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Tunable rotons in square-lattice antiferromagnets under strong magnetic fields
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Excitation spectra of square lattice Heisenberg antiferromagnets in magnetic fields are investigated by the
spin-wave theory. It is pointed out that a rotonlike structure appears in a narrow range of magnetic fields as a
result of strong nonlinear effects. It is shown that the energy gap and the mass of the “roton” are quite sensitive
to the magnetic field: the roton gap softens rapidly and eventually closes as a precursor of a quantum phase
transition. The possibility of the experimental observation of the roton and a new ground state after its softening
are discussed.
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I. INTRODUCTION

Square-lattice Heisenberg antiferromagnets (SLHAFs) are
well known to have the Néel order at zero field, and their
excitation spectra are well described by the linear spin-wave
(LSW) theory with small renormalization [1]. However, an
external magnetic field induces noncollinear structure result-
ing in nonlinear three-magnon interactions [2,3]. It should be
stressed that the three-magnon interactions in SLHAFs can be
controlled, from zero to sufficiently large values, simply by
tuning external magnetic fields [2–5]. These features are in
sharp contrast to the triangular lattice antiferromagnets, which
have a noncollinear 120◦ structure and therefore have strong
nonlinear interactions even for zero field [6,7]. Accordingly,
SLHAF is an ideal system to examine the effects of the
three-magnon interactions.

Theoretical calculations [2,3,5,8] and experiments [9,10]
on excitation spectra of SLHAF in fields show significant
deviations from that of the LSW calculations. Frustration-
induced noncollinear antiferromagnets also show such devia-
tions [6,7,11,12].

Zhitomirsky and Chernyshev [3] and Mourigal et al. [2]
proposed several methods to calculate the magnon spectra in
high fields, where the three-magnon interactions are strong
[2–4,13]. However, a self-consistent Born approximation
(SCBA), which neglects vertex corrections, results in an
unphysical gap in the acoustic mode [3]. This is due to a
violation of the Ward-Takahashi identity, suggesting crucial
importance of vertex corrections in such a renormalization.
Mourigal et al. [2] partially perform SCBA for S � 1, still
neglecting vertex corrections, and consider only the imaginary
part of self-energy. They thus remove the unphysical gap [2]
but do not essentially solve the problem of the violation of the
Ward-Takahashi identity. Last, Fuhrman et al. [13] introduce
an alternative idea of adding some interlayer interactions,
rendering the system essentially three-dimensional. This,
however, cannot be the solution to the difficulty in the purely
two-dimensional model, and we still lack reliable results.

We believe that the perturbation calculation is much more
reliable than that of partial renormalization of self-energy since
the former satisfies the Ward-Takahashi identity albeit in a
trivial way. Thus, we calculate the nonlinear spin-wave spectra

*kubo@kh.phys.waseda.ac.jp

of the purely two-dimensional SLHAFs in fields within the
simple second-order perturbation theory on the basis of the
Zhitomirsky-Mourigal formalism [2,3].

Our calculation shows that a rotonlike minimum emerges
in a quite narrow range of fields at about 3/4 of the saturation
field Hs, a remarkable feature in the magnon spectrum which
previous works [2,3,5,8] might have overlooked. We also find
that the roton gap drops steeply to zero as the field increases.

This paper is composed as follows. First, we briefly
introduce the spin-wave formalism following Zhitomirsky and
Mourigal et al. Then, we show how the spin-wave spectra vary
with fields within the second-order perturbation calculation.
The main feature of the spectra is an appearance of a rotonlike
minimum which responds sensitively to small changes of
fields. Last, we discuss a new ground state after the softening
of the roton and possibilities of confirming the roton feature.

II. MODEL

In this section, the main points of the Zhitomirsky-Mourigal
formalism on SLHAFs [2,3] are summarized. The Heisenberg
Hamiltonian in a magnetic field H is

Ĥ = J
∑

<i,j>

Si · Sj − H
∑

i

S
z0
i , (1)

where S
μ

i (μ = x0,y0,z0) denote spin operators in the labo-
ratory frame and J denotes the nearest-neighbor exchange
constant. Then, we move from the laboratory frame to the
rotating frame with spin operators S

μ

i (μ = x,y,z):

S
x0
i = Sx

i sin θ + Sz
i e

iQ·Ri cos θ , S
y0
i = S

y

i ,

S
z0
i = −Sx

i eiQ·Ri cos θ + Sz
i sin θ ,

(2)

where Q = (π,π ) denotes the ordering wave vector. The
canting angle θ is chosen to minimize the ground-state energy:

θ = sin−1[h], h = H/Hs, Hs = 8JS. (3)

We then perform the Holstein-Primakoff (HP) transforma-
tion:

S+
i =

√
2S − a

†
i ai ai , Sz

i = S − a
†
i ai ,

S−
i = a†

√
2S − a

†
i ai ,

(4)

1098-0121/2014/90(1)/014421(8) 014421-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.90.014421


YURIKA KUBO AND SUSUMU KURIHARA PHYSICAL REVIEW B 90, 014421 (2014)

where ai denotes HP bosons. We get

Ĥ =
∞∑

n=0

Ĥn, (5)

where Ĥn denotes the nth-order term in HP boson operators
[2] and Ĥ1 vanishes by determining θ correctly [2,3,14].

We perform the Fourier transformation and then the
Bogoliubov transformation [2,3,14]:

ak = ukbk + vkb
†
−k

(
u2

k − v2
k = 1

)
, (6)

where bk denotes Bogoliubov bosons. Ĥ2 is readily diagonal-
ized, yielding an excitation spectrum:

εk =
√

A2
k − B2

k , γk = cos kx + cos ky

2
,

Ak = 4JS(1 + γk sin2 θ ), Bk = 4JSγk cos2 θ .
(7)

We now focus on the three-magnon interaction Hamiltonian
Ĥ3:

Ĥ3 = 1

2!

∑
k,q

(b†qb
†
p1

bk + H.c.)�1(k,p1,q)

+ 1

3!

∑
k,q

(b†kb
†
p2

b†q + H.c.)�2(k,p2,q), (8)

where p1 = Q + k − q, p2 = Q − k − q, and
�α(1,2,3) ∝ sin 2θ (α = 1, 2) are given in Refs. [2,3]
and they come into play only with noncollinear magnetic
structures. Self-energy corrections, which are generated by
Eq. (8), are [2,3]

�(1)(k,ω) = 1

2

∑
q

|�1(k,p1,q)|2
ω − εp1 − εq + i0

, (9)

�(2)(k,ω) = −1

2

∑
q

|�2(k,p2,q)|2
ω + εp2 + εq − i0

. (10)

Lowest-order 1/S corrections generated by three-magnon
couplings are given by following on-shell self-energy:

�k = �(1)(k,εk) + �(2)(k,εk). (11)

We see from Eqs. (9)–(11) that the self-energy correction is
especially large with a smaller energy difference between the
initial and intermediate states.

We also need to perform the Hartree-Fock decoupling in
Ĥ4, leading to a correction δεHF

k , and take quantum corrections
to the canting angle into account [14], yielding another
correction δεθ

k . Finally, we get the 1/S corrected spin-wave
spectra [2,3],

ε̄k = εk + �k + δεHF
k + δεθ

k . (12)

III. MIXING OF THE ONE- AND TWO-MAGNON STATES

The effects of the coupling between one- and two-magnon
states on ε̄k become quite strong at around h ≈ 0.75. There
are two reasons for this. First, �1(1,2,3)∝sin 2θ [2,3], which
reflects the strength of hybridizations, takes the maximum
value at around h ≈ 0.75. Second, the curvature on the acoustic
mode becomes positive also for h � 0.75 [2–4]. The relation

between the positive curvature and the strong couplings is
briefly discussed below based on previous works [2–4].

The curvature on the acoustic mode of the LSW spectrum
increases monotonically as the field increases. The nonlinear
interactions also increase since the higher curvature induces
the stronger three-magnon interactions.

The curvature changes its sign from negative to positive.
This sign change first occurs at h∗ = 2/

√
7 ≈ 0.7559 along

the �-M = (π,π ) line near the M point, as mentioned in
Refs. [2,3], since the curvature is highest along the �-M line.
This sign change is important for discussing the spontaneous
magnon decay because the positive curvature is required to
satisfy the kinematic constraint:

εk = εq + εQ−q+k. (13)

The region where the energy conservation law holds spreads
across the Brillouin zone with the spreading positive curvature
as the field increases. The spreading decay region as a function
of field is shown in Fig. 5 of Ref. [2].

We note that an especially strong mixing of the one-
and two-magnon states is expected near the threshold of the
decay region, where the energy conservation law holds, since
there are many processes which have infinitesimal energy
differences between the initial and intermediate states [see
Eq. (9)]. Consequently, we focus on an intersection point of
the decay threshold with the �-M line, where the particularly
strong hybridizations between the states are expected.

IV. APPEARANCE AND SOFTENING OF “ROTONS” IN
STRONG MAGNETIC FIELD

Now, we discuss the magnon spectrum ε̄k renormalized
by three-magnon couplings given in Eq. (11), corresponding
to the 1/S corrections coming from the Holstein-Primakoff
expansion of spin operators.

A. Appearance of a rotonlike minimum

Figure 1(a) shows the spectra for the S = 1/2 SLHAF,
calculated for several magnetic fields h. Rotonlike structure
emerges near the M point, which is enlarged in Fig. 1(b) for
clarity. Very sensitive responses to slight changes of h are
seen along the �-M line, while little change is seen along
the others. Therefore, we focus on ε̄k along the �-M line.
Enlarged spectra ε̄k in Fig. 1(b) remind us of the roton in the
superfluid helium [15]. We find that the wave vector, gap, and
mass of a rotonlike structure change drastically as a result of a
less than 1% change in the magnetic field h near h∗ = 2/

√
7.

The gap gets smaller and smaller by increasing fields and
finally vanishes, which indicates a quantum phase transition
characterized by a certain modulation of the ground state.

We show, in Fig. 1(c), the spectral weight:

A(k,ω) = 1

π

ζk

(ω − ε̄k)2 + ζ 2
k

, (14)

where ζk denotes the imaginary part of the on-shell self-energy.
We use red for an intensity stronger than the maximum value
in the color bar. We now see that the roton feature in Fig. 1(b) is
not destroyed by magnon decay, despite the sizable broadening
of the spectra.
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FIG. 1. (Color online) (a) Nonlinear spin-wave spectra ε̄k for the
S = 1/2 system along the highly symmetric line calculated for several
magnetic fields. The magnetic field h corresponding to each line is
shown on the right side. The spectrum along the �-M line near the
M point varies drastically for small changes of h. There are apparent
minima at P point along the X-X′ line at finite fields. (b) Enlarged
ε̄k for S = 1/2 SLHAF along the �-M line near the M point [π (1−
η,1−η),0 � η � 0.20]. (c) Spectral weight A(k,ω) of (b) (S = 1/2,
h = 0.7568). We notice a sizable broadening by magnon decay, but
we still see the roton feature in the part colored orange [A(k,ω) � 2].

The contour plot of ε̄k (S = 1/2, h = 0.7568) of the
whole Brillouin zone is shown in Fig. 2(a). We see that the
strong three-magnon couplings at around h ≈ 0.75 induce
anisotropic spectra along the �-M line. We also show an
enlarged ε̄k (S = 1/2, h = 0.7568) near the M point in
Fig. 2(b). It is now clear that the minimum near the M point
is in fact a local minimum in the two-dimensional Brillouin
zone, thus deserving the name roton. Figure 2(c) shows the
roton spectrum near the roton wave vector along the line
perpendicular to the �-M line. We note that the minimum is
much sharper along this line, with a half width of order 0.01.
We discuss the origin of the sharpness in the next section. We
also observe apparent minima at point P [(π/2,π/2)] along
the X-X′ line. However, P point is not really a local minimum
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FIG. 2. (Color) (a) Contour plot of ε̄k (S = 1/2, h = 0.7568) of
the whole Brillouin zone. The energy corresponding to each contour
is shown on the right side. (b) Enlarged contour plot of ε̄k near the
M point. It is now clear that an energy minimum appears near the
M point. (c) Enlarged ε̄k along the line π (ηrot−η,ηrot+η), where ηrot

denotes a roton wave vector πηrot(1,1), perpendicular to the �-M
line. Note the sharpness of the minimum along this direction; the half
width is on the order of 0.01.

in the Brillouin zone since it is on a downhill slope along the
�-M line.

Rotonlike minima near the M point have not been reported,
to our knowledge. This might be due to the extreme narrowness
of the field range where the roton can exist. Concerning the
P point features, recently synthesized, almost ideal SLHAF
Cu(pz)2(ClO4)2 [pz stands for the pyrazine molecule] exhibits
stronger response to fields on the P point than that of the X′
point [10]. This is qualitatively consistent with our results in
Fig. 1(a) and Refs. [2,5].

The dependence of the magnon spectra on spin magnitude S

is shown for S = 1/2 to S = ∞ (LSW result) for h = 0.7568
in Fig. 3. Stronger 1/S corrections are observed along the �-M
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FIG. 3. (Color online) (a) Nonlinear spin wave spectra ε̄k for
the various S including S = ∞ (LSW) at h = 0.7568. The spin
magnitude S for each line is shown on the right side. Spectra become
more classical for larger S, but no qualitative changes are observed.
It is also suggested that the quantum effects are stronger along the
�-M line than the others.

line than the others, and more classical results are obtained
for larger S. However, qualitatively the same behaviors are
observed for various S.

B. Details of the roton spectrum

We examine how the roton, which appears only in the
narrow range with a width less than 1% of the saturation field,
varies sensitively with field h. We determine the roton wave

vector, gap, and mass by performing differentiations parallel
and perpendicular to the �-M line. Here, rotons emerge also
for S � 3/2, but we focus on S = 1/2 and S = 1 rotons for a
while. The roton gap �rot and wave vector k̃rot as functions of
h are shown in Figs. 4(a) and 4(b). We denote q(q̃ = Q + q)
as a wave vector measured from the M(�) point from this
section. The roton mass perpendicular (parallel) to the �-M
line m∗

⊥ (m∗
‖) as a function of h is shown in Figs. 4(c) and 4(d),

where solid points represent m∗
⊥ (open points represent m∗

‖).
We notice that �rot drops steeply to zero, reflecting the in-

creasing three-magnon interactions. We also notice that k̃rot ap-
pears approximately at the wave vector of the decay threshold
k̃th, where the three-magnon interactions are especially strong
because of the infinitesimal energy differences of the initial and
intermediate states. Roton masses m∗

⊥ and m∗
‖ for both S = 1/2

and S = 1 also drop steeply, and m∗
‖ decrease more rapidly than

m∗
⊥. It is also notable that roton masses are quite small, which

means that an extremely sharp structure appears near k̃rot

In the case of the quantum limit, S = 1/2, another roton
(shallow roton) emerges, and its k̃rot and m∗

‖ change non-
monotonically while �rot and m∗

⊥ decrease monotonically as
h increases. The former behavior is due to the competition
between a smaller energy difference between the two states on
the side of the M point and a stronger spectral weight on the
side of the � point, and the latter is due to the increasing
nonlinear interactions with increasing h. In addition, the
shallow roton also emerges at around h ≈ 0.5 near the � points
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FIG. 4. (Color online) (a) Roton gap �rot along the �-M line as a function of the field h. Solid diamonds, circles, and squares represent
results for S = 1/2, S = 1 rotons, and shallow rotons, which appears only for S = 1/2. Each roton gap decreases monotonically as the field
increases. (b) Roton wave vector along the �-M line [π (1−η,1−η),0 � η � 1] as a function of h. The triangles and gray line correspond to
krot and k0. We notice that krot appears in the neighborhood of kth. Little change in krot is observed for the shallow roton. (c) Roton masses as
functions of h, where solid (open) points correspond to m∗

⊥ (m∗
‖). The masses are quite small, and nonmonotonic behavior is observed for the

shallow roton. (d) Zoomed region of (c) is shown for clarity. The order of the ordinates is changed by two digits.
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FIG. 5. (Color online) Self-energy causing strong renormaliza-
tion near the roton wave vector.

along the �-M line. However, the shallow rotons may easily
disappear with finite interlayer couplings or finite temperature
effects. Thus, we do not discuss them hereafter and focus on
the ordinary rotons.

First, we examine k̃rot by using the fact that k̃rot ≈ k̃th. The
expanded LSW spectrum εk̃ at around the M point [2,4] up to
fifth order in k along the �-M line is given by

εk̃ ≈ ck(1 + αk2 + βk4), c = 2JS
√

2 cos θ ,
(15)

α = 1

12 cos θ

[(
h

h∗

)2

− 1

]
, β = h4 − 32h2 + 16

7680 cos2 θ
.

The threshold wave vector k̃th is determined by [2]

εk̃ − 2ε(k̃+Q)/2 = 0. (16)

Then, we approximate Eq. (16) by using Eq. (15):

εk̃ − 2ε(k̃+Q)/2 ≈ 3
4k3c

(
α + 5

4βk2
)
. (17)

We define an approximate value k̃0 of the threshold wave
vector k̃th by setting the left-hand side of Eq. (17) to zero:

k0 =
√

−4α

5β
∝

[(
h

h∗

)2

− 1

]1/2

(h∗ �h � 1). (18)

This approximation is valid for sufficiently small k0. The
wave vectors kth and k0 merge asymptotically for h → h∗ in
Fig. 4(b).

We now clarify the field dependence of �rot, where a
derivation is given in Appendix A. We focus on the lowest-
order self-energy corrections shown in Fig. 5:

δεk̃0
= �(1)(k̃0,εk̃0

)
(19)

in the limit of q → 0, whose corrections are expected to be
strong near k̃rot.

We perform the approximations√
Ak̃ + Bk̃

Ak̃ − Bk̃
=

√
1 − γk

1 + cos 2θγk
≈ k

2
√

2 cos θ
,

γk̃ ≈ −1,

(20)

to the matrix elements of Eq. (19). We denote

�1(k̃0,q) = �1(k̃0,(k̃0 + Q)/2 + q,(k̃0 + Q)/2 − q) (21)

for simplicity. We get

|�1(k̃0,q)|2|q→0

J 2S(sin 2θ )2
≈ k3

0

(2
√

2 cos θ )3
. (22)

We then approximate the denominator of δεk̃0
[2]:

w[k̃0,q] = εk̃0
− ε(k̃0+Q)/2+q − ε(k̃0+Q)/2−q

≈ −2c

k0

q2

1 − (2q/k0)2

[
φ2 − φ2

0

]
,

where φ denotes an azimuthal angle and

φ0 =
√

6α
(k0/2)2 − q2

q
. (23)

We obtain lowest-order self-energy corrections:

δεk̃0
∝ −Jk4

0 tan2 θ

∫
qdq

q2
= Jk4

0 tan2 θ ln

[
�

k0

]
, (24)

where � denotes a lower cutoff. We see that the roton is
related to a logarithmic factor, which originates from a two-
dimensionality [2–4,13].

Now, we get an approximation to �rot:

�rot ≈ ck0 + A0 Jk4
0 tan2 θ ln

[
�

k0

]
, (25)

where A0 denotes a constant. Figure 6(a) shows that �rot

decreases proportionally to k4
0. It is clear that the factor k4

0
drives the softening. We also see that the logarithmic factor
behaves almost as a constant in the region shown in Fig. 6(a)
and does not have any singularity there.

The perturbation calculation still works well with a suffi-
ciently small k0. However, k0 increases as h/h∗ increases [see
Eq. (18)], and finally, the perturbation calculation on the basis
of the simple canted state is no longer valid (even for S � 3/2),
indicating a new ground state, which might be characterized
by modulations with the roton wave vector krot. We thus see
that the roton is essential in determining the new ground state
at higher fields. In addition, the S = 1/2 roton gap decreases
about two times faster than the S = 1 roton gap since the
dependence on fields is attributed to 1/S corrections.

We calculate the perpendicular effective mass m∗
⊥ by

differentiating δεk:

m∗
⊥ ∝ k−2

0 . (26)

A derivation is given in Appendix B. The perpendicular mass
m∗

⊥ is shown in Fig. 6(b). It is clear that m∗
⊥ decreases

monotonically with increasing k0, and its behavior is well
described by Eq. (26).

We also calculate the parallel mass m∗
‖:

m∗
‖ ∝ [

k2
0(1 + b0k0)

]−1 ≈ k−2
0 (1 − b0k0), (27)

where b0 denotes a constant. This approximation is valid for
sufficiently small k0. The quantity m∗

‖ k2
0 is shown as a function

of k0 in Fig. 6(c); it scales linearly with k0 for sufficiently small
k0.

We have calculated �rot, m∗
⊥, and m∗

‖, and our ap-
proximations describe their field dependences rather well.
In other words, the perturbation calculation and analytical
approximation agree reasonably well.

We also discuss the valleylike structure perpendicular to
the �-M line in Fig. 2(c). Here, we examine δεk0 given in
Eq. (19). We approximate the energy denominator w[k̃0,q] by
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FIG. 6. (Color online) (a) Roton gap �rot as a function of k4
0 .

Solid diamonds and circles represent S = 1/2 and S = 1, and lines
show fittings using Eq. (25). The S = 1/2 roton gap decreases about
two times faster than the S = 1 roton gap. (b) Perpendicular mass m∗

⊥
as a function of k−2

0 ; it scales linearly with k−2
0 . (c) Parallel mass m∗

‖
plotted as m∗

‖ k2
0 vs k0. We see that Eq. (27) gives a good approximation

to m∗
‖ for sufficiently small k0.

using Eq. (23):

w[k̃0,q] ∝ − cqk2
0

2

φ2 − φ2
0

φ0
. (28)

We evaluate the angular integration as∫
dφ

w[k̃0,q]
≈ − 1

cqk2
0

∫
dφ

(
1

φ − φ0
− 1

φ + φ0

)

∝ ln[|φ − φ0| + δφ], (29)

where δφ denotes a cutoff coming from the small difference
between krot and kth:

δφ ∝ krot/kth − 1. (30)

V. DISCUSSION

We have studied the excitation spectra of SLHAF in fields
and have found the appearance and softening of the roton as
a function of h/h∗. We consider that the roton emerges and
softens as a precursor of the phase transition. Then, it seems
interesting to determine the new ground state. In this section,
the new ground state and possibilities to detect the roton are
discussed.

A. New ground state

In the classical limit S = ∞, the simple canted state is
selected to minimize the exchange energy and the Zeeman
energy. However, for finite S, the three-magnon interactions
are induced by the noncollinear structures. Its effects are strong
at around h ≈ 0.75, especially for the particular wave vector
k̃rot ≈ k̃0 causing the roton’s appearance.

Previous works on S = 1/2 SLHAFs calculate some static
properties like the spin stiffness, magnetization, spin-wave ve-
locity, and so on as functions of fields by exact diagonalization
[5] and spin-wave calculation [14,16], and no anomalies are
observed at around h ≈ 0.75. However, a qualitative change
between high and low fields is observed in the dynamical
structure factor studied by quantum Monte Carlo simulation
[8] and exact diagonalization [5].

Considering these results, we expect that the new ground
state might be rather similar to the simple canted states, and
krot, where the transition occurs, may signify the new ground
state. We speculate that a certain modulation with wave vector
krot occurs in the spin ordering in the S

x0
i -Sy0

i plane while
the canting angle θ remains essentially unchanged. In other
words, the new ground state might be characterized by a
freezing out of the roton mode. In addition, the new ground
state might be similar to the spin-current order discussed
in Ref. [17]. We believe that the roton’s appearance and
its softening are essentially correct, although they are not
quantitatively accurate since these are the results of the
second-order perturbation calculations.

B. Possibilities of detecting rotons

Now, we discuss the possibilities of confirming rotons by
experiments and numerical calculations. In the same way as for
rotons in helium [15,18], it is possible to detect the rotonlike
minimum by inelastic neutron scattering along the �-M line
and specific-heat measurements under certain conditions. We
need proper materials and high-accuracy measurements, as
will be discussed below.

We need materials which have a low enough Hs to achieve
h ≈ 0.75. Here, the field range, where the roton emerges, is
about 0.1% of Hs. Accordingly, we also need the uniformity
and control of magnetic field with a precision of order h ≈
0.001 at around h ≈ 0.75.

We also need a very high accuracy in the wave vector to
confirm the roton by experiments and numerical calculations.
This is because of the very sharp structure of the roton
spectrum, especially along the direction perpendicular to the
�-M line. If the resolution in the wave vector is worse than the
sharpness of the roton, the excitation spectrum may acquire
an apparent width because of the steepness of the roton
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spectrum. It should be noted that such a width is essentially
independent of the magnon decay [2–4]. This may give at least
a partial explanation of the anomalously large width reported
in experiments [9] and numerical calculations [5,8].

We note it is also possible to detect rotons for S � 3/2, but
we need the higher resolution in wave vectors to detect them
by neutron scattering due to sharper structures for larger spins.
This is due to the small roton masses [see Eqs. (26) and (27)]
and the growing imaginary part ζk of the self-energy in higher
fields [2,3]. Consequently, we see S = 1/2, 1 Heisenberg
antiferromagnets are the best candidates for neutron scattering
measurements. For specific-heat measurements, we do not
have to worry about the small roton mass and ζk for S � 3/2.
Therefore, S � 3/2 materials are also good candidates for the
specific-heat measurements.

Recently, almost ideal S = 1/2 two-dimensional SLHAFs
have been synthesized [10,19]. They might be experimental
candidates to examine the properties at high fields since
these compounds have small magnetic anisotropies, interlayer
couplings, and low enough saturation fields.

We see that it is worth trying to detect the roton, which
varies remarkably with slight changes of h, although there
may be difficulties. Furthermore, the experiments may find
what the new ground state looks like. In addition, it is also
stimulating to detect the apparent minima at point P , which
requires less uniformity and control of the field h.

It should be possible to confirm the roton also by numerical
calculations. Quantum Monte Carlo simulations [8] and exact
diagonalization studies [5] have caught some anomaly which
might be an indication of the sharp softening of the roton. We
expect that a clearer structure of the roton or its softening can
be confirmed by performing such calculations on sufficiently
large lattices.

VI. CONCLUSION

We have investigated the field dependence of the nonlinear
spin-wave spectrum within the second-order perturbation
calculation. We have found the rotonlike minimum in the
renormalized spectrum at the roton wave vector krot ≈ k0,
where three-magnon couplings are particularly strong. We
have also calculated �rot and m∗

⊥ and found that they change
as functions of k0 (or h/h∗).

We see that the especially strong three-magnon coupling
near the point where the decay threshold meets the �-M
line causes the appearance of rotons accompanied by the
logarithmic factor. Furthermore, the coupling increases as the
field increases, triggering the softening of the roton. Thus, we
consider that the roton is physically quite important. Although
deciding the modulated ground state is beyond the scope of
this paper, we expect that krot, when the modulation occurs,
signifies what the new ground state is like.

We have also found the valleylike structure perpendicular
to the �-M line near the krot. We see that the sharp structure
near krot may induce the apparent linewidth of experiments
and numerical results [5,8,9]. We expect that the anomalously
large linewidth reported in previous works [5,8,9] might be
partially explained by its sharp structure even in the absence
of magnon decay.

The emergence and the softening the roton feature in the
spin-wave spectrum is quite important at low temperatures and
high fields. By carefully tuning the magnetic field, it will be
possible to see the roton effects in low-temperature specific
heats, neutron scattering, and spin transport [20]. Among
other things we expect that the rotons may be most easily
detected as an exponential temperature dependence in thermal
and transport properties. Last, we expect that the roton feature
can also be confirmed by careful numerical calculations on
sufficiently large lattices.
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APPENDIX A: ESTIMATION OF ROTON GAP

We derive how �rot depends on k0. We perform the
approximation given in Eq. (20) to the matrix elements of
δεk̃0

, obtaining

2NS|�1(k̃,q̃,p̃)|2
(H cos θ )2

≈ 9 k̃q̃p̃

4 (2
√

2 cos θ )3
, (A1)

where N denotes the number of sites and p̃ = Q + k̃ − q̃.
Then, we consider the process in Fig. 5. We write δεk as

δεk̃0
≈ 1

2

∑
q

|�1(k̃0,q)|2
w[k̃0,q]

(A2)

for simplicity. Then, we consider the numerator in the limit of
q → 0 using Eqs. (A1) and (A2):

2NS|�1(k̃0,q)|2|q→0

(H cos θ )2
≈ 9

16

k3
0

(2
√

2 cos θ )3
, (A3)

and we obtain Eq. (22).
The denominator w[k̃0,q] is approximated by [2]

|k/2 + q| = k/2 + q − 1

4

kq

(k/2 + q)2
φ2. (A4)

We get Eq. (23) by using

w[k̃0,q] ≈ c
[
k0 − |k0/2 + q| − |k0/2 − q|

+ α
(
k3

0 − |k0/2 + q|3 − |k0/2 − q|3)]. (A5)

We now obtain Eq. (24) by using Eqs. (22) and (23).

APPENDIX B: ESTIMATION OF ROTON MASS

We obtain the k0 dependence of m⊥ (m‖) by differentiating
δεk perpendicular (parallel) to the �-M line.
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We differentiate ε̄k perpendicular to the line,

1/m∗
⊥ ≈ 1

k0

∂δεk̃0

∂k0

= 1

2k0

∑
q

[
∂

∂k0

(
1

w[k̃0,q]

)
|�1(k̃0,q)|2

+
(

1

w[k̃0,q]

)
∂|�1(k̃0,q)|2

∂k0

]
, (B1)

and parallel to the line,

1/m∗
‖ ≈ ∂2

(
εk̃0

+ δεk̃0

)
∂k2

0

= d0k
3
0

+ 1

2

∑
q

[
∂

∂k0

(
2

w[k̃0,q]

)
∂|�1(k̃0,q)|2

∂k0

+ 1

w[k̃0,q]

∂2|�1(k̃0,q)|2
∂k2

0

+ |�1(k̃0,q)|2 ∂2

∂k2
0

(
1

w[k̃0,q]

)]
, (B2)

where d0 denotes a constant, and we use
∂2εk0

∂k2
0

≈ ∂2

∂k2
0

(
ck0 + αk3

0

5

)
∝ k3

0. (B3)

We obtain the following derivatives of 1/w[k̃0,q] by

∂

∂k0

(
1

w[k̃0,q]

)
= − 1

w[k̃0,q]2

∂w[k̃0,q]

∂k0
,

∂2

∂2k0

(
1

w[k̃0,q]

)
= 2

w[k̃0,q]3

(
∂w[k̃0,q]

∂k0

)2

− 1

w[k̃0,q]2

∂2w[k̃0,q]

∂k2
0

, (B4)

and using Eq. (23),

∂w[k̃0,q]

∂k0
≈ 2cq2

k2
0

(
φ2 + 3φ2

0

)
,

(B5)
∂2w[k̃0,q]

∂k2
0

≈ −4cq2

k3
0

(
φ2 − 3φ2

0

)
.

We now obtain m⊥ and m‖ by using Eqs. (B1), (B2), (B4),
(B5), and derivatives of matrix elements [see Eq. (22)] with
respect to k0. We now obtain Eqs. (26) and (27).
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