.0 Å. The correlated Debye model was used to calculate
the DWF for each scattering path [20]. The use of the correlated
Debye model followed the procedure from prior EXAFS work
of iron [13]. The Debye temperature (θD) was determined
separately for the ε and α phases.

The actual distance to the j th shell from the central
absorbing atom, Rj , is expressed as

Rj = Reff
j + 
Rj, (2)

where Reff
j is the calculated atomic distance of the initial

crystal structure and 
Rj is a fitting parameter that represents
deviation from the calculated Reff

j . In conventional EXAFS
analysis, a large number of 
Rj are separately optimized
unless taking the symmetry of the crystal structure into
account. To avoid this problem, we reduced the number of

Rj by imposing constraints based on the crystal structure.
The constraints ensure invariance of the symmetry of the
crystal structure after fit. Details about the fitting procedure
are described in Appendix.

A constant value was used for θD of the α phase, and only
θD of the ε phase was optimized at the pressures above the
transition. This is because θD of the α phase is easy to diverge
when the α phase has small abundance. The averaged value of
θD before the transition was used for the constant value of θD

for the α phase. Since the calculated value of S2
0 for ε phase

was similar to that for α phase, the α phase abundance, wα ,
was estimated from the fit using the linear combination of the
EXAFS functions of α phase [χα(k)] and ε phase [χε(k)] as
χ (k) = wαχα(k) + (1 − wα)χε(k).

III. RESULTS AND DISCUSSION

A. Comparison between the magnetic and structural transitions

Figure 1 shows XMCD and x-ray absorption near edge
structure (XANES) spectra at selected pressures. Subtle
changes due to the compression are observed in the XMCD
and XANES profiles at pressures below the transition up to
14.6 GPa. The XMCD amplitude abruptly decreases at 14.9
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FIG. 1. (Color online) XMCD (top) and x-ray absorption
(XANES: bottom) spectra of iron at the Fe K edge under selected
pressures. Each spectrum is shifted upward for clarity.

GPa together with the modification of the XANES spectra.
Thus the pressure corresponding to the onset of the structural
and magnetic transition is defined as Pt ≈ 14.8 GPa. With
further applied pressure, the XMCD amplitude gradually
decreases and becomes very small (�8×10−5) above P ′

t ≈
16.6 GPa. The XMCD spectrum of the second run vanishes
within the noise level at 20.3 GPa. The spectral change in the
XANES profile indicates that most part of the iron transforms
into the ε phase at P ′

t .
The collapse of the ferromagnetic order is demonstrated in

Fig. 2, wherein the integrated intensity of XMCD (IXMCD) is
plotted as a function of pressure. IXMCD is evaluated from the
integration of the absolute value of the XMCD spectrum in
the energy range 7109–7121.5 eV. The integrated intensity of
XMCD at the Fe K edge can be used to monitor the variation in
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FIG. 2. (Color online) Pressure dependence of normalized fer-
romagnetic phase fraction and relative α phase abundance (wα)
evaluated from the XMCD and EXAFS spectra, respectively. For
comparison, the ferromagnetic phase fraction is normalized by
the average value of IXMCD in the range between 13 GPa and
Pt. The (blue) horizontal line indicates the normalized magnitude
of IXMCD at AP.

the net magnetic moment with pressure through modifications
of the 4p band induced by changes in the 3d moment [5,21].
In this study, we assume that IXMCD is proportional to the
magnetization; IXMCD becomes zero when the magnetic state
of the sample is nonmagnetic or antiferromagnetic. The
evaluated IXMCD appears constant in the range 13 GPa � P �
Pt, and its magnitude is 0.87 times smaller than that at ambient
pressure (AP). The small suppression of IXMCD implies that
the magnetization of the α phase is quite stable against the
pressure-induced volume compression. A striking feature of
the first run is the sharp drop of the normalized IXMCD to ≈ 0.6
at Pt and the subsequent steep slope of IXMCD up to P ′

t . Above
P ′

t , the slope becomes moderate and IXMCD approaches zero.
The second run reproduces the entire pressure variation of the
first run. A small drop of the normalized IXMCD to ≈0.9 is
observed just above Pt in the case of the second run.

To investigate the coincidence of the structural transition
and the magnetic collapse, the α phase abundance (wα) is
estimated from the EXAFS spectra. The EXAFS spectra are
fitted by a model assuming the coexistence of the α and ε

phases (α + ε model). As shown in Fig. 2, wα well traces
the pressure dependence of IXMCD within small experimental
errors. The coincidence is also observed for the α + IM
model that is a model discussed later. Therefore the onsets of
the structural and magnetic transitions occur simultaneously.
This coincidence is interpreted as that the ε phase has no
ferromagnetic order, whereas the ferromagnetic order in α

phase maintains comparable magnitude with that at AP even
during the transition. Because wα is as large as the magnitude
of the normalized IXMCD, the moderate slope above P ′

t
represents that the residual α phase is responsible for the
weak ferromagnetic component in the sample above P ′

t ; both
the ferromagnetic component and residual α phase gradually
decrease with increasing pressure. This is convincing evidence
that the ε phase is nonmagnetic or antiferromagnetic. In
contrast to the scenario of magnetic driven transition, we
conclude that the ferromagnetism instability does not occur
in the α phase; the ferromagnetic α phase undergoes direct
transition to the nonmagnetic or antiferromagnetic ε phase.
Furthermore, the low-spin state with an intermediate magnetic
moment of about 1μB, which is reported and discussed in
Ref. [5], is probably absent.

B. EXAFS analysis: α + ε model

The results of EXAFS analysis using the α + ε model are
summarized in Figs. 3 and 4. The obtained EXAFS χ (k)k2

oscillation [Fig. 3(a)] is glitch-free up to k = 15 Å−1, which
is an advantage of utilizing the NPD anvils [15]. The χ (k)k2

oscillation is modified due to the α-ε transition. In the α + ε

model, the relation
√

2aα = cε is assumed as a constraint on
the lattice constants of the α and ε phases. The constraint is
employed as a result of previous XRD experiments [22,23];
the 0002 Bragg reflection from ε phase appears at the same
Bragg angle of the 110 reflection from α phase, indicating that
the d spacing of the atomic plane (110)α is similar to that of
the conjugate (0002)ε atomic plane after the shuffle motion
of the transition. Using the constraint, the fitting parameters
are optimized to minimize the R factor for the magnitude
of Fourier transforms of χ (k)k2 to a value less than 8×10−4
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[Fig. 3(b)]. As shown in Fig. 4, the lattice constants aα and
cε decrease monotonically with increasing pressure, whereas
aε increases up to ∼16 GPa and decreases at higher pressures.
The small aε value near Pt results in a large cε/aε ratio of
the range 1.61–1.62; the ratio eventually reduced to a constant
value of about 1.596 with increasing pressure. The large cε/aε

at the onset of transition is due to the minimal aε value of the
second run, for which the ε phase abundance is only 10%. The
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FIG. 4. (Color online) Fitted results of lattice constants and c/a

ratio obtained using the α + ε model. Open and closed symbols
correspond to the results from the first and second runs, respectively.
The thin solid lines indicate the data taken from Ref. [13] for
comparison.

bond length of α phase, which is typically
√

3
2 aα = 2.42 Å at

Pt, is close to the minimal aε value. This implies that influence
from the interface between α and ε phases is pronounced when
the ε phase in the minor abundance at the onset.

As shown in Fig. 4, the fitting results are qualitatively
consistent with the previous EXAFS results by Wang and
Ingalls [13]; however, the anomalously expanded aα does not
appear near the offset P ′

t of our model. This inconsistency is
attributed to the fact that compression of cε counteracts the
expansion of aα via the strong constraint

√
2aα = cε , since

the α phase abundance is less than 10% at P ′
t . It is considered

that the α phase with anomalously expanded aα is one of
possible structures when the α phase has small abundance
at the offset. This is because the influence of the majority
phase on the crystal structure of the minority phase occurs
near the interface at both onset and offset; the large aε of the
ε phase is expected to expand aα at the interface of the offset.
We note that our model reproduces the expansion of aα at P ′

t if
the constraint

√
2aα = cε is off. The fit with

√
2aα �= cε model,

however, failed to reproduce other structural parameters, e.g.,
this model yields a value of cε/aε ≈ 1.575 at the onset, which
is too small a value for the initial structure of the ε phase.

C. EXAFS analysis: α + IM model

We next examine a model assuming the coexistence of the α

phase and an orthorhombic intermediate (IM) structure instead
of the ε phase (α + IM model). This is a model in order to
investigate how shear and shuffle motions proceed during the
transition. The orthorhombic unit cell (space group: Cmcm),
which has lower symmetry than the bcc and hcp structures,
enables us to introduce arbitrary displacements from the
atomic position for the α phase to that for the ε phase (see
Fig. 6). Iron atoms in the IM phase occupy 4c site at (0,y, 1

4 ).
The length of the shortest Fe-Fe bond in the (001)IM plane
is represented by lb. The lattice constants and y components
of the atomic position are set to aα = aIM = 1√

2
cIM = 1√

2
bIM

and y = 1
4 for the α phase, and aε = aIM = 1√

3
bIM, cε = cIM,

and y = 1
3 for the ε phase. The angle θb between adjacent

bonds with length lb is 70.5◦ and 60◦ for the α and ε phases,
respectively. Using the fitted values of aIM and bIM, lb and θb are
evaluated from the following equations: lb =

√
a2

IM + b2
IM/2

and θb = 2 arctan(aIM/bIM). The shuffle and shear motions are
expressed by the two order parameters y and θb, respectively.
The atomic position y corresponds to antiparallel shifting of
the atoms due to the shuffle motion between the adjacent
(001)IM planes. The angle θb is associated with shear motion
in the (001)IM plane. In this model, a degenerated single
scattering EXAFS path for the ε phase is divided into two or
three different paths for the IM phase. The detailed procedure
of fitting is described in Appendix.

The fitted profile of this model and the determined structural
parameters are shown in Figs. 3(b) and 5, respectively. The
α + IM model gives better fitted profiles than the α+ε model.
The pressure dependencies of lb and cIM/lb are similar to those
of the α + ε model. The bond length lb, which is approximately
equivalent to aε , increases in the pressure range from Pt to
∼16 GPa and decreases at higher pressures. The values of y

and θb are close to the ideal values of the ε phase even at the
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onset, implying that the martensitic phase appears initially as
a slightly distorted ε phase. A notable result of this model is
that the curves of y and θb versus pressure appear dissimilar.
A closer look at the data reveals that θb decreases from 70.5◦
to 60◦ immediately after the transition together with a slight
deviation (θb = 60.7◦) near Pt, whereas the y component
gradually increases after the jump from 1

4 to 0.319 at Pt. Above
P ′

t , y reaches a constant value of 0.324 that is still smaller than
the ideal value for the ε phase, y = 1

3 . This result indicates
that shear motion is completed after the appearance of the
martensitic phase by more than 50%, while the shuffle motion
is unfinished and continuously progresses during the transition.
Structural distortion due to the incompleteness of the shuffle
movement is gradually released with increasing martensitic
phase; however, a small distortion remains above P ′

t .
The structural transformation determined from the α +

IM model is illustrated in Fig. 6. The sudden completion
of the shear movement can attributed to the Burgers-type
transformation [24], wherein the conjugate atomic planes are
set to (112)α ‖ (1100)ε and (110)α ‖ (0002)ε . As shown in the
middle panel of Fig. 6, the Burgers-type model allows comple-
tion of shear movement along [111]α direction in the (112)α
plane unless changing lb, so that it is easy to match the crystal
structures of the martensitic and parent phases at the interface.
Thus the small lb value near Pt against the sudden decrease in
θb is elucidated by the Burgers-type model. The Burgers-type
transformation is a plausible model compared with another
model [13,22,25], in which the conjugate atomic planes are set
to (002)α ‖ (2110)ε and (110)α ‖ (0002)ε [26]. Hypothesizing
the latter model, lb should increase simultaneously with the
progress of the shear movement, which is inconsistent with
the present results of lb and θb. We note that the Burgers-type
model is also discussed as a probable transition model of iron
in Ref. [13].

The precedence of the shear movement over shuffle motion
experimentally demonstrates that the shear stress is required
to initiate the α-ε transition. The shear stress leads to the
rapid shear movement, and it works as the trigger of the α-ε

y = 0.324

70.5°

θb= 60.7°

θb~ 60°

y = 0.319 martensitic
phase

α parent
 phase

z =3/4

z =1/4P ~ Pt
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[010]IM

lb
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FIG. 6. (Color online) Schematic of the martensitic transition of
iron based on the Burgers model. The atomic arrangements are viewed
from the [001]IM direction [24]. The broken-line rectangles depict unit
cells of the orthorhombic lattice (space group Cmcm) for each phase.
The small arrows in the martensitic phase indicate displacements
related to the y parameter due to shuffle motion. These figures are
depicted on the basis of the configuration that lb is unchanged by the
shear motion.

transition. The importance of the shear stress for the transition
is consistent with the discussion in the second scenario by
Caspersen et al. [8,9]. They have theoretically predicted
that hydrostatic conditions do not provoke the transition,
whereas the transition appears at lower applied pressure with
increasing shear stress. In our experimental condition, shear
stress is provided under the quasihydrostatic conditions after
the solidification of helium above 11.5 GPa. The generated
shear stresses of the solid helium are probably small but
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adequate to initiate the martensitic phase at Pt. This result also
indicates that the shear and shuffle motions are decoupled.
The gradual progress of the shuffle motion is attributed to (i)
the enhanced effect of the interface at the onset and/or (ii)
successive shuffle motion of the (001)IM layers. As mentioned
above, it is preferable to match the crystal structure between
the parent and martensitic phases at the interface when one
of the two phases is in very minor abundance. In this case,
the shuffle motion near the interface does not occur to match
the crystal structure at the interface; consequently, structural
distortion due to the incomplete shuffle yields a y value smaller
than 1

3 . The distortion near the interface is gradually released
as the abundance of the martensitic phase increases with
increasing pressure. The phenomenon of successive shuffle
motion has been proposed in a recent theoretical paper [27]. In
comparison with the simultaneous shuffle motion, successive
shuffle follows an energetically lower transition pathway.
The theoretical study has reported that the successive shuffle
transformation nucleates from one single shuffle event, which
is possibly initiated by initial shear. In the case of the successive
shuffle model, we speculate that the nucleation first appears
far from the interface, and then the successive shuffle motion
propagates towards the interface.

The fitted profiles of the α + IM model reproduce the
experimental profiles with the reduced χ -square (χ2

ν ) and
R-factor values being smaller by a factor of 0.8–0.9 than
those of the α + ε model (Fig. 7). The χ2

ν is a good tool for
comparing the two models for the fits to the same data [28]. The
smaller χ2

ν values of the α + IM model statistically support that
this model is a more probable model than the α + ε model.
Therefore it is inferred that the martensitic phase maintains
a structure with lower symmetry than the hcp structure even
above P ′

t since the maximal y value slightly deviates from
1
3 . A symmetry lower than that of the hcp structure may
be a possible crystal structure if the high-pressure phase of
iron is antiferromagnetic or possesses a more complicated
magnetic structure. A number of studies have been proposed
the existence of magnetic structures such as antiferromagnetic
order [29,30] and noncollinear magnetic structure [31–33].
We also note the observation of two Raman bands at moderate
pressures between 15 and 40 GPa; one is identified as the E2g

fundamental mode of the hcp lattice, whereas the other is a
forbidden band for the nonmagnetic hcp lattice of iron [29,34].
However, the actual magnetic structure has not thus far
been experimentally determined. More detailed studies are
required to investigate the relationship between the structure
and magnetism of the high-pressure phase of iron.

IV. CONCLUSION

In conclusion, the α-ε transition pathway of iron was
investigated using EXAFS and XMCD spectra at the Fe K

edge under quasihydrostatic pressures. This study revealed
that shear stress is required to initiate the transition. The
transition is not a magnetism-driven transition because the
ferromagnetism in the α phase remains stable at Pt, and
the α-ε structural transition simultaneously occurs with the
collapse of ferromagnetism in the ε phase. The transition
pathway consists of two steps: sudden appearance of the
nonmagnetic (or antiferromagnetic) distorted ε phase due to
the shear stress and the subsequent gradual disappearance of
the residual ferromagnetic α phase. The distortion in the ε

phase is attributed to the unfinished shuffle motion, and slight
distortion remains even above P ′

t .
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APPENDIX: FITTING MODELS
FOR THE EXAFS ANALYSIS

1. α + ε model

Coexistence of α + ε phases was assumed at the transition
region above Pt in this model. We imposed constraints on

Rj to ensure the symmetry of hcp structure after fit. For this
purpose, Reff

j and 
Rj for j th path were rewritten as a function
of lattice constants of the hcp structure and their deviations,
i.e., aε , cε , 
aε , and 
cε . Only the first-order terms of 
aε and

cε were used to formulate 
Rj , and all higher-order terms
were neglected. Rj and 
Rj for the j th single scattering (SS)
paths are listed in Table I. All distances and their deviation for

TABLE I. EXAFS parameters related to the crystal structure of ε

phase in the α + ε model. Parameters for j th single scattering (SS)
paths of Reff

j � 6 Å are tabulated. Reff
j is calculated using the default

values aε = 2.456 Å and cε = 3.943 Å.

j Nj Reff
j (Å) description of Reff

j description of 
Rj

1 6 2.429
√(√

3aε

3

)2 + (
cε

2

)2 (
aε
aε

3 + cε
cε

4

)
/Reff

1

2 6 2.456 aε aε
aε/R
eff
2

3 6 3.454
√(

2
√

3aε

3

)2 + (
cε

2

)2 (
4aε
aε

3 + cε
cε

4

)
/Reff

3

4 2 3.943 cε cε
cε/R
eff
4

5 12 4.238
√(√

21aε

3

)2 + (
cε

2

)2 (
7aε
aε

3 + cε
cε

4

)
/Reff

5

6 6 4.254
√

3aε 3a
aε/R
eff
6

7 12 4.645
√

a2
ε + c2

ε (aε
aε + cε
cε)/Reff
7

8 6 4.912 2aε 4aε
aε/R
eff
8

9 12 5.479

√(√
13
3 aε

)2 + (
cε

2

)2 (
13aε
aε

3 + cε
cε

4

)
/Reff

9

10 12 5.800
√

(
√

3aε)2 + c2
ε (3aε
aε + cε
cε)/Reff

10
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TABLE II. The j -i path length and their deviation for the orthorhombic IM phase used in the α + IM model. Reff
j -i is calculated using the

default values aIM = 1√
3
bIM = 2.456 Å, cIM = 3.943 Å, and y = 1

3 . Note that the subscripts “IM” of the lattice constants (aIM, bIM, and cIM)
are not shown here for simplicity.

j -i Nj -i Reff
j -i (Å) description of Reff

j -i description of 
Rj -i

1-1 4 2.429
√(

a

2

)2 + [
( 1

2 − 2y)b
]2 + (

c

2

)2 {
a
a

4 + b
(

1
2 − 2y

) [

b

(
1
2 − 2y

) − 2b
y
] + c
c

4

}
/Reff

1-1

1-2 2 2.429
√

[(1 − 2y)b]2 + (
c

2

)2 {
b(1 − 2y)[
b(1 − 2y) − 2b
y] + c
c

4

}
/Reff

1-2

2-1 4 2.456
√(

a

2

)2 + (
b

2

)2 (
a
a

4 + b
b

4

)
/Reff

2-1

2-2 2 2.456 a a
a/Reff
2-2

3-1 2 3.454
√

(2yb)2 + (
c

2

)2 [
2yb(2y
b + 2b
y) + c
c

4

]
/Reff

3-1

3-2 4 3.454
√

a2 + [(1 − 2y)b]2 + (
c

2

)2 {
a
a + b(1 − 2y) [
b(1 − 2y) − 2b
y] + c
c

4

}
/Reff

3-2

4 2 3.943 c c
c/Reff
4

5-1 4 4.238
√

a2 + (2yb)2 + ( c

2 )2
[
a
a + 2yb(2y
b + 2b
y) + c
c

4

]
/Reff

5-1

5-2 4 4.238
√(

3a

2

)2 + [(
1
2 − 2y

)
b
]2 + (

c

2

)2 {
9a
a

4 + b( 1
2 − 2y)

[

b( 1

2 − 2y) − 2b
y
] + c
c

4

}
/Reff

5-2

5-3 4 4.238
√(

a

2

)2 + [(
3
2 − 2y

)
b
]2 + (

c

2

)2 {
a
a

4 + b( 3
2 − 2y)

[

b( 3

2 − 2y) − 2b
y
] + c
c

4

}
/Reff

5-3

6-1 2 4.254 b b
b/Reff
6-1

6-2 4 4.254
√(

3a

2

)2 + (
b

2

)2 (
9a
a

4 + b
b

4

)
/Reff

6-2

7-1 8 4.645
√(

a

2

)2 + (
b

2

)2 + c2
(

a
a

4 + b
b

4 + c
c
)
/Reff

7-1

7-2 4 4.645
√

a2 + c2 (a
a + c
c) /Reff
7-2

8-1 4 4.912
√

a2 + b2 (a
a + b
b)/Reff
8-1

8-2 2 4.912 2a 4a
a/Reff
8-2

9-1 4 5.479
√

(2a)2 + [(1 − 2y)b]2 + (
c

2

)2 {
4a
a + b(1 − 2y) [
b(1 − 2y) − 2b
y] + c
c

4

}
/Reff

9-1

9-2 4 5.479
√(

3a

2

)2 + [(
3
2 − 2y

)
b
]2 + (

c

2

)2 {
9a
a

4 + b( 3
2 − 2y)

[

b

(
3
2 − 2y

) − 2b
y
] + c
c

4

}
/Reff

9-2

9-3 4 5.479
√(

a

2

)2 + [(
1
2 + 2y

)
b
]2 + (

c

2

)2 {
a
a

4 + b( 1
2 + 2y)

[

b

(
1
2 + 2y

) + 2b
y
] + c
c

4

}
/Reff

9-3

10-1 4 5.800
√

b2 + c2 (b
b + c
c)/Reff
10-1

10-2 8 5.800
√(

3a

2

)2 + (
b

2

)2 + c2
(

9a
a

4 + b
b

4 + c
c
)
/Reff

10-2

the multiple scatting (MS) paths were constructed by a linear
combination of those of the SS paths. For the α phase, 
Rj

for j th path is set to be 
Rj = AReff
j , where A is a fitting

parameter as a proportional constant to ensure the symmetry
of bcc structure. Because Rj and E0 are highly correlated, only
Rj was treated as a “guess” parameter, whereas E0 was treated
as a “set” parameter in the pressure range around the transition
(P � Pt). The average of the optimized values in the pressure
range outside the transition was used for the “set” value
of E0.

2. α + IM model

Coexistence of α phase and IM phase was assumed at
the transition above Pt in this model. Orthorhombic unit cell

(space grou: Cmcm) was considered as an IM phase to in-
troduce arbitrary displacement of the atomic position between
α phase and ε phase. Because the orthorhombic unit cell is
regarded as a structure with a symmetry lower than that of ε

phase (also of α phase), a degenerated j th scattering path for
the ε phase is divided into two or three (i = 1,2 or i = 1,2,3)
different scattering paths. Each path distance Reff

j -i and its
deviation 
Rj -i were rewritten as a function of aIM, bIM, cIM, y,
and their deviations. The path distance for j -ith path (Reff

j -i) and
the deviation (
Reff

j -i) are tabulated in Table II. This conversion
was applied to all SS paths and the collinear MS paths. Path
distances and their deviation for the noncollinear MS paths
remained similar to those for the α + ε model because of the
relatively weak contribution to the result of fit.
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