
PHYSICAL REVIEW B 90, 014410 (2014)

Longitudinal spin current induced by a temperature gradient in a ferromagnetic insulator
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Based on the solution of the stochastic Landau-Lifshitz-Gilbert equation discretized for a ferromagnetic chain
subject to a uniform temperature gradient, we present a detailed numerical study of the spin dynamics with
a particular focus on finite-size effects. We calculate and analyze the net longitudinal spin current for various
temperature gradients, chain lengths, and external static magnetic fields. In addition, we model an interface
formed by a nonuniformly magnetized finite-size ferromagnetic insulator and a normal metal and inspect the
effects of enhanced Gilbert damping on the formation of the space-dependent spin current within the chain. One
aim of this study is the inspection of the spin-Seebeck effect beyond the linear response regime. We find that
within our model the microscopic mechanism of the spin-Seebeck current is the magnon accumulation effect
quantified in terms of the exchange spin torque. According to our results, this effect drives the spin-Seebeck
current even in the absence of a deviation between the magnon and phonon temperature profiles. The influence of
the dipole-dipole interaction and domain formation on the spin current is exposed and discussed. Our theoretical
findings are in line with the recently observed experimental results by Agrawal et al. [Phys. Rev. Lett. 109,
107204 (2012)].
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I. INTRODUCTION

Thermal magnetic and electric effects have a long his-
tory and are the basis for a wide range of contemporary
devices. Research activities revived substantially upon the
experimental demonstration of the correlation between an
applied temperature gradient and the observed spin dynamics,
including a spin current along the temperature gradient in
an open-circuit magnetic sample, the so-called spin-Seebeck
effect (SSE) [1]. Meanwhile, an impressive body of work has
accumulated on thermally induced spin and spin-dependent
currents [1–11] (for a dedicated discussion, we refer to the
topical review [12]). The SSE was observed not only in
metallic ferromagnets (FMs) like Co2MnSi or semiconducting
FMs, e.g., GaMnAs [4], but also in magnetic insulators
LaY2Fe5O12 [5] and (Mn, Ze)Fe2O4 [7]. The Seebeck effect
is usually quantified by the Seebeck coefficient S which is
defined, in a linear response manner, as the ratio of the
generated electric voltage �V to the temperature difference
�T : S = −�V

�T
. The magnitude of the Seebeck coefficient

S depends on the scattering rate and the density of electron
states at the Fermi level, and thus it is a material-dependent
variable. In the case of SSE, the spin voltage is formally
determined by μ↑ − μ↓, where μ↓(↑) are the electrochemical
potentials for spin-up and spin-down electrons, respectively.
The density of states and the scattering rate for spin-up and
spin-down electrons are commonly different, which results
in various Seebeck constants for the two spin channels. In a
metallic magnet subjected to a temperature gradient, one may
think of the electrons in different spin channels to generate
different driving forces, leading to a spin voltage that induces a
nonzero spin current. When a magnetic insulator is in contact
with a normal metal (NM) and the system is subjected to
a thermal gradient, the total spin current flowing through
the interface is a sum of two oppositely directed currents.
The current emitted from the FM into the NM is commonly
identified as a spin-pumping current Isp and originates from the

thermally activated magnetization dynamics in the FM, while
the other current Ifl is associated with the thermal fluctuations
in the NM and is known as spin torque [13]. The competition
between the spin-pump and the spin-torque currents defines
the direction of the total spin current which is proportional
to the thermal gradient applied to the system. The theory
of the magnon-driven SSE [5] presupposes that the magnon
temperature follows the phonon temperature profile and in a
linear response approximation provides a good agreement with
experiments.

In a recent study [14] the theory of the magnon-driven
SSE was extended beyond the linear response approximation.
In particular, it was shown that the nonlinearity leads to
a saturation of the total spin current and nonlinear effects
become dominant when the inequality H0/T m

F < kB/(MsV )
holds, where H0 is the constant magnetic field applied to the
system, T m

F is the magnon temperature, Ms is the saturation
magnetization and V is the volume of the sample. The
macrospin formulation of the stochastic Landau-Lifshitz-
Gilbert (LLG) equation and the Fokker-Planck approach
utilized in Ref. [14] is inappropriate for nonuniformly magne-
tized samples with characteristic lengths exceeding several
10 nm. Beyond the macrospin formulation the SSE effect
for nonuniformly magnetized samples can be described by
introducing a local magnetization vector [15] �m(�r,t). In this
case, however, the corresponding Fokker-Planck equation
turns into an integro-differential equation and can only be
solved after a linearization [16]. Recently [17], the longitudinal
SSE was studied in a NM-FM-NM sandwich structure in the
case of a nonuniform magnetization profile. The linear regime,
however, cannot totally embrace nontrivial and affluent physics
of the SSE.

The paper is organized as follows. Section II defines the
context of the current study and the relevance of the predictions
for experiments. After setting the theory framework in Sec. III,
in Sec. IV we introduce a definition of the spin current in a
chain of interacting classical magnetic moments. In Sec. V we
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analyze the numerical results, with emphasis on the role of
the thermal bias magnitude, finite-size effects, the dependence
of the spin current on an external magnetic field, and the
type of boundary conditions. Particular attention is devoted to
interface effects (Sec. VI) and the mechanisms of the formation
of the spin current (Sec. VII). We finally consider the effects of
the dipole-dipole interaction and magnetic domain formation
on the spin current in Sec. VIII and conclude our paper in
Sec. IX.

II. MOTIVATION AND FORMULATION
OF THE PROBLEM

The spin current in magnetic insulators under a thermal
gradient is mediated by thermally excited magnons. Thus, the
concept of “magnon temperature” is of key importance for
the problem of a thermally activated spin current. An external
thermal bias applied to the system couples to the phonon sub-
system that reaches a steady state swiftly while the magnons
relax on a longer time scale (see [6] and references therein).
Therefore, the formation of the magnon temperature profile
proceeds for the already established phonon temperature
profile. Furthermore, as long as anharmonic phononic effects
are subsidiary, the creation of localized phonon excitations
with higher density of modes is not relevant as well. As
a result, one expects a linear phonon temperature profile
and no variations of the temperature gradient across the
system when the thermal bias is applied to the edges of
a homogeneous phononic system. In contrast, the magnon
temperature profile formed on a longer time scale is not
necessarily linear because of the inherent nonlinearity of LLG
equation. Therefore, in general, we expect to observe magnon
accumulation phenomena.

This observation is important insofar as the formation of
the thermally activated spin current was brought in connection
with the existence of a temperature difference between the
phonon and the magnon subsystems. Recent studies based on
the macrospin approach valid for thin samples in the linear
response approximation [6] and in the nonlinear regime [14]
supported this point of view. In both cases the obtained
analytical expressions for the spin current are proportional
to the difference between the phonon and the magnon tem-
peratures. The results of recent experiments [18] demonstrate,
however, that in the case of finite-width samples the situation
is different. A nonzero spin current was observed even for
the case when the magnon temperature profile coincides with
the phonon temperature profile. Making use of an infrared
camera the local phonon temperature in the sample was
measured, and it was shown that the phonon temperature
TL > T

ph
n > TR along the sample varies almost linearly under

a thermal bias applied as different temperatures TL and TR

to the left and to the right edges of the sample, respectively.
This implies that a theoretical description of the formation
of thermally induced spin current in a finite-size magnetic
sample has to go beyond the single macrospin model (as done
here). The main purpose of the present project is to study
the mechanisms of the formation of the thermally activated
spin current in nonuniformly magnetized finite-size magnetic
insulator materials. Here we demonstrate that the mechanism
is based on the magnon accumulation effect. It is quantified

in terms of a slight change of the magnetization profile:
〈�Mz

n〉 = 〈Mz
n〉 − 〈Mz

0n〉, where 〈Mz
n〉 is the mean component

of the nth magnetization moment for the case when a thermal
bias TL > TR is applied to the edges of the system and a
phonon temperature profile TR < T

ph
n < TL is formed. On

the contrary, 〈Mz
0n〉 corresponds to the mean magnetization

component in the absence of a thermal gradient TL = TR = T ,
however, for the same uniform temperature applied along
the whole chain T = T

ph
n . The quantity 〈�Mz

n〉 defines the
magnon accumulation as a difference between two equilibrium
magnetization profiles formed for the same phonon temper-
ature, but with and without the temperature gradient. We
prove the direct connection between the magnon accumulation
effect and the exchange spin torque and demonstrate that
the exchange spin torque drives the spin current. In view
of the experimental evidence [18], we account for the linear
phonon temperature profile in our calculations via the random
fluctuating term added to the LLG equations.

III. THEORETICAL FRAMEWORK

For the description of the transversal magnetization dynam-
ics we consider propagation of the normalized magnetization
direction �m(�r,t) as governed by the LLG equation [19,20],

∂ �m
∂t

= −γ [ �m × �H eff] + α

[
�m × ∂ �m

∂t

]

− γ [ �m × �h(�r,t)], (1)

where the deterministic effective field �H eff = − 1
MS

δF
δ �m derives

from the free energy density F and is augmented by a Gaussian
white-noise random field h(�r,t) with a space-dependent
local intensity and autocorrelation function. α is the Gilbert
damping, γ = 1.76 × 1011 1/(Ts) is the gyromagnetic ratio,
and MS is the saturation magnetization. F reads

F = 1

V

∫ [
A

2
| �∇m|2 + Ea( �m) − μ0MS �H0 · �m

]
dV, (2)

where �H0 is the external constant magnetic field, Ea( �m) is the
anisotropy energy density, A is the exchange stiffness, and V

is the volume of the system. We employ a discretized version
of the integro-differential equation (1) by defining N cells
with a characteristic length a = √

2A/μ0M2
s of the exchange

interaction between the magnetic moments. a3 = �0 is the
volume of the respective cell. Assuming negligible variations
of �m(�r,t) over a small a, one introduces a magnetization vector
�Mn averaged over the nth cell �Mn = MS

V

∫
�0

�m(�r,t)dV and the
total energy density becomes

ε = − �H0 ·
∑

n

�Mn + K1

M2
S

∑
n

[
M2

S − (
Mz

n

)2]

− 2A

a2M2
S

∑
n

�Mn · �Mn+1, (3)

where �H0 is the external magnetic field and K1 is the uniaxial
anisotropy density with the easy axis �ez. The effective magnetic
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field acting on the nth magnetic moment reads

�H eff
n = − ∂ε

∂ �Mn

= �H0 + 2K1

M2
S

Mz
n�ez

+ 2A

a2M2
S

( �Mn+1 + �Mn−1). (4)

Thermal activation is introduced by adding to the total effective
field a stochastic fluctuating magnetic field �hn(t) so that

�H eff
n (t) = �H0 + �H anis

n + �H exch
n + �hn(t). (5)

Here �H anis
n is the magnetic anisotropy field and �H exch

n is the
exchange field. The random field �hn(t) has a thermal origin and
simulates the interaction of the magnetization with a thermal
heat bath (cf. the review Ref. [21] and references therein).
The site dependence of �hn(t) reflects the existence of the local
nonuniform temperature profile. On the scale of the volume
�0 the heat bath is considered to be uniform for a constant
temperature. The random field is characterized via the standard
statistical properties of the correlation function,

〈hik(t)〉 = 0,

〈hik(t)hjl(t + �t)〉 = 2kBTiαi

γMSa3
δij δklδ(�t). (6)

i and j define the corresponding sites of the FM chain
and k and l correspond to the Cartesian components of the
random magnetic field, Ti and αi are the site-dependent local
temperature and the dimensionless Gilbert damping constant,
respectively, and kB = 1.38 × 10−23 J/K is the Boltzmann
constant.

We note that the correlation function of the random
magnetic field can be quantified in terms of the effective
magnon temperature. However, in the absence of the spin-
torque current and enhanced Gilbert damping, when only the
spin-pumping current exists, the effective magnon temperature
coincides with the phonon temperature [6]. Furthermore, it is
not the effective magnon temperature, but the real magnon
temperature formed in the system which is of a key interest.
This temperature should be calculated self-consistently (as
explained and done below) from the magnetization dynamics
after the system reaches the equilibrium. As demonstrated in
this work, the self-consistently calculated magnon temperature
differs from the phonon temperature profile.

In what follows we employ for the numerical calculations
the material parameters related to yttrium iron garnet (YIG),
e.g., as tabulated in Ref. [6] (Table I). Explicitly, the exchange
stiffness is A ≈ 10 pJ/m, the saturation magnetization has
a value of 4πMS ≈ 106 A/m. The anisotropy strength K1

can be derived from the estimate for the frequency ω0 =
γ 2K1/MS ≈ 10 × 109 s−1 [6]. The size of the FM cell is
estimated from a = √

2A/μ0M2
s , yielding about 20 nm. The

values of all relevant parameters (A, K1, MS, α) are taken
at 0 K, which seems to be a good approximation in view
of their weak temperature dependence in the range of the
temperatures relevant here (0K–100 K) [22,23]. For a damping
parameter we take the value α = 0.01, which exceeds the
actual YIG value [5,6]. This is done to optimize the numerical
procedure in order to obtain reasonable calculation times.
We note that although the quasiequilibrium is assured when

FIG. 1. (Color online) (a) Schematics of the FM chain considered
in the calculations. (b) Suggested alignment for measurements.

tracking the magnetization trajectories on the time scale longer
than the relaxation time, the increased α quantitatively alters
the strength in the correlation function [Eq. (6)] and therefore
indirectly has an impact on the values of the spin current.

We focus on a system representing a junction of a FM
insulator and a NM which is schematically shown in Fig. 1.
This illustration mimics the experimental setup for measuring
the longitudinal SSE [24], even though the analysis performed
here does not include all the aspects of the experimental setting.
The direction of the magnetic moments in the equilibrium
is parallel to the FM-NM interface. Experimentally, it was
suggested to pick up the longitudinal spin current by means
of the inverse spin Hall effect [24]. If it is so possible then,
the electric field generated via the inverse spin Hall effect

(ISHE) reads
−→
E = D0

−→
Is × −→σ . Here

−→
E denotes the electric

field related to the ISHE,
−→
Is defines the spatial direction of the

spin current, −→σ is the spin polarization of the electrons in the
NM, and D0 is a constant. We note, however, that our study is
focused on the spin dynamics only and makes no statements
on ISHE.

IV. DEFINITION OF THE SPIN CURRENT

For convenience we rewrite the Gilbert equation with the
total energy density (3) in the form suggested in Ref. [17],

∂ �Sn

∂t
+ γ

{�Sn × [ �H eff
n (t) − �H ex

]} + αγ

MS

[
�Sn × ∂ �Sn

∂t

]

+�∇ · �J �s
n = 0, (7)

where �Sn = − �Mn/γ and the expression for the spin-current
density tensor reads

�∇ · �J �s
n = γ

[�Sn × �H ex
n

]
. (8)

Here

�Qn = −γ
[�Sn × �H ex

n

]
(9)

is the local exchange spin torque.
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For the particular geometry (Fig. 1) the only nonzero
components of the spin-current tensor are I sx

n ,I
sy

n ,I
sz
n . Taking

into account Eqs. (4) and (7), we consider a discrete version
of the gradient operator and for the components of the
spin-current tensor I s

n = a2J s
n we deduce

Iα
n = Iα

0 − 2Aa

M2
S

n∑
m=1

Mβ
m

(
M

γ

m−1 + M
γ

m+1

)
εαβγ , (10)

where εαβγ is the Levi-Civita antisymmetric tensor, Greek
indexes define the current components, and the Latin ones
denote sites of the FM chain. In what follows we utilize
Eq. (10) for quantifying the spin current in the spin chain.
We consider different temperature gradients applied to the
system, taking into account the dependence of the magnon
temperature on the phonon temperature profile [5]. Since
the temperature in the chain is not uniform, we expect a
rich dynamics of different magnetic moments �Mn. In this
case only the nonuniform site-dependent spin current In can
fulfill the equation (7). In order to prove this, we consider
different configurations of magnetic fields for systems of
different lengths. Modeling the interface effects between the
FM insulator and the NM proceeds by invoking the concept of
the enhanced Gilbert damping proposed in a recent study [25].
The increased damping constant in the LLG equation of the
last magnetic moment describes losses of the spin current due
to the interface effect. In order to evaluate the spin current
flowing from the NM to the FM insulator we assume that the
dynamics of the last spin in the insulator chain is influenced by
the spin torque flowing from the NM to the magnetic insulator.

V. NUMERICAL RESULTS ON ISOLATED
FERROMAGNETIC INSULATOR CHAIN

For the study of thermally activated magnetization dy-
namics we generate from 1000 to 10 000 random trajectories
for each magnetic moment of the FM chain. All obtained
observables are averaged over the statistical ensemble of
stochastic trajectories. The number of realizations depends
on the thermal gradient applied to the system. For long spin
chains (up to 500 magnetic moments) the calculations are
computationally intensive even for the optimized advanced
numerical Heun method [26], which converges in quadratic
mean to the solution of the LLG equation when interpreted in
the sense of Stratonovich [27]. For the unit cell of the size 20
nm, the FM chain of 500 spins is equivalent to the magnetic
insulator sample of the width around 10 μm. We make sure in
our calculations that the magnetization dynamics is calculated
on the large time scale exceeding the system’s relaxation
time, which can be approximated via τrel ≈ MS/(γ 2K1α) ≈
10 ns [28].

A. Role of the local temperature and local exchange spin torque

Prior to studying a realistic finite-size system, we consider
a toy model of three coupled magnetic moments. Our aim
is to better understand the role of the local temperature and
the local exchange spin torque Qn [Eq. (9)] in the formation
of the spin current In. Considering Eqs. (8) and (9), we can
utilize a recursive relation for the site-dependent spin current

In and the local exchange spin torque In = In−1 + a3

γ
Qn for

different temperatures of the site in the middle of the chain
above T2 > Tav and below T2 < Tav. The mean temperature
in the system is Tav = (

T1 + T2 + T3
)
/3. The calculations are

performed for different values of the site temperatures. We find
that the exchange spin torques Qn related to magnetic moments
Mn with a temperature above the mean temperature Tn > Tav

have a positive contribution to the spin current in contrast
to the exchange spin torques Qm of the on-average-“cold”
magnetic moments with Tm < Tav. This finding hints at the
existence of a maximum spin current in a finite chain of
magnetic moments and/or strong temperature gradient. This
means that the site-dependent spin current In increases if
Qn > 0 until the local site temperature drops below the mean
temperature Tn < Tav, in which case the exchange spin torque
becomes negative Qn < 0 and the spin current decreases.
In order to prove that the negative contribution in the spin
current of the on-average-cold magnetic moments is not an
artifact of the three magnetic moments only, we studied
spatially extended spin chains as to simulate nonuniformly
magnetized FM insulators. In the thermodynamic limit for
a large number of magnetic moments N 
 1 we expect
to observe a formation of the equilibrium patterns in the
spin-current profile corresponding to the zero exchange spin
torque Qn = 0 between nearest adjacent moments.

B. Longitudinal spin current

In Fig. 2 the dependence of distinct components of the spin
current is plotted site-resolved. As inferred from the figure
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FIG. 2. (Color online) Different Cartesian components of the
statistically averaged longitudinal spin current as a function of the
site number. Numerical parameters are �T = 50 K, α = 0.01, and
H0 = 0 T. The temperature gradient is defined �T = T1 − T50, where
T1 = 50 K. The only nonzero component of the spin current is I

Sz
n .

Other two components I Sx
n , I

Sy
n are zero because of the uniaxial

magnetic anisotropy field which preserves X0Y symmetry of the
magnetization dynamics. The inset shows the z component of the
statistically averaged spin current I

Sz
n (blue solid circles) and the

distribution of the exchange spin torque a3

γ
Qz

n (red solid triangles),
both shown in a site-resolved manner. A direct correlation between
the behavior of the spin current and the exchange spin torque can be
observed: The change of the sign of the exchange spin torque matches
exactly the maximum of the spin current.
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the current is not uniformly distributed along the chain. In
particular, the only nonzero component is I Sz

n . This is due
to the uniaxial anisotropy being aligned along the z axis,
whereas the I Sx

n and I
Sy
n components vanish on average due

to symmetry considerations. Evidently, the spin current has a
maximum in the middle of the chain. The site-dependent spin
current is an aftermath of the nonuniform magnon temperature
profile applied to the system. This effect was not observed in
the single macrospin approximation and is only relevant for
the nonuniformly magnetized finite-size magnetic insulator
sample. In addition, one observes that the amplitude of the
spin current increases with increasing the thermal gradient.
This is predictably natural; less so, however, is the presence of
a maximum of the spin current observed in the middle of the
chain. We interpret this observation in terms of a collective
cumulative averaged influence of the surrounding on the
particular magnetic moment. For a linear temperature gradient,
e.g., as in Fig. 2, we have �T = T1−TN

aN
. Thus, half of the spine

located at the sites i < N/2 possess temperatures above the
mean temperature T1/2, while the other half have temperatures
below the mean temperature. Further, the main contributors
to the total spin current are the hot magnetic moments with
temperatures above the mean temperature Tn > Tav and with
a positive exchange spin torque Qn > 0, while magnetic
moments with a temperature below the mean temperature
Tn < Tav, Qn < 0 absorb the spin current and have a negative
contribution in the total spin current. This nonequivalence of
magnetic moments results in a maximum of the total spin
current in the center of the chain. In what follows the magnetic
moments with temperatures higher than the mean temperature
in the chain are referred to as hot magnetic moments, while the
magnetic moments with temperatures lower than Tav we refer
to as cold magnetic moments (i.e., our reference temperature
is Tav). The idea we follow is that the hot magnetic moments
cause the total spin current which is partly utilized for the
activation of the cold magnetic moments. The inset of Fig. 2
illustrates this statement. The maximum of the spin current
(solid circles) is observed in the vicinity of the sites where the
exchange spin-torque term Qn changes its sign from positive
to negative (solid triangles), highlighting the role of the hot and
cold magnetic moments in finite-size systems. To further affirm
this, we consider two different temperature profiles—linear
and exponential—with slightly shifted values of the mean
temperature (Fig. 3). The dependence of the maximum spin
current on the mean temperature is a quite robust effect and
slight shifts of the mean temperature to the left lead to a
certain shifting of the spin current’s maximum. The effect
of the nonuniform spin current passing through the finite-size
magnetic insulator might be tested experimentally using the
SSE setup in which the spin current’s direction is parallel to
the temperature gradient. One may employ the ISHE using a
FM insulator covered by a stripe of paramagnetic metal, e.g.,
Pt at different sites (cf. Ref. [24]), albeit the chain must be
small (�1 μm).

C. Role of boundary conditions

To elaborate on the origin of the observed maximum of
the spin current, we inspect the role of boundary conditions.
In fact, in spite of employing different boundary conditions
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0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0

2.5

Site number, n

Sp
in

cu
rr

en
t

10
11

s
1

1 25 50
20

31.2
34.4

50

n

T n
K

Temperature
Profile

FIG. 3. (Color online) Z component of the statistically averaged
spin current for the linear �T = T1 − T50 and exponential �T (n) =
50 K e−(n−1)/50 temperature gradients. The slight shift of the mean
temperature to the left leads to a certain shifting of the maximum
spin current to the left. The inset shows the temperature distribution
in the FM chain.

for the chain we observe the same effect [Fig. 4(a)], from
which we can conclude that the effect of the cold and hot
magnetic moments is inherent to the spin dynamics within
the chain, which is independent from the particular choice of
the boundary conditions. Furthermore, we model the situation
with the extended region at the ends of the FM chain [Fig. 4(b)],
in which the end temperatures are constant (i.e., one might
imagine the heat reservoirs to have finite spatial extensions).
Modeling the ends of the FM chain with zero temperature
gradient by means of the LLG equations is certainly an
approximation, which can be improved by employing the
Landau-Lifshitz-Bloch equations reported in Ref. [12]. It cap-
tures, however, the main effects at relatively low temperatures:
the flow of the spin current for the decaying spin density away
from the T = const-�T interface and a nonzero integral spin
current for the sites 0 < n < 50 and 150 < n < 200. As we
see even in the fragments of the chain with a zero temperature
gradient the spin current is not zero. The reason is that the
formation of the spin-current profile is a collective many-body
effect of the interacting magnetic moments. Therefore, the
fragment of the chain with nonzero temperature gradient (sites
50 < n < 150) has a significant influence on the formation of
the spin-current profiles in the left and right regions of the
chain where the temperature gradient vanishes.

D. Temperature dependence of the longitudinal spin current

Figure 5 shows the dependence of the z component of the
averaged longitudinal spin current on the temperature gradient.
Though the spin current within the chain is not uniform,
the dependence of the local spin current detected in the
middle of the chains I26(�T ) (inset of Fig. 5) is linear and
the amplitude of the spin current increases with the temperature
gradient. This result is consistent with the experimental facts
(Refs. [4,5]) and our previous analytical estimations obtained
via the single macrospin model [14]. Additionally, irrespective
of the temperature bias, the I Sz

n dependence remains symmetric
and no saturation of the spin current can be observed for this
thickness.
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FIG. 4. (Color online) Effect of distinct boundary conditions. (a)
Only the values of the first and last magnetic moments are kept
constant, resulting in the same maximal spin current for the site
number corresponding to the mean temperature of the system. The
effect of the cold and hot magnetic moments is independent of
the particular choice of the boundary conditions for the following
numerical parameters: �T = 50 K, α = 0.01, and H0 = 0 T. The
temperature gradient is defined �T = T1 − T50, where T1 = 50 K. (b)
Different temperature profiles are imposed on the boundaries: a linear
temperature gradient (thick red curve) and a constant temperature
for the ranges 0 < n < 50 and 150 < n < 200 (thin blue curve).
For the fragments of the chain with zero temperature gradient the
spin current is not zero, which results from the formation of the
spin-current profile as a collective many-body effect of the interacting
magnetic moments. Therefore, the fragment of the chain with nonzero
temperature gradient (sites 50 < n < 150) has a significant influence
on the formation of the spin-current profiles in the left and right zero
temperature gradient parts of the chain.

E. Finite-size effects

Finite-size effects are considered relevant for the exper-
imental observations (e.g., Ref. [4]). In the thermodynamic
limit N 
 1 we expect the formation of equilibrium patterns
in the spin-current profile corresponding to the zero exchange
spin torque Qn = 0 between nearest adjacent moments. To
address this issue, the spin current for chains of different
lengths is shown in Fig. 6. Obviously, in the case of N = 500
magnetic moments large pattern of the uniform spin current
corresponding to the sites 50 < n < 450 is observed. In order
to understand such a behavior of the spin current for a
large system size, we plotted the dependence on the site
number of the exchange spin torque Qn (Fig. 7). As we see,
the exchange spin torque corresponding to the spin-current
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FIG. 5. (Color online) Dependence of the averaged spin current
on the strength of the temperature gradient. Numerical parameters
are α = 0.01 and H0 = 0 T. The temperature gradient is defined as
�T = T1 − T50, where T1 = 50 K. The inset shows the averaged
spin current for the 26th site. The maximum current increases with
elevating the temperature gradient.

plateau is characterized by large fluctuations around zero
value, while nonzero positive (negative) values of the exchange
spin torque Qn observed at the left (right) edges correspond
to the nonmonotonic left and right wings of the spin-torque
profile. One may try to interpret the observed results in
terms of the so-called magnon relaxation length (MRL) λm ≈
2
√

(DkBT/�2)τmmτmp (Refs. [5,6]), where D is the spin-wave
stiffness constant and τmm,mp are the magnon-magnon and the
magnon-phonon relaxation times, respectively. The MRL is
a characteristic length which results from the solution of the
heat-rate equation for the coupled magnon-phonon system [5].
The physical meaning of λm is an exponential drop of the space
distribution of the local magnon temperature for the given
external temperature gradient �T . In other words, although
the externally applied temperature bias is kept constant, the
thermal distribution for magnons is not necessarily linear. In
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FIG. 6. (Color online) The dependence of the averaged spin
current on the length of the FM chain. Numerical parameters are
α = 0.01 and H0 = 0 K. The temperature gradient is linear and
the maximum temperature is on the left-hand side of the chain
(T1 = 100 K). In all cases the per-site temperature gradient is
�T/N = 0.2 K.
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FIG. 7. (Color online) The dependence of the exchange spin
torque on the site number. Numerical parameters are α = 0.01 and
H0 = 0 K. The temperature gradient is linear and the maximum
temperature is on the left-hand side of the chain (T1 = 100 K).
The per-site temperature gradient is �T/N = 0.2 K. The exchange
spin-torque profile consists of three parts. The positive part corre-
sponds to the high-temperature domain and low-temperature domain
corresponds to the negative exchange spin torque. In the middle of
the chain, where the spin current is constant, the exchange spin torque
fluctuates in the vicinity of the zero value.

general, one may suggest a sinh(x)-like spatial dependence [5]
and a temperature dependence λm(T ). Estimates of the MRL
for the material parameters related to YIG (Supplemental
Material of Ref. [5]) and TN = 0.2 K yield the following: λm ≈
10 μm [29]. As seen from Fig. 6 the length starting from which
the saturation of the spin current comes into play as long as the
FM chain exceeds the length 20 nm × 100 ≈ 2 μm. However,
we recall that MRL is a witness of the deviation between the
magnon and the phonon temperature profiles. Therefore, for
interpreting the nonmonotonic parts of the spin-current profile
(Fig. 6) in terms of the MRL one has to prove the pronounced
deviation between magnon and phonon temperatures at the
boundaries. For further clarification we calculate the magnon
temperature profile. This can be done self-consistently via
the Langevin function 〈Mz

n〉 = L
(〈Mz

n〉Hn/kBT m
n

)
. Here Hz

n

is the z component of the local magnetic field which depends
on the external magnetic field and the mean values of the
adjacent magnetic moments 〈Mz

n−1〉, 〈Mz
n+1〉 [see Eq. (4)].

Figure 8 indicates that the magnon temperature profile follows
the phonon temperature one. A pronounced deviation of the
phonon and the magnon temperatures is observed only on the
left edge of the chain and gradually decreases, becoming small
on the MRL scale. Close to the end of the chain the temperature
difference becomes almost zero. This means that the left
nonmonotonic parts of the spin-current profile Fig. 6 can be
interpreted in terms of nonequilibrium processes. Comparison
of this result with the exchange spin-torque profile depicted
in Fig. 7 convinces us that in this part of the spin chain the
exchange spin torque is positive. For this reason, the spin
current In increases with the site number n. The saturated
plateau of the spin current shown in Fig. 6 corresponds
to the zero exchange spin torque Qn = 0 (cf. Fig. 7) and
the decay of the spin-Seebeck current In at the right edge
corresponds to the negative spin exchange torque Qn < 0.
Therefore, for the formation of the convex spin-current profile
the key issue is not the difference between magnon and phonon
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FIG. 8. (Color online) The magnon temperature profile (line)
formed in the system. Numerical parameters are α = 0.01 and
H0 = 0 K. The blue line corresponds to the applied linear phonon
temperature profile. The maximum temperature on the left-hand side
of the chain is (T1 = 100 K). The per-site temperature gradient is
�T/N = 0.2 K. The maximal deviation between the phonon and
magnon temperatures is observed only at the left edge of chain. The
difference between temperatures gradually decreases and becomes
almost zero for the sites with n > 400.

temperatures. This is relatively small. In fact, the key element
is the magnon temperature profile. The existence of the hot
(cold) magnetic moments with the local magnon temperature
above (below) the mean magnon temperature generates the
spin current. This difference in the local magnon temperature
of the different magnetic moments drives the spin current in
the chain. On the other hand, any measurement of the spin
current done in the vicinity of the right edge of the current
profile will demonstrate a nonvanishing spin current in the
absence of the deviation between the magnon and phonon
temperature profiles. This may serve as an explanation of the
recent experiment [18], where a nonvanishing spin current
was observed in the absence of the deviation between the
magnon and the phonon temperature profiles. We note that
zero values of the spin current shown in Fig. 6 is an artifact of
the isolated magnetic insulator chain. Real measurements of
the spin currents usually involve FM insulator/NM interfaces.
As shown below, the interface effect described by an enhanced
Gilbert damping and the spin torque lead to a nonzero spin
current at the interfaces, which is actually measured in the
experiment.

F. Role of the external magnetic field (H0 �= 0)

It follows from our calculations that the dependence of the
longitudinal spin current on the magnetic field is not trivial.
As in Sec. V D, we focus on the middle of the FM chain with
N = 50 and the results for the spin current I

Sz
26 (H0). Once the

external static magnetic field is applied perpendicular to the
FM chain and along the easy axis at the same time, we can
suppress the spin current at elevated magnetic fields [Fig. 9(a)].
The threshold magnetic field is—as expected—the strength of
the magnetocrystalline anisotropy field, i.e., 2K1/MS ∼ 0.056
T. By applying magnetic fields much higher than 0.056 T, the
magnetic moments are fully aligned along the field direction
and hence the X, Y components of the magnetization required
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FIG. 9. (Color online) Effect of the external magnetic field ap-
plied parallel (a) to the easy axis and perpendicular (b) to the easy axis
on the averaged spin current. Parameters of numerical calculations
are �T = 50 K, α = 0.01, and N = 50. The temperature gradient is
linear and the maximum temperature is imposed on the left-hand side
of the chain. The inset of (b) demonstrates the field dependence of the
averaged spin current calculated for the central magnetic moment.

to form the Z component of the longitudinal averaged spin
current vanish.

In the case of the magnetic field being applied perpendicu-
larly to the easy axis, we observe a richer behavior [Fig. 9(b)].
In analogy with the situation observed in Fig. 9(a) there are no
sizable changes for the I26(�T ) dependence at low static fields.
This is the regime where the anisotropy field is dominant. In
contrast to the H z

0 applied field, the spin current does not
linearly depend on the strength of the field [inset of Fig. 9(b)],
which is explained by the presence of different competing
contributions in the total energy density and not a simple cor-
rection of the Z component of the anisotropy field illustrated
in the previous figure. Surprisingly, the magnetic field oriented
along the FM chain can also suppress the appearance of the
spin current’s profile. Also in this case the strong magnetic field
destroys the formation of the magnetization gradient resulting
from the applied temperature bias.

VI. INTERFACE EFFECTS

The experimental setup to detect the spin current might
involve a NM adjacent to the spin-current generating sub-

stance, e.g., a FM insulator. This NM converts the injected spin
current from the FM to an electric current via ISHE [1,5,30].
So it is of interest to see the effect of the adjacent NM on
the generated spin current in the considered chain. Obviously,
the main effects appear in the FM-NM interface. The interface
effect can be divided into two parts, which is described in the
following subsections.

A. Spin pumping and enhanced Gilbert damping

In magnetic insulators, charge dynamics is less relevant (in
our model, anyway), and in some cases the dissipative losses
associated with the magnetization dynamics are exceptionally
low (e.g., in YIG [31] α = 6.7 × 10−5). When a magnetic
insulator is brought into contact with a NM, magnetization
dynamics results in spin pumping, which in turn causes angular
momentum being pumped to the NM. Because of this nonlocal
interaction, the magnetization losses become enhanced [25].

If we consider the NM as a perfect spin sink which remains
in equilibrium even though spins are pumped into it (which
means there is a rapid spin relaxation and no backflow of
spin currents to the magnetic insulator), the magnetization
dynamics is described by the LLG equation with an additional
torque originating from the FM-insulator/NM interfacial spin
pumping [25],

∂ �M
∂t

= −γ [ �M × �H eff] + α

MS

[
�M × ∂ �M

∂t

]
+ �τ sp, (11)

where

�τ sp = γ �

4πM2
S

geffδ(x − L)

[
�M × ∂ �M

∂t

]
, (12)

where L is the position of the interface, e is the electron charge,
and geff is the real part of the effective spin-mixing conduc-
tance. In the YIG-Pt bilayer the maximum measured effec-
tive spin-mixing conductance is geff = 4.8 × 1020 m−2 [25].
In fact, if the spin-pumping torque should be completely
described, one should add another torque containing the
imaginary part of geff [32]. However, we omit this imaginary
part here because it has been found to be too small at FM-NM
interfaces [33].

The aforementioned spin-pumping torque concerns the
cases that we characterized with �M . In our discrete model,
which includes a chain of N ferromagnetic cells, we describe
the above phenomena as

∂ �Mn

∂t
= −γ

[ �Mn × �H eff
n

] + α

MS

[
�Mn × ∂ �Mn

∂t

]
+ �τ sp

n , (13)

where

�τ sp
n = γ �

2

2ae2M2
S

g⊥δnN

[
�Mn × ∂Mn

∂t

]
, (14)

which means the spin pumping leads to an enhanced Gilbert
damping in the last site,

�α = γ �

4πaMs

geff . (15)

As already mentioned, the above-enhanced Gilbert damp-
ing could solely describe the interfacial effects as long as
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we treat the adjacent NM as a perfect spin sink without
any backflow of the spin current from the NM [17,25]. The
latter is driven by the accumulated spins in the NM. If we
model the NM as a perfect spin sink for the spin current,
spin accumulation does not build up. This approximation is
valid when the spin-flip relaxation time is very small and so it
prevents any spin-accumulation buildup. So the spins injected
by pumping decay and/or leave the interface sufficiently fast
and there is no backscattering into the FM [13,34]. We note in
passing that in a recent study concerning this phenomena it was
shown that spin pumping (and so enhanced Gilbert damping)
depends on the transverse mode number and in-plane wave
vector [25].

B. Spin-transfer torque

It was independently proposed by Slonczewski [35] and
Berger [36] that the damping torque in the LLG equation
could have a negative sign as well, corresponding to a negative
sign of α. This means that the magnetization vector could
move into a final position antiparallel to the effective field.
In order to achieve this, energy has to be supplied to the FM
system to make the angle between the magnetization and the
effective field larger. This energy is thought to be provided by
the injection of a spin current �I incident to the FM [13,32,37]

�τ s = − γ

M2
SV

{ �M × [ �M × �I injected]}, (16)

which describes the dynamics of a monodomain FM of volume
V that is subject to the spin current �I incident and modifies
the right-hand side of the LLG equation as a source term. In
general, a torque term additional to the Slonczewski’s torque
[Eq. (16)] is also allowed [32,38],

�τ sβ = − γ

MSV
β[ �M × �I incident], (17)

where β gives the relative strength with respect to the
Slonczewski’s torque [Eq. (16)].

For the case of a FM chain, we assume that the above
spin-transfer torques act solely on the last FM cell.

C. Numerical results for interface effects

In order to simulate the enhanced Gilbert damping and
the spin-transfer torque, we assume that they act only on the
chain end (motivated by their aforementioned origin). So the
dynamics of our FM chain is described by the LLG [19,20]
equations

∂ �Mn

∂t
= − γ

1 + α2

[ �Mn × �H eff
n

]
− γα

(1 + α2)MS

{ �Mn × [ �Mn × �H eff
n

]}
,

n = 1, . . . ,(N − 1), (18)

and

∂ �MN

∂t
= − γ

1 + α2
N

[ �MN × �H eff
N

]
− γαN(

1 + α2
N

)
MS

{ �MN × [ �MN × �H eff
N

]}
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FIG. 10. (Color online) Statistically averaged spin current in the
chain of N = 500 sites. Numerical parameters are �T = 100 K,
α = 0.01, and H0 = 0 T. The temperature gradient is linear and the
maximum temperature is on the left-hand side of the chain (T1). (a)
The blue curve shows the averaged spin current when no enhanced
Gilbert damping and no spin-transfer torque is present. The red
curve shows the averaged spin current when the enhanced Gilbert
damping with geff = 1.14 × 1022 m−2 is present. The inset shows
the averaged spin current of the last 50 sites only. (b) Numerical
parameters are geff = 1.14 × 1022 m−2 and β = 0.01. The blue curve
has �I incident = 1 × 1015(−1,0,0) �s−1 and the red curve is with
�I incident = 5 × 1015(−1,0,0) �s−1.

− γ

M2
Sa3

{ �MN × [ �MN × �I injected]}

− γ

MSa3
β[ �MN × �I incident], (19)

where αN = α + γ �geff/(4πaMs).
Equations (18) and (19) describe the magnetization dy-

namics in the presence of the interface effects and include
both spin-pump and spin-torque effects. Results in the absence
of the spin torque are presented in Fig. 10(a). The enhanced
Gilbert damping captures losses of the spin current associated
with the interface effect. A nonzero spin current corresponding
to the last n = 200 spin quantifies the amount of the spin
current pumped into the NM from the magnetic insulator.
However, the convex profile of the spin current is observed
in the presence of the interface effects as well. The influence
of the spin torque on the spin-current profile is shown in
Fig. 10(b). The most important information from these results
is that the large spin torque reduces the total spin cur-
rent following through the FM-insulator/NM interfaces. The
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spin-torque current is directed opposite to the spin-pump
current and therefore compensates it.

VII. MECHANISMS OF THE FORMATION OF EXCHANGE
SPIN TORQUE AND SPIN-SEEBECK CURRENT

In the previous sections we demonstrated the direct connec-
tion between the spin-Seebeck current profile and the exchange
spin torque. Here we consider the mechanisms of the formation
of the exchange spin torque. For this purpose we investigate
changes in the magnetization profile associated with the
change of the magnon temperature 〈�Mz

n〉 = 〈Mz
n〉 − 〈Mz

0n〉,
where 〈Mz

n〉 is the mean component of the magnetization mo-
ment for the case of the applied linear thermal gradient, while
〈Mz

0n〉 corresponds to the mean magnetization component in
the absence of thermal gradient �T = 0. Quantity 〈�Mz

n〉
defines the magnon accumulation as the difference between the
relative equilibrium magnetization profile and excited one [39]
and is depicted in Fig. 11. We observe a direct connection
between the magnon accumulation effect and the exchange
spin torque. A positive magnon accumulation, meaning an
excess of the magnons compared to the equilibrium state is
observed in the high-temperature part of the chain. While in
the low-temperature part the magnon accumulation is negative,
indicating a lack of magnons compared to the equilibrium
state. The exchange spin torque is positive in the case of the
positive magnon accumulation and is negative in the case of
the negative magnon accumulation (the exchange spin torque
vanishes in the equilibrium state). From the physical point of
view, the result is comprehensible: The spin-Seebeck current
is generated by the magnon accumulation, transmitted through
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FIG. 11. (Color online) Site dependence of the magnon accumu-
lation effect and the exchange spin torque (top inset) showing a
direct connection between the magnon accumulation effect and the
exchange spin torque for the given temperature profile (bottom inset).
A positive magnon accumulation, i.e., an excess of the magnons,
is observed in the high-temperature part of the chain, while in the
low-temperature part the magnon accumulation is negative (lack
of magnons compare to the equilibrium state). The exchange spin
torque is positive for a positive magnon accumulation and negative
for a negative magnon accumulation. The spin-Seebeck current is
generated by excess magnons, transmitted through the equilibrium
part of the chain and partially absorbed in the region with magnon
drain.

the equilibrium part of the chain, and partially absorbed in the
part of the chain with a negative magnon accumulation.

VIII. INFLUENCE OF FERROMAGNETIC DOMAINS ON
THE SPIN CURRENT

Among the various mechanisms/energies governing the
magnetism of a material, the exchange interaction is usually
dominant with an associated energy typically exceeding the
dipole-dipole interaction by at least two orders of magnitude.
Since, however, the exchange interaction has a short-range
contribution, in FM materials with a length exceeding con-

siderably the exchange length
√

A/(μ0M2
S) the dipole-dipole

interaction causes formation of FM domains [22,23]. In order
to address this issue in the context of the present work,
the methodology of Ref. [40] was employed to enforce
the formation of domain walls by implementing boundary
conditions such that the magnetization at the chain ends is
aligned antiparallel. First, we assured that at T = 0 K and
�∇T = 0 K the ground-state configuration is a FM domain wall
of the Bloch type (inset of Fig. 12). When applying a thermal
bias to the FM chain, we observe that the domain wall shifts
towards the hot edge of the system (Fig. 12). This is because
the free energy of the domain wall F = E − T S is a
monotonically decaying function of the temperature, where
E is the internal energy density and S is the entropy
density. Thus, the motion of the domain wall to the hot edge
minimizes the energy. In addition, we studied the influence
of the domain wall on the spin-current profile and found that
the total modifications are not significant (Fig. 13). Therefore,
we argue that for the sizes of FM chains considered here our
statements concerning the magnon accumulation effect, the
exchange spin torque, and the formation of the spin current
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FIG. 12. (Color online) Statistically averaged (1000 times) re-
duced magnetization configuration (top bar) and its Cartesian
components (the graph) as a function of the site number. Numerical
parameters are �T = 40 K, α = 0.1, aFM = 1 nm, and H0 = 0 T.
The temperature gradient is linear; the maximum temperature is on
the left-hand side of the chain (T1 = 40 K). A domain wall is formed
due to the assumption of antiparallel alignment of the magnetization
at the ends of the chain. The inset shows T = 0 K and �∇T = 0 K
configuration with no averaging.
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FIG. 13. (Color online) Cartesian components of the statistically
averaged longitudinal spin current as a function of the site number
for the numerical parameters and the domain wall as in Fig. 12. The
spin current is averaged over 1000 realizations.

still hold even in the presence of the dipole-dipole interaction
that causes a formation of FM domains.

We finally note that the results for the spin current shown
in Fig. 13 can support the hypothesis of the field-dependent
spin current reported in Ref. [7] for a mm-sized YIG sample.
The authors claim that the scattering of magnons on the
domain walls suppresses the spin current at low magnetic
fields, which is eliminated upon increasing the magnetic field.
As a consequence, there exists a threshold magnetic field
above which the spin current rapidly increases. We observe
a similar effect in Fig. 13: In the middle of the domain wall
the spin current for the chosen geometry changes its sign.
As in this experiment, when one applies a sufficiently strong
magnetic field, the magnetic configuration changes from the
one shown in Fig. 12 to a strictly collinear alignment of the
magnetic moments, resulting in a sign-independent and hence
a high-net-spin current.

IX. CONCLUSIONS

Based on the solution of the stochastic LLG equation
discretized for a chain of FM insulators in the presence of
a temperature gradient formed along the chain, we studied
the longitudinal SSE with a focus on the space-dependent
effects. In particular, we introduced a definition [Eq. (10)] and
calculated the longitudinal averaged spin current as a func-
tion of different temperature gradients (Fig. 3), temperature
gradient strengths (Fig. 5), distinct chain lengths (Fig. 6), and
differently oriented external static magnetic fields (Fig. 9).
Our particular interest was to explain the mechanisms of
the formation of the spin-Seebeck current beyond the linear
response regime. The merit was in pointing out a microscopic
mechanism for the emergence of the spin-Seebeck current in
a finite-size system. In contrast to the macrospin case [14], we
obtained a highly nonuniform distribution of the spin current

within the FM chain, typically showing a maximum in the
middle of the chain (e.g., Figs. 2, 3, and 6). In addition, we have
shown that, within our model, the microscopic mechanism of
the spin-Seebeck current is the magnon accumulation effect
quantified in terms of the exchange spin torque. We proved
that the magnon accumulation effect drives the spin-Seebeck
current even in the absence of significant deviation between
magnon and phonon temperature profiles. Our theoretical
findings are in line with recently observed experimental
results [18], where nonvanishing spin-Seebeck current was
observed in the absence of a temperature difference between
phonon and magnon baths.

Concerning the influence of the external constant magnetic
fields on the spin-Seebeck current we found that their role is
nontrivial: An external static magnetic field applied perpendic-
ularly to the FM chain and along the easy axis may suppress
the spin current at elevated magnetic fields [Fig. 9(a)]. The
threshold magnetic field has a strength of the anisotropy field,
i.e., 2K1/MS ∼ 0.056 T. In the case of the magnetic field
applied perpendicularly to the easy axis, we observe a more
complex behavior [Fig. 9(b)]. In analogy with the situation
seen in Fig. 9(a) there are no sizable changes for the I26(�T )
dependence at low static fields. This is the regime where the
anisotropy field is dominant. In contrast to the H z

0 applied field,
it does not linearly depend on the strength of the field [inset
of Fig. 9(a)], which is explained by the presence of different
competing contributions in the total energy and not a simple
correction of the Z component of the anisotropy field. Notably,
the magnetic field oriented along the FM chain can also sup-
press the emergence of the spin current’s profile. Also in this
case a strong magnetic field destroys the formation of the mag-
netization gradient resulting from the applied temperature bias.

In addition, we modeled an interface formed by a nonuni-
formly magnetized finite-size ferromagnetic insulator and a
NM (e.g., YIG-platinum junction) to inspect the effects of
the enhanced Gilbert damping on the formation of space-
dependent spin current within the chain. The results of these
simulations (Fig. 10) evidenced a nonvanishing spin current
flowing from the FM/NM interface into the NM.

Finally, we studied the influence of the dipole-dipole
interaction and domain walls on the formation of the spin
current (Figs. 12 and 13). We proved that for the sizes of
FM chains considered here, our statements concerning the
magnon accumulation effect, the exchange spin torque, and
the formation of the spin current still hold even in the presence
of the dipole-dipole interaction that causes domain formation.
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