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Gilbert damping in magnetic layered systems
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The Gilbert damping constant present in the phenomenological Landau-Lifshitz-Gilbert equation describing the
dynamics of magnetization is calculated for ferromagnetic metallic films as well as Co/nonmagnet (NM) bilayers.
The calculations are done within a realistic nine-orbital tight-binding model including spin-orbit coupling. The
convergence of the damping constant expressed as a sum over the Brillouin zone is remarkably improved
by introducing finite temperature into the electronic occupation factors and subsequent summation over the
Matsubara frequencies. We investigate how the Gilbert damping constant depends on the ferromagnetic film
thickness as well as on the thickness of the nonmagnetic cap in Co/NM bilayers (NM = Cu, Pd, Ag, Pt, and
Au). The obtained theoretical dependence of the damping constant on the electron-scattering rate, describing
the average lifetime of electronic states, varies substantially with the ferromagnetic film thickness and it differs
significantly from the dependence for bulk ferromagnetic metals. The presence of nonmagnetic caps is found to
largely enhance the magnetic damping in Co/NM bilayers in accordance with experimental data. Unlike Cu, Ag,
and Au a particularly strong enhancement is obtained for Pd and Pt caps. This is attributed to the combined effect
of the large spin-orbit couplings of Pd and Pt and the simultaneous presence of d states at the Fermi level in these
two metals. The calculated Gilbert damping constant also shows an oscillatory dependence on the thicknesses of
both ferromagnetic and nonmagnetic parts of the investigated systems which is attributed to quantum-well states.
Finally, the expression for contributions to the damping constant from individual atomic layers is derived. The
obtained distribution of layer contributions in Co/Pt and Co/Pd bilayers proves that the enhanced damping which
affects the dynamics of the magnetization in the Co film originates mainly from a region within the nonmagnetic
part of the bilayer. Such a nonlocal damping mechanism, related to spin pumping, is almost absent in other
investigated bilayers: Co/Cu, Co/Ag, and Co/Au.
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I. INTRODUCTION

The dynamics of magnetization in magnetic metallic
nanostructures is driven by external stimuli, such as magnetic
fields or electric currents as well as by intrinsic relaxation
mechanisms. The effective magnetic field, due to external
sources and stray fields related to the system’s geometry, leads
to the Larmor precession of the magnetization vector. The
effect of an electric current on magnetization is more subtle
since it emerges due to different density and mobility of charge
carriers with different spins, i.e., electrons at the Fermi level in
ferromagnetic metals included in nanostructures. As a result,
net spin currents are present and they transfer spin angular
momentum between different parts of the system. The resultant
spin-transfer torques can strongly influence the dynamics of
magnetization and even lead to its reversal if the current
density is sufficiently large. The current-induced reversal
of magnetization has been observed, e.g., in nanopillars
composed of Co/Ni and Co/Pt multilayers [1].

The processes of magnetization relaxation and switching
are profoundly affected by magnetic damping. The time
evolution of magnetization M in ferromagnetic metallic
systems is well described by the phenomenological Landau-
Lifshitz-Gilbert (LLG) equation which includes the damping
term αM × d M/dt introduced by Gilbert [2,3]. This term
represents a torque which drives the magnetization vector
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towards the direction of the effective magnetic field Heff

and its strength is given by the damping constant α. The
Gilbert damping plays a key role in the spin dynamics of
magnetic systems. In particular, it affects the domain-wall
velocity in current-carrying domain-wall structures where
fast propagation of domain walls is of great importance for
applications in high-speed spintronic devices such as magnetic
racetrack memory [4].

It is commonly assumed that the origin of the Gilbert
damping is the spin-orbit (SO) coupling. This relativistic
effect leads to spin-flip scattering of electrons which results in
transfer of angular momentum and energy from spin degrees of
freedom to the lattice. The damping constant α is expressed in
terms of the spin-orbital torque operator within the quantum-
mechanical theory developed by Kamberský and called the
torque-correlation model [5,6]. A different way to describe the
effect of the SO coupling on damping is a direct calculation of
the spin-relaxation torque [7] or determination of spin-wave
spectrum from the transverse magnetic susceptibility obtained
numerically within the random-phase approximation [8,9].
Another source of magnetic damping in metallic systems is
two-magnon scattering [10–12]. It refers to scattering of a
uniform magnetization precession mode into pairs of magnons
with nonzero wave vectors but it is effective only if the system’s
translational symmetry is disturbed by structural defects, like
film surface roughness.

The Gilbert damping constant α can be determined exper-
imentally from the ferromagnetic resonance (FMR) linewidth
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(specifically from its term linear in frequency) or by using time-
resolved magneto-optical Kerr effect (TRMOKE). Magnetic
damping is found to be enhanced, in comparison to bulk
ferromagnetic metals, in numerous ferromagnet/nonmagnet
(FM/NM) bilayers or multilayers [13–28]. In particular, this
concerns Co/Ni, Co/Pd, and Co/Pt layered systems [17,22,23],
which also exhibit large perpendicular magnetic anisotropy
(PMA) [29–31] as well as large magneto-optical Kerr effect
(MOKE) [32]. These observations strongly support the exis-
tence of the link between the Gilbert damping and the SO
interaction since the latter is responsible for the occurrence
of PMA and large MOKE. A clear experimental evidence
of such a link is given in Ref. [18] where the quadratic
dependence of the damping constant on the SO coupling
strength is found for L10 FePdxPt1−x ordered alloy films in
TRMOKE measurements. Enhanced magnetic damping has
also been observed with FMR for tetragonal Ni films on the
Cu(001) substrate [14] and bcc Fe films on Ag(001) [15,16]
as well as Cu/Py/Cu and Cu/Py/Cu/Pt layered structures
[21]. Experimental reports on the Gilbert damping in other
systems, including Co/Cu and Py/Cu bilayers, can be found in
Refs. [13,19,20,24–28].

The enhancement of Gilbert damping in FM/NM layered
structures is attributed to nonlocal damping occurring in
the nonmagnet which was predicted theoretically by Berger
[33]. The mechanism of damping enhancement proposed by
him is based on an idealized picture where conduction sp

electrons are coupled by exchange to localized d electrons
forming magnetic moments in the ferromagnet and carry
spin through the FM/NM interface to the nonmagnet where
it is dissipated. A similar approach based on s-d exchange
coupling and linear-response theory is presented in Refs. [34]
and [35] where expressions for the Gilbert damping constant of
an NM/FM/NM multilayer are obtained within free-electron
models. In Refs. [36], a model based on the idea of spin
pumping, from the ferromagnet into adjacent nonmagnetic
normal-metal layer, is introduced to explain the enhanced
Gilbert damping in NM/FM and NM/FM/NM systems. Based
on this theory, the spin emitted into the nonmagnet due to
the precession of magnetization in the ferromagnet may either
scatter back to the ferromagnet or relax in the adjacent non-
magnet which then acts as a spin sink. The effective magnetic
damping is then considered as the sum of intrinsic damping
(corresponding to bulk ferromagnet) and the additional damp-
ing term which is due to spin pumping and decays as the inverse
of the ferromagnetic film thickness [27,36]. A known major
factor in this damping process is the spin-diffusion length λsd

of the nonmagnet [13] since to achieve effective relaxation of
magnetization due to spin pumping the thickness of the non-
magnetic layer needs to be greater than λsd. The spin-pumping
theory is now commonly used in interpretation and analysis
of magnetic damping experimental results [13,22,23,28,37].
It has also been applied in first-principles calculations of
the Gilbert damping in Fe/Au, Co/Cu bilayers and trilayers
[38]. Although the spin pumping theory provides a simple
explanation of nonlocal magnetic damping in nonmagnetic
metals in contact with ferromagnetic metals, it does not include
a quantum description of the SO coupling responsible for spin
relaxation. Instead, the relaxation mechanism is represented

only with a phenomenological spin-flip relaxation time. Thus,
fully quantum calculations including the SO coupling, like
the torque-correlation model, should give an insight into the
damping processes on a more fundamental level.

The torque-correlation model or its variations (with α

treated as a tensor quantity) has been applied in several
theoretical studies for bulk ferromagnets [39–45], half metals
[46], transition metal binary alloys [45], Fe1−xSix films [47],
as well as, very recently, surfaces of ferromagnetic metals
[44]. However, this quantum-mechanical approach has hardly
been used to study the Gilbert damping and its enhancement in
transition metal layered systems. The sole exception is a recent
short report [43] by the present authors where the calculated
Gilbert damping constant α is shown to be enhanced, with
respect to bulk fcc Co, in (001) fcc Co films, both free-standing
and covered with a Pd overlayer two monolayers (ML) thick. A
similar system of a Co film on the Pd(001) substrate is studied
theoretically in Ref. [9] where the spin-wave frequency and
its linewidth, proportional to α, are found from the transverse
magnetic susceptibility.

In a previous work by one of the authors [48], expressions
for various coefficients in the extended LLG equation were
obtained by considering the solution for a long-wavelength
spin wave in a one-band model. In the present paper, an explicit
expression for the Gilbert damping constant in magnetic
multilayer systems is found within a realistic nine-band
tight-binding (TB) model. The results are reported for purely
ferromagnetic metallic films of Fe, Co, and Ni as well as for
Co/NM bilayers with the caps of NM = Cu, Pd, Ag, Pt, and
Au. They are compared with damping constants found for bulk
ferromagnetic metals which were shown in our previous work
[43] to agree well with the results of the ab initio calculations
[39]. The dependence of the Gilbert damping constant on film
thickness and the effect of nonmagnetic caps, including the
role of their SO coupling, are studied and compared to recent
experiments. We also investigate the real-space distribution of
the Gilbert damping in layered systems. For this purpose, an
explicit expression for contributions to the damping constant
from individual atomic layers is derived within the TB model
and they are calculated for the investigated films and bilayers.
A relation of the obtained results to the predictions of the spin
pumping theory is also briefly discussed.

II. THEORY

A. Macroscopic description of magnetization dynamics

Magnetization dynamics of metallic systems can be de-
scribed with the phenomenological Landau-Lifshitz-Gilbert
(LLG) equation. Here, we employ an extended form of this
equation,

∂m
∂t

= −γ m × Heff + α m × ∂m
∂t

+ 2A m × ∂2m
∂x2

− v0
∂m
∂x

+ βv0 m × ∂m
∂x

, (1)

where m = M/Ms denotes the unit vector along the direction
of magnetization M (with Ms as its saturation value), γ is the
gyromagnetic ratio, and A is the exchange stiffness constant.
Other terms can also be included in a further extension of
the LLG equation [48]. In the case of a layered system the
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magnetization direction m is assumed to vary in the x direction,
parallel to the film surface.

Different terms in Eq. (1) account for different torques
exerted on the magnetization. The first term describes the
Larmor precession of magnetization around the effective
magnetic field Heff , applied externally and/or due to the
intrinsic magnetic anisotropy. The relaxation of magnetization
is described by the second term, known as the Gilbert
damping which is characterized by the damping constant
α. The remaining terms in Eq. (1) are effective only for
inhomogeneous magnetization m(x) as in spin waves or
domain walls. The fourth and the fifth terms, proposed by
Zhang and Li [49], describe adiabatic and nonadiabatic spin-
transfer torques, respectively. They both arise due to the flow
of the electric current J , with finite spin polarization P , in
ferromagnets, and depend on J and P through the parameter
v0 = gμBPJ/(2eMs) where g is the Landé factor, e is the
electric charge, and μB is the Bohr magneton. Although the
domain-wall velocity is independent of the adiabatic term, it
can be controlled by the nonadiabatic term. It is known [50]
that the domain-wall velocity is proportional to the parameter
β and inversely proportional to the damping constant α

[v = (β/α)v0]. Thus, both α and β are crucial for a proper
description of the magnetization dynamics. Microscopically,
the two constants α and β describing the efficiency of magnetic
damping and nonadiabatic spin-transfer torque, respectively,
arise due to the same interaction, i.e., the SO coupling.

The Gilbert damping constant α is of the main interest
in this paper. The effective field Heff and, consequently, the
equilibrium direction of magnetization M are assumed to be
along the z axis perpendicular to the film surface. Calculations
for arbitrary direction of M are presented elsewhere [51].

B. Tight-binding model of electronic structure in magnetic
layered systems

In the TB model, the one-electron Hamiltonian H de-
scribing an N -monolayer system is represented by its matrix
elements in the basis of orthonormalized atomic orbitals
|ljμσ 〉. The basis orbitals of s, p, and d symmetry are localized
at the position Rlj of each atom j in every layer l. They
are labeled with the orbital index μ = s,x,y,z,xy,yz,zx,x2 −
y2,3z2 − r2 and the spin index σ = ↑,↓ .

The matrix elements of the Hamiltonian between orbitals on
first- and second-nearest neighbors are found within the Slater-
Koster approach [52] using the two-center hopping integrals
obtained by fitting ab initio energy bands of bulk metals [53].
In the case where neighboring atoms in a layered system
are of different metals, each two-center integral Tησ [η =
ssσ,pp(σ,π ),dd(σ,π,δ),sp(σ,π ),sd(σ,π,δ),pd(σ,π,δ); here
σ denotes orbital symmetry not spin] is given by the geometric

mean Tησ = ±
√

T
(1)
ησ T

(2)
ησ when the corresponding integrals

T (1)
ησ ,T (2)

ησ for the two metals are of the same sign [54,55]. If their
signs are opposite the arithmetic mean Tησ = 1

2 (T (1)
ησ + T (2)

ησ )
is taken instead. The two-center hopping integrals Tησ and
the on-site energies εμσ obtained by the fit for ferromagnetic
metals depend on spin σ . However, since no fit is given in
Ref. [53] for ferromagnetic fcc Co, a modified version of the
spin-independent parameters Tη,εμ for paramagnetic fcc Co

is used. This is done by taking Tησ = Tη, εμ↑ = εμ − 1
2�ex ,

and εμ↓ = εμ + 1
2�ex for d orbitals where �ex = 1.8 eV is

the exchange splitting for fcc Co [56–58] while assuming
Tησ = Tη and εμσ = εμ for s and p orbitals.

Due to the two-dimensional (2D) translational symmetry
(i.e., in plane in the case of layered systems) the eigenvalue
problem can be formulated using the associated basis of Bloch
functions,

|klμσ 〉 = 1√
N2D

∑
j

eik·Rlj |j lμσ 〉, (2)

constructed from the atomic orbitals |ljμσ 〉, for each 2D
wave vector k from the first 2D Brillouin zone (BZ). Here,
N2D denotes the number of atoms in each atomic plane (with
periodic boundary conditions at its edges) and it is equal to the
number of k points in the BZ. In the Bloch representation, the
matrix elements of the total Hamiltonian are diagonal in k and
they are calculated as

Hl′μ′σ ′, lμσ (k)=〈kl′μ′σ ′|H |klμσ 〉
=

∑
j ′

e−ik·(Rl′j ′−Rl0)〈l′j ′μ′σ ′|H |l0μσ 〉. (3)

The total Hamiltonian includes the one-electron SO inter-
action term [56,59]

HSO =
∑
lj

ξl L(r − Rlj ) · S (4)

with matrix elements

〈kl′μ′σ ′|HSO|klμσ 〉 = ξl〈μ′σ ′|L · S|μσ 〉 δl′l . (5)

The SO coupling constant ξl corresponds to the metal forming
the lth atomic layer in the investigated system. The values of
the SO coupling for 3d, 4d, and 5d metals: ξFe = 0.075 eV,
ξCo = 0.085 eV, ξNi = 0.105 eV, ξCu = 0.12 eV, ξPd = 0.23
eV, ξAg = 0.24 eV, ξPt = 0.65 eV, and ξAu = 0.66 eV are taken
from Refs. [56,59,60]. The matrix elements of the operator
L · S can be found, e.g., in Refs. [61,62].

The eigenstates, expanded as

|nk〉 =
∑
lμσ

aσ
nlμ(k)|klμσ 〉, (6)

and their energies εn(k) are found from the (18N ) × (18N )
eigenvalue matrix equation∑

l′μ′σ ′
Hlμσ, l′μ′σ ′(k)aσ ′

nl′μ′(k) = εn(k)aσ
nlμ(k). (7)

Let us note that due to the presence of the SO interaction the
eigenstates |nk〉 of the Hamiltonian are not eigenstates of Sz.
As a result the expansion (6) of |nk〉 includes basis states of
both spins σ = ↑ and σ = ↓ .

C. Calculation of Gilbert damping

A quantum-mechanical expression for the Gilbert damping
constant α has been derived by Kamberský in his torque
correlation model [5,6]. An alternative derivation based on
determining the damping part of the effective magnetic field
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from the master equation for time-dependent electronic occu-
pation factors is given in Ref. [63]. The formula for α = ω1/ω0

can be also obtained by considering a long-wavelength spin
wave with the frequency ω = ω0 + iω1, complex due to the
SO coupling, in a similar way as it is done in Ref. [48] for the
one-band model.

Kamberský’s expression for the Gilbert damping constant
reads

α = π

μtot

∫ ∞

−∞
dε η(ε) tr

{
A−L(ε − H )A+L(ε − H )

}
, (8)

where η(ε) = −dfFD(ε)/dε is the negative derivative of the
Fermi-Dirac distribution function fFD(ε) and μtot denotes the
total spin magnetic moment in units of the Bohr magneton
μB. The operator A− = [S−,HSO] is the SO torque found with
the spin lowering operator S− = Sx − iSy (where Sx = 1

2σx ,
Sy = 1

2σy are defined with the Pauli matrices σx , σy), A+ is
its Hermitian conjugate, and L(ε − H ) stands for the Lorentz
function defined as L(x) = (�/2π )/(x2 + �2/4) where � is
the electron-scattering rate.

The general formula (8) can be employed to calculate
the Gilbert damping constant α in various magnetic systems.
For a magnetic layered system with one ferromagnetic layer
the following expression for the Gilbert damping constant is
found:

α = π

NFMμs

∑
n,n′

1

�BZ

∫
dk|Ann′ (k)|2Fnn′ (k), (9)

based on the matrix Ann′ (k) elements and the energy factor
Fnn′ (k) defined below. Here the integration over k = (kx,ky)
is done over the 2D BZ, �BZ is the volume of the BZ, μs

denotes the atomic magnetic moment (in units of μB) of
the ferromagnet, and NFM stands for the number of atomic
layers in the ferromagnetic part of the system. For a film
with fcc structure and the lattice constant a, �BZ is equal to
(2π/a2d )2 where a2d = a/

√
2 is the (001) fcc surface square

lattice constant.
The matrix elements

Ann′ (k) = 〈nk|A−|n′k〉 = 〈nk|[S−,HSO]|n′k〉 (10)

are calculated as

Ann′ (k) =
∑

l,μσ,μ′σ ′
ξl a

σ
nlμ(k)∗ aσ ′

n′lμ′(k)〈μσ |A−
at |μ′σ ′〉, (11)

where

A−
at = [S−,L · S] = LzS

− − L−Sz (12)

is the SO torque coming from a single atom with a unit SO
coupling constant. The matrix elements of this torque can be
found using the elements of the SO coupling,

〈μ ↑ |A−
at |μ′ ↑〉 = − 〈μ ↑| L · S|μ′ ↓〉, (13a)

〈μ ↑ |A−
at |μ′ ↓〉 = 0, (13b)

〈μ ↓ |A−
at |μ′ ↑〉 = 2 〈μ ↑| L · S

∣∣μ′ ↑〉
, (13c)

〈μ ↓ |A−
at |μ′ ↓〉 = −〈μ ↑ |A−

at |μ′ ↑〉. (13d)

These elements vanish for the same spin orbitals (μσ ) =
(μ′σ ′) as well as for orbitals μ and μ′ with different

orbital numbers, regardless of their spins σ , σ ′, since the
corresponding matrix elements of L · S also vanish [61,62].

The factor Fnn′(k) is defined by integrating the product of
η(ε) = −dfFD/dε, dependent on temperature T , and the two
Lorentzians depending on eigenenergies εn(k), εn′(k) (with
band indexes n, n′),

Fnn′(k) =
∫ ∞

−∞
dε η(ε)L[ε − εn(k)]L[ε − εn′(k)]. (14)

At T = 0, this factor becomes L[εF − εn(k)]L[εF − εn′(k)]
where εF is the Fermi energy.

It is noteworthy that the explicit temperature dependence of
the Gilbert damping appears solely in Eq. (14): in the derivative
η(ε) of the distribution function fFD(ε). The damping is also
physically altered by temperature via the electron-scattering
mechanism due to lattice vibrations but the corresponding
average scattering rate � is treated here as an independent
parameter.

The presence of η(ε) in Eq. (14) makes the Gilbert
damping be affected predominantly by states with energies
close to the Fermi level εF. Contributions to the Gilbert
damping constant given by Eq. (9) can be attributed to two
kinds of electronic transitions invoked by the SO coupling:
intraband (n = n′) and interband (n 
= n′). The former indicate
transitions within a single energy band and gives contributions
to the conductivitylike terms of damping, while the latter,
corresponding to transitions between different energy bands,
give the resistivitylike terms of damping as already discussed
in Refs. [5] and [63] in detail.

The obtained expression for the Gilbert damping constant
within the TB model can be employed to calculate this
constant in a variety of layered magnetic structures (with a
straightforward modification to the total magnetic moment
NFMμs needed in the case where more than one FM layer is
present in a given system). In the present study, the damping
constant is calculated for FM films and Co/NM bilayers as
well as bulk ferromagnetic metals. The calculations are done
for a wide range of electron-scattering rates � (expressed as
�/τ with the lifetime τ in Ref. [39]): 0.001 eV � � � 2.0 eV.

The energy bands εn(k) and states |nk〉 used in the
calculation of the damping constant α with Eqs. (9)–(14) are
found with the Hamiltonian including the SO interaction HSO.
The inclusion of the SO coupling term in the Hamiltonian is
found to be essential for the intraband terms (n = n′) and gives
a significant contribution to the Gilbert damping constant α.

To illustrate this fact, in Fig. 1 we plot α in bulk Fe and Co
for two different cases: with and without the SO interaction
in the calculation of electronic band structure. This distinction
refers only to states |nk〉 and energies εn(k). In both cases the
same full SO coupling is kept in the SO torque A−. Thus, it is
found that including the SO interaction HSO in the Hamiltonian
is crucial for reproducing a qualitatively correct dependence
of α on the scattering rate �, especially in the range of small
� < 0.05 eV for which the intraband term dominates; see
Fig. 1. A very similar conclusion based on results for bulk Fe
has been previously reported in Ref. [6].

These results can be explained by noting that the intraband
terms Ann(k) vanish if the SO coupling is neglected in the
energy-band calculation for cubic ferromagnets as well as for
layered systems with the inversion symmetry. Indeed, in the
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FIG. 1. Gilbert damping constant α (solid lines) and its intraband
(dotted line) and interband (dashed line) terms vs scattering rate �

for bulk Fe and Co found with (solid symbols) and without (open
squares) the SO interaction HSO in the band structure calculation.

absence of HSO the states |nk〉 become the eigenstates |n0σ k〉
of Sz so that the resultant matrix elements

Ann(k)

=
∑
lj

ξl〈n0σ k|Lz(r − Rlj )S− − L−(r − Rlj )Sz|n0σ k〉

= −1

2
sσ

∑
lj

ξl〈n0σ k|L−(r − Rlj )|n0σ k〉

= −1

2
sσ 〈n0σ k|O−(r)|n0σ k〉 (15)

(where s↑ = 1, s↓ = −1, and O− = Ox + iOy) vanish for
any nondegenerate state |n0σ k〉 due to quenching of the
orbital angular momentum. To show this let us note that the
operator Oζ (r) = ∑

lj ξlLζ (r − Rlj ) (ζ = x,y,z) becomes
[Oζ (−r)]∗ = −Oζ (r) under the combined action of the
complex conjugation and the inversion operator r → −r
while the nondegenerate states |n0σ k〉 remain unchanged up
to a constant phase factor eiϕ ; see Appendix in Ref. [59].
The contribution of degenerate states is negligible since they
correspond to a set of k points with zero measure.

It is interesting to note that the perturbation theory
for nondegenerate states seemingly fails to reproduce the
correct ξ 3 dependence of the intraband term αintra on the
SO coupling constant ξ in bulk ferromagnets, found in
previous calculations, e.g., in Ref. [63]. Indeed, the first-order
expansion |nk〉 = |n0σ k〉 + |nk〉(1) with |nk〉(1) ∼ ξ leads to
the relation Ann′(k) ∼ ξ 2 and consequently to αintra ∼ ξ 4. The
ξ 3 dependence of αintra is retained if the perturbation theory
for nearly degenerate states is applied as it has already been

shown for bulk metals in the original work by Kamberský
[5]. Therein, the contribution to αintra proportional to ξ 3 is
shown to come from a finite area of the Fermi surface (FS)
(or rather, for T > 0, a finite slice of the BZ including this
part of the FS). This area includes the k points forming a
striplike region on the FS around the line where two different
energy bands cross each other at the FS in the absence of
HSO. The strip width is proportional to ξ since the states
from two bands can be considered as nearly degenerate as
long as their energy separation is of the order of ξ . Then, the
perturbed states are well approximated by combinations of the
two unperturbed states only so that the corresponding matrix
elements Ann(k) do not vanish for the perturbed states. Since
Ann(k) are proportional to ξ the contribution to αintra coming
from the striplike region in the BZ is proportional to ξ 3. Let
us also note that the interband term of the damping constant α

depends quadratically on the SO coupling constant ξ [63].

D. Numerical efficiency and convergence of Gilbert
damping calculation

The factor Fnn′ (k) dependent on the energies εn(k) and
εn′(k) can be calculated directly according to its definition
given in Eq. (14) as it has been presumably done in previous
calculations, e.g., Ref. [39]. However, the involved energy
integral must be computed with suitable care to get accurate
results due to the rapid variation of both the two Lorentzian
functions as well as the negative derivative η(ε) of the Fermi-
Dirac function. Instead of using numerical integration, the
factor Fnn′(k) can be determined more efficiently by replacing
the integral by the sum of the residues of the integrand.
Additionally, better control of the numerical accuracy is
achieved by including in this sum a sufficient number of
the Matsubara frequencies (around 40 of them have been
found to be sufficient for T = 300 K). The detailed analytical
expression for Fnn′(k) is derived in the Appendix.

The convergence of the Gilbert damping constant with
number of k points in the BZ is investigated for bulk bcc
Fe and fcc Co as well as (001) fcc Co(5 ML) and Co(20 ML)
films with different values of the scattering rate �. The results
shown in Figs. 2 and 3 clearly show the advantage of using
finite T since much smaller number of k points is needed for
the convergence of α than at T = 0.

For bulk ferromagnets (Fig. 2) it is found that using T =
300 K the convergence of α is reached with as few as 1003

k points (for � � 0.001 eV) while one may need as many
as 3003 and 6003 k points, to attain convergence for � =
0.01 eV and � = 0.001 eV, respectively, at T = 0. A similar
number of k points, 1003 or slightly more, has been used in
previously reported ab initio calculations for bulk systems at
finite temperature where α is given by Eqs. (9) and (14).

In the case of the layered systems with � � 0.01 eV we
obtain convergence with 1002 k points at T = 300 K while
more than 4002 k points may be needed at T = 0. The number
of k points required for convergence increases for smaller �

and varies with the film thickness. For the smallest scattering
rate � = 0.001 eV, around 10002 k points are needed to give a
satisfactory convergence of α calculated at T = 300 K while
even using 20002 k points do not lead to a convergent result
for T = 0.
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FIG. 2. Convergence of the Gilbert damping constant α with the
number (2Nk + 1)3 k points in the 3D BZ for bulk Fe and Co at T = 0
(dashed lines) and T = 300 K (solid lines), for different scattering
rates �.

Furthermore, the calculations done for various temperatures
0 � T � 600 K have shown that the Gilbert damping constant
is weakly dependent on temperature which confirms the
previous findings [39]. Indeed, the damping constants α

calculated for ferromagnetic bulk metals and films at zero
and finite T ultimately saturate to very similar values as the
number of k points increases. In particular, we find that in
Co(5 ML) and Co(10 ML) films the converged value of α is
almost the same at T = 0 and T = 300 K for � � 0.01 eV, a
significant discrepancy being obtained only for � < 0.01 eV;
see Fig. 4. Thus, using finite temperature is found to improve
efficiency of numerical calculations while hardly affecting the
actual results for the damping constant except for very small
scattering rates �.

The numerical efficiency of the Gilbert damping calcu-
lations is also improved by limiting the integration over k in
Eq. (9) to the irreducible BZ, which is the 1/8 BZ in the case of
layered systems with the cubic symmetry. It has been checked
in numerical tests for each investigated system that the values
of α obtained by integrating over the 1/8 BZ are identical to
the results of the integration over the full BZ. It is expected that
this equality results from the invariance of the Hamiltonian H

under the time-reversal and spatial symmetry operations.

FIG. 3. Convergence of the Gilbert damping constant α with the
number (2Nk + 1)2 k points in the 2D BZ for (001) fcc Co(5 ML)
and Co(20 ML) films at T = 0 (open symbols, dashed lines) and
T = 300 K (solid symbols and lines), for different scattering rates:
� = 0.001 eV (diamonds), � = 0.01 eV (circles), and � = 0.1 eV
(triangles).

FIG. 4. Gilbert damping constant α vs the scattering rate � in
(001) fcc Co(5 ML) and Co(10 ML) films at T = 0 and T = 300 K.
Open symbols show damping at T = 0 and the solid ones stand for
T = 300 K. The error bars shown for � = 0.002 eV at T = 0 reflect
the not fully converged summation over the BZ with Nk = 1000 for
Co(5 ML) and Nk = 700 for Co(10 ML).
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III. RESULTS

A. Ferromagnetic films

The Gilbert damping constant α calculated for bcc Fe, fcc
Co, and fcc Ni ferromagnetic films with (001) surface is found
to be considerably changed in comparison with the respective
bulk ferromagnets [43]. Both significant enhancement and
large reduction of α are obtained depending on the scattering
rate � and the investigated metal as well as the film thickness;
see Fig. 5. The largest changes in the magnetic damping occur
for films of a few monolayers thickness and the smallest
investigated scattering rates. For � = 0.001 eV there is an
over tenfold decrease of α for 5-ML films of Fe and Co and
an over 50-fold decrease for the 5-ML Ni film. The Gilbert
damping α is enhanced for Co films with 0.02 eV � � � 1
eV and for Fe films thicker than 9 ML in the entire investigated
range of �, especially, for � � 0.5 eV. For ultrathin Fe films
of a few ML thickness, the enhancement of α is limited to
some intermediate range of investigated scattering rate (e.g.,
0.02 eV � � � 1 eV for N = 5) while the aforementioned
decrease of α is found for smaller �. In the case of Ni films
the obtained α is largely reduced in comparison with bulk Ni
for � � 0.02 eV. For large scattering rates (� � 1 eV for Fe

FIG. 5. Gilbert damping constant α vs scattering rate � in bulk
ferromagnets (bcc Fe, fcc Co, fcc Ni) and (001) ferromagnetic films
with different thicknesses N .

and Co, and � � 0.1 eV for Ni) the damping constant α for
thin films is close to the bulk value. As a general trend, we find
that the values of α calculated for ferromagnetic films tend to
the corresponding bulk value with increasing film thickness for
the majority of the assumed scattering rates 0.001 eV � � � 2
eV. However, the convergence to the bulk value is slow in most
cases, as seen in Fig. 6.

The dependence of the damping constant α on the film
thickness for ferromagnetic bcc Fe, fcc Co, and fcc Ni films
with two different scattering rates is shown in Fig. 6. The
characteristic oscillations of damping with film thickness
are obtained for all three metals and they are attributed to
quantum well (QW) states with energies at the Fermi level.
This interpretation is supported by the fact that the obtained
oscillations have a smaller amplitude for larger �. Indeed, this
can be explained by larger smearing of the electronic energy
levels (and the energies of QW states, in particular) described
by the Lorentz function. The occurrence of QW states in
metallic films is a well-known phenomenon which also leads
to oscillations of interlayer exchange coupling and magnetic
anisotropy with varying thicknesses of ferromagnetic films
and/or nonmagnetic layers [58,59,64–72]. Further discussion

FIG. 6. Gilbert damping constant α vs film thickness for (001)
bcc Fe, fcc Co, and fcc Ni films, calculated with the scattering rates
� = 0.01 eV and � = 0.1 eV, T = 300 K. The horizontal lines mark
the bulk values of α for � = 0.1 eV (dashed line) and � = 0.01 eV
(solid line).
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on the Gilbert damping oscillations is given below in this
section.

For bcc Fe films, the plot of α against film thickness has
a broad maximum at the thickness of several ML (at 16 ML
for � = 0.01 eV, and at the lower thickness of 7 ML for a
larger scattering rate of � = 0.1 eV) and shows a slow decay
of α for larger thicknesses. As a result, the damping constant
α for both scattering rates is still far from the corresponding
bulk values even for the thickest investigated film thickness of
N = 48 ML.

For fcc Co films, the damping constant α decreases as the
film thickness increases, with small QW states oscillations
superimposed on this monotonic dependence. If these small
oscillations are neglected, α is found to saturate at the bulk
value of 0.0023 for � = 0.01 eV, already at N = 10 ML, and
to approach closely the bulk value of 0.0012 for � = 0.1 eV
at a Co thickness of N ≈ 40 ML.

In the case of fcc Ni films, an increasing trend is obtained
in the overall dependence of the calculated α on the increasing
film thickness. However, large oscillations of α due to QW
states in Ni films disturb this trend more strongly, especially
for N � 12 ML, than oscillations due to QW states in Fe
and Co films. The Gilbert damping constant for Ni films with
� = 0.1 eV saturates at the bulk value at N ≈ 20 ML. For
smaller scattering rate of � = 0.01 eV, the damping constant
seemingly starts to saturate at N ≈ 25 ML. However, this
trend is deceptive since α is only a third of its calculated bulk
value (0.026) at N = 25 ML and for the Ni thickness larger
than 30 ML the damping constant increases monotonically
up to the largest investigated thickness of N = 48 ML. Thus,
it is expected that for � = 0.01 eV the actual convergence
of α to the bulk Ni value will take place at much larger film
thicknesses, presumably around 300 ML as can be estimated by
extrapolating the monotonic dependence seen for N > 30 ML
in Fig. 6.

The results obtained for ferromagnetic films imply that
the damping constant can be enhanced several times in
comparison to bulk metals. The maximum enhancement for
� = 0.01 eV is found for the 16-ML Fe film (5.5 times)
and the Co monolayer (over threefold). In the case of Ni
films a significant enhancement [nearly 67% for Ni(3 ML)
with � = 0.05 eV] occurs merely for larger scattering rates
(0.02 eV � � � 0.2 eV). Simultaneously, a large reduction
of α (over tenfold) is obtained for Fe and Ni films of a
few ML thickness, in particular for N = 1,3 ML for Fe and
N = 1,2,4 ML for Ni. The obtained enhancement oscillates
with the film thicknesses and it decays for thicker films as the
damping constant approaches the bulk limit. The enhancement
of the Gilbert damping (or, more generally, its modification)
in free-standing thin ferromagnetic films, in comparison to
bulk metals, is related to the change of the electronic structure
due to the loss of 3D translational symmetry. In particular,
this change results in the quantization of the wave vector
in the direction perpendicular to the film surface and the
subsequent occurrence of the QW states which in turn leads
to oscillations of the damping constant with increasing film
thickness.

The obtained oscillatory dependence of the damping con-
stant on the film thicknesses has a different character for
different metals. While only one clear period of 2 ML is

present for the Fe films, the identification of similar periods
for Co and Ni films is not straightforward, with two different
periods being possible (e.g., ∼3.5 ML and ∼7 ML for Ni);
cf. Fig. 6. The oscillation periods associated with QW states
are related to the extremal radii of Fermi-surface sheets
of the corresponding bulk metals. However, it remains to
be investigated which points or regions in the 2D BZ are
responsible for the occurrence of the QW states contributing
to the Gilbert damping oscillations. This question is valid
in particular in view of the earlier theoretical predictions
[58,59,66], recently confirmed experimentally [71,72], that the
magnetic anisotropy energy (also related to the SO coupling)
of (001) fcc Co film oscillates with one clear period close to
2 ML. These oscillations have been shown [58] to come from
the center of the 2D BZ where there are pairs of QW states
degenerate at the � point.

The oscillatory behavior of the Gilbert damping constant
is found to originate mainly from the interband term, so that
the obtained oscillations come from pairs of QW states with
energies close to each other as well as to the Fermi level εF.
Thus, we conclude that the oscillations of the Gilbert damping
arise due to a similar mechanism as magnetocrystalline
anisotropy (MA) oscillations which have been shown to come
from pairs of QW states, one state lying below εF and the other
above εF [58,67,68]. However, the important difference is that
the states significantly contributing to the Gilbert damping lie
within a few � off the Fermi level εF, due to the presence of
the product L[ε − εn(k)]L[ε − εn′(k)] in Eq. (14). In the case
of MA the energy range of the contributing states is much
wider as the suppressing factor 1/[εn(k) − εn′(k)] present in
the second-order perturbation theory expression for the MA
energy [59] does not decay so rapidly as the energies, εn(k)
and/or εn′(k), move away from εF. As a result of this difference
the regions in the k space that give dominating contributions
to the magnetic damping are much more restricted than for the
MA. This conclusion should also hold for contributions from
the QW states.

Another important difference between the MA energy and
the Gilbert damping constant α is the different operators in-
volved in the calculation of the two quantities. These operators
are the SO interaction HSO (for two separate orientations of
magnetization) in the former case, and the SO torque A− in
the latter. Thus, a particular pair of QW states can contribute
to the MA energy and the Gilbert damping in a significantly
different way, or even not contribute at all for one of them,
due to specific spatial and spin symmetry of the corresponding
operators. In conclusion, a further study is needed to explain
the origin of the Gilbert damping oscillations, in particular,
the responsible QW states and the associated oscillation
periods.

Figure 7 depicts α against film thickness at two different
temperatures (T = 0 and T = 300 K) in Co films. As is
seen, the change of α due to change of temperature is not
significant and for most thicknesses α is almost the same
at both T = 0 and T = 300 K, although the oscillations of
α with changing Co film thickness have a larger amplitude
at T = 0 due to the lack of smearing of energy levels.
A similar conclusion was previously found to hold for
magnetic anisotropy energy and its oscillations in Co films
[59].
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FIG. 7. Gilbert damping constant α vs film thickness at T = 0
and T = 300 K in (001) fcc Co films; � = 0.01 eV.

B. Ferromagnet/nonmagnet bilayers

In this section, we report on the results of TB calculations of
the Gilbert damping constant α in (001) fcc cobalt/nonmagnet
(Co/NM) bilayers with Co as a ferromagnetic substrate and
various nonmagnetic caps: NM = Cu, Pd, Ag, Pt, and Au.
The dependence of α on both the Co and NM thicknesses,
NFM = NCo and NNM, is investigated. The damping constant
is calculated with Eqs. (9)–(14) using the eigenvalues and
eigenstates found in the way explained in Sec. II B. The
expression for the damping constant α in bilayer systems
depends on the SO coupling constants of both ferromagnetic
and nonmagnetic metals.

It is found that the Gilbert damping is remarkably en-
hanced in the investigated Co/NM(6 ML) bilayers, particularly
strongly for very small Co thickness; see Fig. 8. The presence
of the NM caps makes the damping constant α about an order
of magnitude larger than in pure Co films, and even a few
times more in the case of the Pt cap. The enhancement of
α in Co/NM bilayers becomes weaker for thicker Co films
and the dependence of α on the Co thickness NCo shows
a monotonic decrease with increasing NCo. The damping
constant of Co/NM(6 ML) bilayers decreases by more than
an order of magnitude (about 27 times for Cu, 22 times for
Ag, 42 times for Pd, 45 times for Pt, and 47 times for Au
caps) as the Co thickness increases from 1 to 28 ML. A similar

FIG. 8. Gilbert damping constant vs Co thickness in (001) fcc
Co/NM(6 ML) bilayers; � = 0.01 eV.

FIG. 9. Inverse Co thickness dependence of the additional damp-
ing in (001) fcc Co/NM(6 ML) bilayers due to adding the NM caps;
� = 0.01 eV.

dependence of α on the Co thicknesses is obtained for Co/NM
bilayers with the NM cap of other thicknesses, even just 2 ML.

The results obtained for Co/NM bilayers satisfy the follow-
ing approximate relation:

α ≈ αb + αs/NFM. (16)

This linear dependence on 1/NFM (= 1/NCo herein) is demon-
strated in Fig. 9 where the additional damping (enhancement)
α − αb due to adding the NM caps only is shown. Equation
(16) simply implies that the total damping constant α in
Co/NM bilayers, redefined as the extensive quantity α̃ =
NFMα, consists of the bulklike contribution NFMαb from the
ferromagnet and the additional term αs responsible for the
enhancement. The latter term is the combined contributions
coming from the FM/vacuum and FM/NM interfaces present
in the system, as well as, in the case of NM = Pd and Pt, from
several atomic layers inside the NM cap close to the FM/NM
interface; see Sec. III C. Thus, the equation (16) presents a
direct connection between the film and bulk regime.

A similar monotonic dependence on 1/NFM, though fol-
lowing a sublinear power law, is found in Ref. [9] for the ratio
�ω/ω0 of the linewidth �ω and the frequency ω0 of a long-
wavelength spin wave in an (001) Co/Pd bilayer. If the usual
definition of �ω as the full width at half maximum is adopted
(though not stated explicitly in Refs. [8,9]) the linewidth
�ω is twice the imaginary part ω1 of the complex spin-
wave frequency ω = ω0 + iω1. Then, the damping constant α

obtained for Co/Pd bilayer (Fig. 8) is around two or three times
larger than the values of α = ω1/ω0 = 0.5�ω/ω0 reported in
Ref. [9]. However, it should be noted that the two methods
of calculating α are significantly different since the cited
calculations of the spin-wave spectrum do not account for the
lifetime τ = 1/� of electronic states due to electron-phonon
scattering.

Recently, a linear dependence of α on 1/NCo has been
found experimentally in Pt/Co/Pt trilayers. [22] A similar
linear dependence of the magnetic damping constant on the
inverse of the ferromagnetic film thickness in Eq. (16) has also
been observed in experiments on ultrathin bcc Fe(001) films
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FIG. 10. Gilbert damping constant vs NM cap thickness in (001)
fcc Co(6 ML)/NM bilayers; � = 0.01 eV.

grown on Ag(001) [15,16] and Ni-based bilayers [25] as well
as CoFeB [26] and Fe/Au films. [19] In these experiments
the FMR linewidth and its term proportional to α have been
determined.

In Fig. 10 we present α as a function of the NM cap
thickness in Co(6 ML)/NM bilayers. For comparison, the value
of α for the Co(6 ML) film (α = 0.0026 for � = 0.01 eV)
is also marked in the plot. The enhancement of the Gilbert
damping is obtained even for the thinnest NM overlayers, 1 or
2 ML thick. For NM = Pd and Pt caps, there is a large initial
increase of damping for the cap thicknesses extending up to
4 ML which is followed by an oscillatory dependence for larger
cap thicknesses. Such oscillatory dependence on the NM cap
thickness is present for all investigated bilayers though it is not
well visible in Fig. 10 due to the figure scale. We attribute these
oscillations, with the amplitude decreasing with the increase
of the cap thickness, to the QW states present in the NM metal.
The oscillation periods can be related to extremal radii of the
FS of the bulk nonmagnets. In the case of Pd and Pt, the sheet
of the FS coming from the bulk d band of the �5 symmetry
yields the period of 5.7 ML [73]. This oscillation period has
previously been found for the MA energy in Co/Pd systems
[67,68]. A similar, though slightly shorter, period of around
5 ML is presently found in the dependence of the damping
constant on the Pd and Pt cap thicknesses; see Fig. 10.

The obtained enhancement of the Gilbert damping in
Co/NM bilayers results from two main factors: (i) strong SO
coupling in nonmagnetic elements heavier than Co, (ii) change
of electronic structure due to hybridization at the Co/NM
interface. The former directly appears in the expression for α,
namely in Eq. (11), while both factors affect damping through
the modification of the electronic states and their energies
which enter Eqs. (11) and (14).

To investigate the role of the two factors and their possible
interplay we compare the damping constants calculated for the
Co/Pt and Co/Au bilayers with zero and full SO coupling in
the NM cap; see Fig. 11. It is found that, although the two NM
metals, Pt and Au, have very similar SO coupling constants,
around 8.5 times larger than Co, switching on this coupling has
a diametrically different effect on α in the two bilayer systems.
While the results for the Co/Au bilayer obtained with ξAu =

FIG. 11. Gilbert damping constant vs NM cap thickness in (001)
fcc Co(6 ML)/NM bilayer (NM = Pt and Au), in the presence (solid
circles) and the absence (open circles) of the SO coupling in NM;
� = 0.01 eV.

0 and ξAu = 0.66 eV differ by less than 15%, the damping
constant for the Co/Pt bilayer increases over fivefold if ξPt =
0.65 eV is used instead of ξPt = 0. Thus we find that the Gilbert
damping depends strongly on the SO coupling of the Pt cap
and only slightly on the SO coupling of the Au cap. This
remarkably different dependence of α on ξNM is due to the
presence of d states at the Fermi level εF in Pt and the lack of
such states in Au. To explain this relationship let us recall that
the structure for the expression for α strongly favors quantum
states with energies in the immediate vicinity of εF [due to the
form of the integrand in Eq. (14)]. Because of the different
energetic positions of the narrow d band in Pt and Au, the
density of states (DOS) at εF is high in Pt and low in Au. As
a result a relatively small number of states (with the dominant
sp symmetry) present at εF in Au contribute only weakly to
α, despite large ξAu, while d states present at εF in Pt give a
large contribution. For the same reason the SO coupling of the
NM metal has a strong effect on the magnetic damping also
for the Pd cap, while this effect is very weak for NM = Cu
and Ag.

Although the SO coupling plays the dominant role in
magnetic damping in Co/Pd and Co/Pt bilayers, the performed
test calculations with ξNM = 0 show there is still a significant
contribution to the enhancement of α due to the change of
electronic structure in Co, invoked by the hybridization of
quantum states at the Co/NM interface. This enhancement
factor dominates for Co/NM bilayers with the cap of the NM
metal (Cu, Ag, and Au) where the d band lies below εF; for
such bilayers α shows a very similar dependence on the NM
cap thickness (Fig. 10).
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C. Layer contributions to the Gilbert damping

After having studied the film thickness dependence of the
Gilbert damping constant in ferromagnetic films and Co/NM
bilayers, a further investigation is needed to provide a deeper
insight into the mechanism of magnetic damping in layered
systems. In particular, it is worth understanding where the
magnetic damping actually takes place and which part of the
system plays a dominant role in the damping process. This
problem has already been addressed to some extent above
by investigating the effect of the SO coupling (its lack or
presence) in the NM cap. Here, we analyze the Gilbert damping
constant α by determining the contributions to α coming from
individual atomic layers. These layer contributions are found
as follows.

According to the general formula (9), the Gilbert damping
constant α is proportional to the trace of the operator
D(ε) = A−L(ε − H )A+L(ε − H ) at ε = εF for T = 0 or
to the integral

∫ ∞
−∞ η(ε) trD(ε) dε at finite temperature T .

By introducing into trD(ε) = ∑
i〈i|D(ε)|i〉 two unit oper-

ators
∑

nk |nk〉〈nk| = 1 built of the eigenstates |nk〉 of the
Hamiltonian, one finds, for any basis |i〉, that

trD(ε) =
∑

i

∑
n,n′

A−
i,n′kL[ε − εn′(k)]A+

n′k,nk

×L[ε − εn(k)]〈nk|i〉, (17)

where A−
i,n′k = 〈i|A−|n′k〉 and A+

n′k,nk = 〈nk|A−|n′k〉∗ =
Ann′ (k)∗. The expression (9) for the total damping constant α

has been obtained with the basis |i〉 = |nk〉. However, taking
the advantage of the trace invariance under the choice of
basis, we can also calculate trD(ε) choosing the TB basis
states |i〉 = |klμσ 〉 states, each of which is obtained by a
combination of orbitals located on different atoms in the same
layer l. In this way, we obtain

trD(ε) =
∑
k lμσ

∑
n,n′

A−
klμσ,n′kAnn′ (k)∗ aσ

nlμ(k)∗

×L[ε − εn(k)]L[ε − εn′(k)]. (18)

Apart from the product of the two Lorentz functions and
the matrix elements Ann′ (k), the right-hand side of Eq. (18)
also includes

A−
klμσ,n′k =

∑
l′μ′σ ′

aσ ′
n′l′μ′(k)〈klμσ |A−|kl′μ′σ ′〉

= ξl

∑
μ′σ ′

aσ ′
n′lμ′(k)〈μσ |A−

at |μ′σ ′〉. (19)

Substituting Eq. (19) into Eq. (18) one can write down the
expression for the damping constant α ∼ ∫

η(ε)trD(ε)dε as
a sum of layer contributions αl . Thus, we end up with the
following breakdown of the Gilbert damping constant:

α = 1

NFM

∑
l

αl, (20)

where the layer contribution αl is given explicitly as

αl = πξl

μs

1

�BZ

∫
dk

∑
n,n′

Qnn′l(k) Ann′(k)∗ Fnn′ (k), (21)

FIG. 12. Layer contributions to the Gilbert damping constant in
Fe, Co, and Ni films of 18-ML thickness; � = 0.01 eV.

where

Qnn′l(k) =
∑
μσ

∑
μ′σ ′

aσ
nlμ(k)∗ aσ ′

n′lμ′(k)〈μσ |A−
at |μ′σ ′〉. (22)

Let us also note that Ann′ (k), defined in Eq. (11), can also be
calculated as

Ann′ (k) =
∑

l′
ξl′Qnn′l′ (k). (23)

In addition, this relation immediately proves that the sum (20)
of the layer contributions (21) yields the total damping constant
α given by Eq. (9).

The numerical calculation of αl can also be speeded up by
limiting the region of the integration over k in Eq. (21) to the
1/8 2D BZ instead of the whole BZ, which has been found not
to alter the results for the investigated films and bilayers.

The layer contributions to the Gilbert damping in (001) bcc
Fe, fcc Co, and fcc Ni films as well as in Co/NM bilayers with
NM = Cu, Pt, and Au are shown in Figs. 12–14, respectively.
For purely ferromagnetic Fe, Co, and Ni films the distribution
of the layer contributions is symmetric with respect to the
central symmetry plane of the film. For Fe and Co films
the largest contributions come from the surface layers and
for Co films they decline steadily to a minimum value when
approaching the central layer(s). A similar increase of the
layer contribution αl is found at the (001) surface of the
fcc Co semi-infinite crystal in Ref. [44] using a generalized
formula for the Gilbert damping tensor and a different TB
parametrization. In the case of Ni films the surface layers
have the smallest contributions to the damping and the largest
contributions come from the first subsurface layers (l = 2 and
N − 1). As seen in Figs. 13 and 14, adding a NM cap to the Co
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FIG. 13. Layer contributions to the Gilbert damping constant
in Co(6 ML) film as well as in Co(6 ML)/Pd(12 ML), and
Co(6 ML)/Pt(12 ML) bilayers; � = 0.01 eV.

film not only alters the symmetric distribution of the damping
in the pure Co film but it also increases the overall contribution

FIG. 14. Layer contributions to the Gilbert damping constant in
Co(6 ML)/NM(12 ML) bilayers (NM = Cu, Au); � = 0.01 eV.

stemming from the Co part of the film. This is caused by change
of the electronic structure in Co due to adding the NM cap. The
asymmetric distribution of damping layer contributions in the
Co film is very similar in all investigated Co/NM bilayers (with
the exception of the interface Co layer) and it is very weakly
affected by the thickness of the NM cap. Let us also note that
small negative contributions αl are obtained for some l in the
bilayer systems since the applied method of the layer-resolved
breakdown of the damping constant does not guarantee the
positive sign of all αl though the total αl is positive according
to Eq. (9).

The layer contributions αl inside the NM caps of metals
with the top of the d band below εF are much smaller than
in the Pd or Pt caps. They are marginal in the Cu and Ag
caps so that the Gilbert damping in the Co/Cu and Co/Ag
bilayers comes almost entirely from the Co film. In the case of
the Au cap the very interface Au atomic layer contributes to
the damping significantly, as strongly as the surface Co layer;
see Fig 14. This is a result of large SO coupling of Au and,
presumably, an increase of the local DOS in the Au interface
layer due to the hybridization of s,p states in Au with d states
in Co across the Co/Au interface. For Co/NM bilayers with
nonmagnetic metals like Pd and Pt, whose d band crosses
εF, the dominant contributions to the damping come from the
NM caps. In such bilayers the majority of damping originates
from a few atomic layers of the NM cap that are closest to the
Co/NM interface. Surprisingly, significant contributions also
come from few most external layers of the NM cap.

The damping contribution in the Pd and Pt caps is
largest at the Co/NM interface (NM = Pd or Pt) atomic
layer l = lNM

1 and it decays with the increasing distance z =
zl = (l − lNM

1 )a/2 from the interface (Fig. 15). The obtained

FIG. 15. Layer contributions to the Gilbert damping constant in
Co(6 ML)/NM(42 ML) bilayers (NM = Pd, Pt); � = 0.01 eV. The
dashed line marks a fit with the function α7 exp(−zl/λ) with λ =
0.45 nm inside the NM (see text).
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decay of αl ≡ ρα(z = zl), though not strictly monotonic,
can be roughly approximated with an exponential function
ρα = ρα(z = 0)e−z/λ. This can be argued to be related to
similar dependence obtained in the spin-pumping theory for
the magnetization density μ(z) induced in the NM cap by the
precessing magnetization in the ferromagnet in the presence
of a spin-flip mechanism in the NM. In the spin-pumping
approach, the exponential decay of μ(z) ∼ e−z/λsd holds if
the spin-diffusion length λsd in the NM is much smaller
than the NM cap thickness L = NNMa/2. While the direct
identification of λ with λsd is not certain at present, the obtained
approximate value of λ = 0.45 nm for both Pd and Pt is in good
agreement with the recently measured value of λPt

sd = 0.5 ± 0.3
nm [28] for Pt but it is significantly smaller than the values
λPd

sd = 2.0 ± 0.09 nm [74] and λPd
sd = 2.6 ± 0.12 nm [28]

found experimentally for Pd.

IV. CONCLUSIONS

The Gilbert damping constant is presently calculated for
bulk ferromagnetic metals, their films, and Co/NM bilayers
using the torque-correlation model within the TB formalism.
The calculations are performed for systems up to 48 ML
thick thanks to employing finite temperature which leads to
a faster convergence of the numerical integration over the BZ
as well as replacing of the involved energy integral by the
equivalent sum over Matsubara frequencies. The calculated
damping constant depends, often in a nonmonotonic way,
on the thickness of FM films and it tends to the bulk value
αb for large thicknesses. However, the rate of convergence
to αb varies largely with metal and depends strongly on the
scattering rate �. In some cases it is so slow that α does not
saturate at αb within the investigated range of thicknesses and
the saturation thickness is expected to be a few hundred ML.
The dependence of the damping constant α on the thicknesses
NFM and NNM of FM films and NM caps, respectively,
has characteristic oscillations due to QW states and their
amplitude becomes negligible at NFM and NNM larger than
20 ML.

The obtained results show that the Gilbert damping constant
α can be largely modified in pure FM films, in comparison
with the corresponding bulk metals, so that α is reduced or
enhanced depending on the value of �. In the investigated
Co/NM bilayer systems, the calculated damping constant α

shows a significant enhancement in comparison with pure Co
films and bulk fcc Co and it is particularly strong for Pd and
Pt caps. This effect is found for the NM caps as thin as 1
ML and the damping constant apparently saturates at a final
value after adding just a few ML if small QW oscillations are
disregarded. However, due to the limited range of investigated
NM thicknesses (up to 22 ML) we expect that the convergence
of α does not actually take places within this range for Cu, Ag,
and Au since the spin-diffusion lengths of these sp metals are
of the order of 100 nm.

The obtained linear dependence of the Gilbert damping
against the inverse of Co thickness for Co/NM bilayers
agrees well with experiment. It should be noted that in the
present model the inverse proportionality of the damping
enhancement with the FM film thickness is a result of our
numerical calculations. This result confirms the approach of

spin pumping theory where such thickness dependence is built
in as an underlying assumption. It is also clearly demonstrated,
by switching off and on the SO coupling in the NM, that the
enhancement of the damping in the Co/Pd and Co/Pt bilayers
comes mainly from the NM cap while in the Co/Cu and Co/Ag
bilayers with the sp metal cap the obtained enhancement
results merely from modification of the electronic structure
in the Co film. The nonlocal origin of the additional damping
in the Co/Pd and Co/Pt bilayers is confirmed by distribution of
layer contributions to the damping constant which are largest
in a few atomic layers of the Pd and Pt caps close to the Co/NM
interface. Such layer contributions are found to be very small
in the Cu and Ag caps. The Au cap is a borderline case as a
significant contribution comes from the Au atomic layer at the
very Co/Au interface.

The present calculations show that the strong enhancement
of magnetic damping in Co/Pd and Co/Pt bilayers results
from the combination of two properties of the NM: the
large SO coupling and the large DOS at the Fermi level
εF. This conclusion can be compared with the spin pumping
theory [36] where the magnetic damping in FM/NM systems
depends on several phenomenological parameters, describing
the diffusion of conduction electrons, the efficiency of the
spin-flip process, as well as the mixing conductance g

↑↓
r of the

FM/NM interface. While the diffusion coefficient is related to
the electron-scattering rate � and the spin-flip relaxation time
τsf depends on the strength of the SO coupling in the NM, there
is no immediate relation between the mixing conductance g

↑↓
r

and the DOS in the NM. Such relation is not likely to exist
since g

↑↓
r depends on how states in the FM match states in the

NM across the FM/NM interface which is not directly related
to the number of states available for conducting electrons at
εF in the NM. The lack of such relation is confirmed by the
results reported in Ref. [38].

In summary, the obtained results for the Gilbert damping
constant and its analysis, in particular the breakdown in the
real space into layer contributions, lead to better understanding
mechanisms of the magnetic damping in FM films and FM/NM
layered systems.
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APPENDIX: MATSUBARA FREQUENCY METHOD

As has previously been mentioned, the efficiency
of our calculations is significantly improved by intro-
ducing finite temperature into the electronic occupation
factors and subsequent summation over the Matsubara
frequencies.

This is achieved by using an analytical expression for the
integral defining the factor Fnn′(k) in Eq. (14). This expression
is derived by replacing the integral over the energy with the
integral over a finite closed contour in the upper complex
half plane (including the real axis) and by making use of the

014420-13



E. BARATI, M. CINAL, D. M. EDWARDS, AND A. UMERSKI PHYSICAL REVIEW B 90, 014420 (2014)

residue theorem. The contour integral can be expressed as the
sum

Fnn′(k) =
∮

F (z) dz = 2πi

N∑
j=1

a
j

−1

= 2πi

(
a−1(z1) + a−1(z′

1) +
∞∑

k=0

a−1(ωk)

)
(A1)

of the residues of the integrand F (z) = η(z)L(z − εn)L(z −
εn′ ) at its poles lying in the upper half plane. The
poles of the Lorentz functions, L(z − εn) and L(z − εn′),
are

z1 = εn + i�/2, (A2a)

z2 = εn − i�/2 (A2b)

and

z′
1 = εn′ + i�/2, (A3a)

z′
2 = εn′ − i�/2, (A3b)

respectively. The Fermi-Dirac distribution function,

fFD(z) = 1

1 + eβ(z−εF)
, (A4)

with β = 1/kBT , has poles at complex energies

ωk = εF + iπ (2k + 1)kBT (A5)

(k = 0, ± 1, ± 2, . . .) which are called the Matsubara frequen-
cies. Around the poles, the function fFD(z) and its negative
derivative η(z) = −dfFD(z)/dz behave as

fFD(z) = 1

β

1

z − ωk

, (A6)

η(z) = 1

β

1

(z − ωk)2
. (A7)

Thus, the Matsubara frequencies are the first-order poles of
fFD(z) and the second-order poles of its derivative η(z).

The residues of the function F (z) at the poles z1, z′
1, and ωk

(which lie in the upper complex half plane) are

a−1(z1) = �

2π

η(z1)L(z1 − εn′)

z1 − z2
, (A8a)

a−1(z′
1) = �

2π

η(z′
1)L(z′

1 − εn)

z′
1 − z′

2

, (A8b)

and

a−1(ωk) = �2

2βπ2Ck

(
C2k + C ′

2k

C2kC
′
2k

+ i�

2Ck

(C1kC2k + C ′
1kC

′
2k)

)

(A9)

with Cik = ωk − zi , C ′
ik = ωk − z′

i , and Ck = C1kC2kC
′
1kC

′
2k .

Having calculated the residues we can now evaluate the
integral in Eq. (A1). Then, substituting the expressions (A8a),
(A8b), and (A9) obtained for the residues we arrive at the
sought analytical expression for the factor,

Fnn′(k) = J1 + iJ2, (A10)

where

J1 = �

2π

η(z1) + η(z′
1)

(εn − εn′)2 + �2

− �3

2πβ

∞∑
k=0

C1kC2k + C ′
1kC

′
2k

C2
k

, (A11a)

J2 = − �2

2π

1

(εn − εn′)2 + �2

η(z′
1) − η(z1)

z′
1 − z1

+ �2

πβ

∞∑
k=0

C2k + C ′
2k

CkC2kC
′
2k

. (A11b)

Note that both J1 and J2 are complex numbers.
The difference quotient in Eq. (A11b) becomes ill defined

numerically if the energies εn,εn′ are very close to each other or
equal, in particular, for n = n′. To avoid numerical problems
the function η(z′) is expressed as the Taylor series around
z = z1. Thus, we obtain the following expression:

R = η(z′
1) − η(z1)

z′
1 − z1

= dη(z)

dz
|z=z1 +

∞∑
m=2

1

m!

dmη(z)

dzm
|z=z1 (z′

1 − z1)m−1,

(A12)

which converges quickly if β|εn′ − εn| � 1. It is found that
terms up to m = 6 are sufficient, if β|εn′ − εn| < 0.01, to
get full convergence of R in our numerical calculations.
The derivatives η(m)(z) = dmη(z)/dzm can be found from the
following relation:

η = βf (1 − f ) (A13)

where f = fFD. Its application leads to a recursive expression
for η(m) in terms of f,η, . . . ,η(m−1) as follows:

η(m) = −β

m∑
k=0

(
m

k

)
f (k)f (m−k) + βf (m)

= −β

m−1∑
k=1

(
m

k

)
η(k−1)η(m−k−1) − β(1 − 2f )η(m−1),

(A14)

where f (k) has been replaced with −η(k−1) for k � 1. In
particular we find

η′ = −β(1 − 2f )η , (A15a)

η′′ = −2βηη − β(1 − 2f )η′, (A15b)

η′′′ = −6βηη′ − β(1 − 2f )η′′. (A15c)

In this way, we can evaluate the integral in Eq. (14)
analytically by employing the Matsubara frequency method
and perform the numerical calculation of the Gilbert damping
constant at finite temperature in an effective way. We have
found that, for the applied temperature T = 300 K, the infinite
series in Eqs. (A11a) and (A11b) can be truncated to the sum of
the first 40 terms (k = 1,2, . . . ,40) without losing numerical
accuracy.
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[5] V. Kamberský, Czech. J. Phys. B 26, 1366 (1976).
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