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interface scattering in superlattices
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We demonstrate the existence of a coherent transport of thermal energy in superlattices by introducing a
microscopic definition of the phonon coherence length. A criterion is provided to distinguish the coherent
transport regime from diffuse interface scattering and discuss how these can be specifically controlled by several
physical parameters. Our approach provides a convenient framework for the interpretation of previous thermal
conductivity measurements and calculations; it also paves the way for the design of a new class of thermal
interface materials.
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I. INTRODUCTION

Understanding the heat transport in condensed matter as
well as at atomic interfaces is a challenging theoretical issue
in solid-state physics [1,2]. Semiconductor superlattices have
drawn attention for the past years for their potential applica-
tions in thermoelectricity [3], in micro- [4] and optoelectronics
[1]. The thermal properties of phonon superlattices have been
widely investigated numerically [5–13] and experimentally
[14–19]. A phonon superlattice corresponds to a periodic
arrangement of different crystalline materials. It forms a
superperiod that confers a new translational symmetry to
the crystal which can impact the phonon dispersion relation
and subsequently the thermal transport properties in different
ways.

For superlattices with perfect interfaces, it has been widely
reported [5,8–15,17,19] that a minimum of the cross-plane
thermal conductivity appears at a particular period thick-
ness dc depending on the nature of the materials. On the
other hand, for superlattices with imperfect interfaces—e.g.,
structural interfacial defects [10–13] or pressure induced
by the lattice-parameter mismatch [6,9]—the cross-plane
thermal conductivity increases monotonically with the pe-
riod thickness. More recently, it has been experimentally
observed [18] that phonons can propagate ballistically in
superlattices.

The concept of phonon coherent transport was invoked
in most of these works to explain the thermal conduc-
tivity trends. However, no clear definition of the coherent
transport by thermal waves has been provided so far. This
concept, which is formally discussed in this paper, should
not be confused with the coherence of subterahertz acoustic
phonons [20,21] which have much longer wavelength than
the thermal phonons and do not play a key role in thermal
physics.

In this work, we first present a microscopic definition
of the spatial coherence of thermal phonons and describe a
method to compute the frequency-dependent spatial coherence
length by tracking the fluctuations of atomic displacement
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at equilibrium. To illustrate our approach, we apply this
theory to argon and silicon superlattices. As a result, we
explain the origin of the minimum of thermal conductivity
for different period thickness which has been widely reported
in the literature.

II. THEORY OF THERMAL PHONON COHERENCE

A. Definition of the spatial phonon coherence length

We first recall that any coherence phenomena can be
formalized as a correlation. For instance, the spatial coherence
of light is related to the spatial correlations of the electro-
magnetic field [22–26]; the spatial coherence of electrons also
involves the spatial correlations of the electromagnetic field
[27] and the spatial coherence of Bose-Einstein condensates
arises from the spatial correlations of wave functions [28–30].
All those models are based on the second-order coherence
theory [31].

We propose here to extend this concept to thermal phonons
by postulating that the spatial phonon coherence corresponds
to the spatial correlations of the atomic displacement fluctua-
tions at equilibrium. When two atoms separated by a distance
l oscillate with a given phase relationship (i.e., nonrandom),
their motion is correlated. Hence, the persistence over which
this correlation remains preserved at l + �l, while increasing
�l, corresponds to the spatial phonon coherence length lc.
These spatial correlations arise from the presence of phonon
wave packets in the system. Within a wave packet, atoms
vibrate in phase, which means they have a correlated motion
with respect to each other. Hence, the spatial coherence length
lc(ω) represents the average spatial extension of a wave packet
at this frequency. As illustrated for instance in Fig. 1, all the
atomic planes located at a distance less than lc/2 from the
reference atomic plane will exhibit motion correlations with
respect to each other.

To formalize this statement, we consider the velocity field
�v (�r 0γ

i , t) of crystal atoms, where �r 0γ

i corresponds to the
equilibrium position of the atom γ belonging to the unit cell
i. Note that the atomic displacement field �u (�r 0γ

i , t) can be
considered instead of the atomic velocity field, provided a
factor ω2 is added to the cross-spectral density function. The
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FIG. 1. (Color online) Illustration of a wave packet extending on
a range of atomic planes on a superlattice composed of two materials
A and B. lc corresponds to its spatial phonon coherence length. The
reference plane is depicted with a dashed line.

atomic positions are decomposed as

�r 0γ

i = �r 0
i + �r γ , (1)

where �r 0
i stands for the position of the cell i at equilibrium

and �r γ the position of the atom γ within the cell.
We define an orthogonal basis with �e‖ the direction along

which the correlations will be done, �e⊥ 1 and �e⊥ 2 two
orthogonal vectors to �e‖.

We introduce the mutual coherence function �α β(|zm −
zn|,τ ), with (m,n) ∈ {1,N‖}2, between two transverse planes
of coordinates zm and zn along the correlation direction �e‖:

�α β(zm,zn,τ ) = 1

kBT N⊥

Nc∑
i=1

Nc∑
j=1

Nb∑
γ=1

√
m

γ

i m
γ

j

〈
vα

(�r 0γ

i ,t
)
vβ

(�r 0γ

j ,t + τ
)〉

δ
[(�r 0

i − �r 0
j

) · �e⊥ 1
]
δ
[(�r 0

i − �r 0
j

) · �e⊥ 2
]

· δ
[�r 0

i · �e‖ − zm

]
δ
[�r 0

j · �e‖ − zn

]
, (2)

where Nc is the total number of cells in the crystal, Nb is
the number of atoms in the cell basis, N‖ is the number of
cells along the direction �e‖, N⊥ is the number of cells in the
orthogonal plane to �e‖, mγ

i is the mass of the atom γ in the cell
i, kB is the Boltzmann constant, δ[x] is the Dirac function, the
superscripts α and β are two components of the vector field,
and T is the system temperature which can be computed as
T = (d Nat kB)−1 ∑

i miv
2
i , with d the dimensionality of the

system and Nat the total number of atoms in the system.
�α β(zm,zn,τ ) is built as a sum of time correlations of

velocity fields between all pairs of atoms separated by
|zm − zn|. In the triple sum, the atoms i and j belong
respectively to the atomic plane located at zm and zn. Taking
the Fourier transform of Eq. (2) allows us to extract the two-
point cross-spectral density function Wα β(zm,zn,ω). For each
frequency of the phonon spectrum, Wα β(zm,zn,ω) contains
the space-dependent correlation along the direction �e‖. The
superscripts α and β are removed to simplify the notation.

The degree of coherence μ(zm,zn,ω) is then calculated from
the two-point cross-correlation function as

μ(zm,zn,ω) = W (zm,zn,ω)

[W (zm,zm,ω)]1/2 [W (zn,zn,ω)]1/2 . (3)

Note that W (zm,zm,ω) corresponds to the local density of
states of all atoms present at z = zm and thus is a real number.
μ(zm,zm,ω) contains the two-point correlation of all possible
pairs of planes. From it, we can now define the spatial cross
correlation, noted C(k�z,ω), as

C(k�z,ω) = 1

N‖ − k

N‖−k∑
i=1

μ(zi,zi+k−1,ω) (4)

with k ∈ {0 . . . N‖ − 1} and �z the spatial resolution of the
correlation. If �e‖ is collinear to one of the lattice vectors, �z

corresponds to the lattice parameter along this direction.
The spatial coherence length is defined as the spatial decay

of the cross-correlation function C(k�z,ω). Therefore, we
can extract the spatial phonon coherence length lc(ω) from
the variance of the normalized cross-spectral density function

[29,30] as

l2
c (ω) =

∑N‖−1
k=0 |C(k�z,ω)|2(k�z)2∑N‖−1

k=0 |C(k�z,ω)|2

−
(∑N‖−1

k=0 |C(k�z,ω)|2k�z∑N‖−1
k=0 |C(k�z,ω)|2

)2

. (5)

The normalized cross-spectral density function plays here
the role of a density probability function. However, this
estimator of the variance is convenient for analytical problems
but too sensitive to noise for numerical simulations.

We define now another estimator based on the cumulative
distribution function F (n�z,ω) of the normalized cross-
spectral density:

F (n�z,ω) =
∑n

k=0 |C(k�z,ω)|2∑N‖−1
k=0 |C(k�z,ω)|2

(6)

with n ∈ {0 . . . N‖ − 1}.
As a cumulative distribution function, F (n�z,ω) is

bounded between 0 and 1. We estimate here the spatial phonon
coherence length lc(ω) as the distance for which the cumulative
distribution function is equal to 95%. In other words, at the
coherence length, 95% of the total correlated signal is taken
into account.

B. Definition of coherent and incoherent phonon
transport in superlattices

We introduce the characteristic dimensionless number
lc(ω)/dSL to determine the phonon transport regime.

When lc(ω) � dSL, the transport of phonon modes at this
frequency is said to be coherent because the spatial extension
of the corresponding wave packet is greater than the period
thickness. It travels in a new homogeneous material, free
of interfaces, with a dispersion relation governed by zone
folding effects of the superlattice. The mean free path is not
impacted by interface scattering. Hence, for high mean free
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path materials, as long as the period remains smaller than lc(ω),
the phonon propagates ballistically as has been experimentally
observed in GaAs/AlAs superlattices [18].

On the contrary, when lc(ω) � dSL, the transport becomes
incoherent. The spatial extension of the wave packet is smaller
than the period thickness, so phonons undergo diffuse interface
scattering. In this regime the mean free path is bounded by the
period thickness of the superlattice.

III. COMPUTATION OF THE SPATIAL PHONON
COHERENCE LENGTH FROM EQUILIBRIUM

MOLECULAR DYNAMICS SIMULATIONS

To compute the cross-spectral density function and so the
spatial phonon coherence length, the statistical fluctuations of
the velocity field �v (�r 0γ

i , t) have to be captured at thermal
equilibrium. This can be done with equilibrium molecular
dynamics simulations.

A. Spatial coherence in argon superlattices

We have first modeled argon superlattices, because it has
a short phonon mean free path [9]. We have employed a
Lennard-Jones (LJ) potential at 40 K. The interatomic potential
between atoms of two different layers has been set following
an arithmetic mean [8]. The first layer is composed of argon
atoms interacting according to a LJ potential with a depth
twice larger than the one of normal argon [32]. In the second
layer, the LJ depth is 2.5 larger than in the first one. Periodic
boundary conditions have been applied along the interface
cross section (2.5×2.5 nm2). The size of the system is then
fixed to 80 nm to prevent size effects from the calculation
of the coherence length. The superlattices have been relaxed
in the NPT ensemble for 2 ns. The time step is fixed at
δt = 1 fs. Equilibrium trajectories of 250 ps with an ensemble
average on ten simulations in the NVE ensemble are consid-
ered to compute the cross-spectral density function.

The local density of states (LDOS) is first computed in
the microcanonical ensemble for various layer thickness, by
calculating the trace of the cross-spectral density function
W (|zm − zn|,ω). Results are depicted in Figs. 2(a) and 2(c). As
dSL increases, a clear evidence of the phonon band folding is
observed below dSL = 4 nm. Above 4 nm, the phonon LDOS
no longer depends on dSL.

The corresponding phonon coherence lengths are also
presented in Figs. 2(b) and 2(d), only for longitudinal phonons
(along �e‖). The transverse phonon case will be discussed later.
The correlation direction �e‖ is along (001). For dSL � 4 nm, lc
decreases when dSL increases, while it becomes independent
from dSL for larger period thickness. As low-frequency
phonons have a large wavelength, their spatial coherence
length should be greater than the high-frequency ones, which
is consistent with Figs. 2(b) and 2(d).

The quantity log10 [lc(ω)/dSL] is depicted in Fig. 3 to
compare the spatial coherence length to the period thick-
ness and so to determine the phonon transport regime. For
dSL � 4 nm, lc(ω) � dSL, the phonon transport is mainly
coherent. The thermal transport is governed by the propagation
of wave packets which do not scatter at the interfaces. In
Fig. 2(a), we observe a clear signature of the folding of the
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FIG. 2. (Color online) (a) The LDOS for dSL from 1 to 4 nm;
(b) spatial phonon coherence length normalized by the system length
for dSL = 1, 2, and 4 nm; (c) the LDOS for dSL for 8 and 16 nm;
(d) spatial phonon coherence length normalized by the system length
for dSL = 8 and 16 nm.

Brillouin zone at various period thickness. For dSL > 4 nm,
the spatial coherence length of the dominant phonon fre-
quencies has the same order of magnitude or is smaller than
dSL. The phonon transport is no longer prescribed by zone
folding effects which are consistently observed in the LDOS
calculation. Interestingly, 4 nm coincides with the critical
thickness dc at which the trend of the thermal conductivity
of this superlattice reverses as reported earlier [9].

Previous results were obtained for a fixed system length L.
Size effect on the phonon coherence length is now investigated
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FIG. 3. (Color online) log10 [lc(ω)/dSL] is calculated to deter-
mine the phonon transport regime. When log10 [lc(ω)/dSL] >0
(respectively <0), the phonon transport is coherent (respectively
incoherent), the wave-packet spatial extension is larger (respectively
smaller) than dSL. The horizontal dotted line indicates the threshold
between the coherent and the incoherent regime.
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FIG. 4. (Color online) Effect of the system size on argon super-
lattices in the coherent regime with dSL = 1 nm.

on argon superlattices in both coherent and incoherent regimes.
Figure 4 shows the impact of the number of periods—i.e.,
of the total length of the superlattice—with dSL = 1 nm. The
coherence length clearly depends on the system length between
L = 30 nm and 80 nm, especially for frequencies lower than
2 THz. Then, a saturation appears at 80 nm so the coherence
length spectrum does not change for larger total length. The
size-effect study was also carried out in the incoherent regime
for argon superlattices with dSL = 16 nm. In Fig. 5, the phonon
coherence spectrum is independent of the system length in
the incoherent regime. Knowing that the coherence length
corresponds to the spatial extension of the wave packets,
when the wave packets are greater than the period thickness,
they can interact to construct a larger wave packet. Hence,
coherence properties depend on the number of unit cells in
the system. Of course, the coherence length for the case of
coherent transport will saturate for superlattice length much
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FIG. 5. (Color online) Effect of the system size on argon super-
lattices in the incoherent regime with dSL = 16 nm.

larger than the dominant phonon mean free path, as umklapp
processes will destroy coherence properties. On the contrary,
in the incoherent regime, the coherence length will reach a
limit when the period thickness is much larger than the mean
free path of each intrinsic material of the superlattice.

B. Spatial coherence in silicon superlattices

We now turn to a more realistic system made of silicon. In
addition to its technological interests [33], the dominant mean
free path 
 in bulk silicon is larger than the system length L

simulated in this paper, contrary to argon superlattices. In this
study, the Stillinger-Weber potential [34] has been considered.
To avoid any pressure effect at the interfaces, we have built
superlattices of silicon and heavy silicon (hSi) atoms with a
mass mismatch mhSi = 2mSi to create an acoustic impedance
mismatch close to the one of real Si/Ge superlattices. The same
simulation parameters than for argon superlattices have been
used to extract the equilibrium trajectories.

The effect of the period thickness dSL is first investigated
at 300 K on both longitudinal (along �e‖) and transverse (along
�e⊥ 1 and �e⊥ 2) components of the velocity field. The length
of superlattices is fixed to 40 nm to avoid any size effect
when changing dSL. The quantity log10 [lc(ω)/dSL] is plotted
in Fig. 6. No significant difference between longitudinal and
transverse phonons is observed. For the sake of clarity, all
the following considerations are developed for longitudinal
phonons but can be generalized for transverse ones. As
dSL increases, lc decreases up to 80% between dSL = 1 and
8 nm. Moreover, the optical-phonon wave packets have a short
coherence length, even for the small period.

Size-effect investigations are carried out to unveil the effect
of the system size L on the spatial phonon coherence length
lc(ω) for Si/hSi superlattices with dSL equal to 1 and 8 nm.
Figure 7 compares the coherence length for L from 20 to
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Transverse

Longitudinal

FIG. 6. (Color online) (a) log10 [lc(ω)/dSL] for the longitudinal
component of the velocity field for Si/hSi superlattices with period
thickness ranging 1–8 nm. (b) log10 [lc(ω)/dSL] for the transverse
components of the velocity field for Si/hSi superlattices with period
thickness ranging 1–8 nm. Coherent transport is observed below
dSL = 4 nm.
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FIG. 7. (Color online) Effect of the system size on Si/hSi super-
lattices with dSL = 1 nm.

160 nm in the coherent regime. The size effect is similar to the
one observed on argon superlattices in the coherent regime.
However, even at 160 nm, the coherence length spectrum does
not completely saturate.

In Fig. 8, two features of convergence can be extracted for
silicon superlattices with dSL = 8 nm. For frequencies lower
than 4 THz, the coherence length does not show any saturation
until L = 160 nm. This is due to phonons that have larger
wavelength. For higher frequencies, a clear saturation of the
coherence length is observed at L = 80 nm.

The temperature effect is next investigated on the su-
perlattice with the highest coherence properties, e.g., dSL =
1 nm and L = 40 nm. The corresponding lc is plotted in
Fig. 9 for temperature ranging 300–1000 K. Increasing the
temperature dramatically alters the coherence properties with
a reduction of lc up to 70% between 300 and 1000 K for optical
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FIG. 8. (Color online) Effect of the system size on Si/hSi super-
lattices with dSL = 8 nm.
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FIG. 9. (Color online) (a) Spatial phonon coherence length lc(ω)
normalized by the system length L for silicon superlattices with
dSL = 1 nm, for T = 300, 600, 800, and 1000 K. (b) Phonon DOS of
the silicon superlattice with dSL = 1 nm at 300 K.

frequencies due to anharmonic scattering. The coherence of the
low-frequency phonons remains very hard to affect.

To investigate how the coherence length can be fur-
ther reduced, we have considered interfacial mixing in a
Si/hSi superlattice with dSL = 2 nm. For each period of the
superlattice, N atomic planes at each side of the Si/hSi
interface are modified by exchanging randomly the nature of
atoms at a certain percentage m. Three configurations have
been compared on Fig. 10(a): perfect interfaces, and where
interfaces includes 10% and 50% of mixing on only the first
contact plane. For frequencies lower than 4 THz, coherence
lengths remain weakly damaged by the defected interfaces, as
phonons have larger wavelength than the interface roughness.
However, coherence is more affected than for the case of high
temperature. For higher frequencies, lc decreases dramatically.
When considering 50% mixing, the coherence length breaks
down for frequencies above 4 THz. An important aspect of this
study reveals that this effect occurs with a very small fraction
of defect atoms (∼1%) compared to the total number of atoms.

Figure 10(b) further illustrates how the mixing expanded on
several atomic planes [33] destroys the coherence properties
for dSL = 2 nm with only 10% of interfacial mixing. Note
that introducing an interfacial mixing over four atomic planes
corresponds to an alloy for this superlattice. When increasing
the number of atomic planes N with mixing, lc(ω) decreases
dramatically up to two orders of magnitude when N goes from
1 to 3 for frequencies larger than 4 THz. Therefore, invoking
coherence effects in superlattices where deep interfacial
mixing occurs remains only valid for phonons with a frequency
below 4 THz; otherwise, interfaces are purely diffuse. In
addition, it also demonstrates that part of the phonons are
still in a coherent regime in alloy systems.

To corroborate our results of coherence to thermal trans-
port properties, we have computed the cross-plane thermal
conductivity κ of the Si/hSi superlattices with a Green-Kubo
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FIG. 10. (Color online) (a) Spatial phonon coherence length
lc(ω) normalized by the system length L for Si/hSi superlattices
with dSL = 2 nm for perfect interfaces (N = 0), then 10% (N =
1; m = 10%) and 50% (N = 1; m = 50%) interfacial mixing on
1 atomic layer away from each interface. (b) Spatial phonon coherence
length lc(ω) normalized by the system length L for Si/hSi superlattices
with dSL = 2 nm for perfect interfaces (N = 0), then 10% (m = 10%)
interfacial mixing on N atomic layers away from each interface,
where N ∈ {1,4}.

approach [35,36] at 500 K. It is illustrated for the case of
perfect interfaces in Fig. 11.

The minimum of thermal conductivity is recovered for
dc = 4 nm. Below dc, the thermal conductivity decreases
while increasing the period thickness dSL due to phonon
band folding. Above dc, as the phonon transport is inco-
herent, interface scattering occurs and the effective interface
conductance becomes independent from dSL. It confirms the
transition from a coherent to an incoherent regime predicted
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FIG. 11. The cross-plane thermal conductivity κ for perfect
Si/hSi superlattices at 500 K from Green-Kubo calculations.

by Fig. 6. This value dSL = 4 nm is also consistent with
previous experiments on strained Si/Ge superlattices [14,15].
In addition, the transition occurs at the same period as
for the previous argon superlattices. Experiments on Si/Ge
superlattices [14,15], on Bi2Te3/Sb2Te3 superlattices [16],
on (Zr,W)N/ScN superlattices [17], and on perovskite oxide
SrTiO3/CaTiO3 and SrTiO3/BaTiO3 superlattices [19] also
showed a transition for the same range of period thickness
despite the different nature of materials.

C. Summary of phonon transport in superlattices

We have seen in the previous sections that many characteris-
tic lengths are involved in the phonon transport in superlattices.
Heat is carried by a wide spectrum of phonon wave packets,
with different transport regimes depending on the magnitude
of the characteristic lengths. Each normal mode has a specific
frequency ν, wavelength λ, and wave vector �k = 2π/λ �u,
where �u is the unit vector indicating the propagation direction.
What follows is developed for a unique normal mode ν(�k) but
should be extended to the whole spectrum when considering
the thermal properties of superlattices. Each wave packet has a
finite spatial extension, defined as the spatial coherence length
lc. As it is depicted in Fig. 12, the coherence length is always
larger than the associated wavelength. The wave packet has a
mean free path 
bulk1 (respectively 
bulk2) in the bulk material
1 (respectively 2), which are the two materials composing the
superlattice. For simplicity, we assume 
bulk1 ≈ 
bulk2 and we
note 
bulk1,2 the average value. The mean free path of the wave
packet in the superlattice 
SL may differ from 
bulk1,2. Finally,
the period thickness dSL and the system length L characterize
the superlattice geometry.

The two main characteristic lengths, which determine the
transport regime of the phonon wave packet in the superlattice,
are the phonon coherence length lc and the mean free path in
bulk materials 
bulk1,2. The comparison between lc and the
period thickness dSL indicates if the transport is coherent or
not in the superlattice. 
bulk1,2 is compared to dSL and also to L

to see if the transport could be ballistic or not in the superlattice.
These analyses lead to six potential transport regimes, depicted
in Fig. 12. For each case is given a schematic trend of the
cross-plane thermal conductivity, first as a function of dSL for
a constant L, then with respect to L for a constant dSL.

Case (a). The coherence length lc is greater than dSL and
the bulk mean free path 
bulk1,2 is larger than the superlattice
length L. The spatial extension of the phonon wave packet is
larger than the period thickness: it is created from the normal
modes of the folded Brillouin zone. Therefore, the larger the
period thickness, the more folded is the phonon dispersion,
opening more and more band gaps. It might lead to a lower
group velocity so to a smaller thermal conductivity. It travels
in an effective homogeneous medium, free of interfaces in a
ballistic regime, as 
bulk1,2 > L. The mean free path 
SL is
thus bounded by the superlattice length L, 
SL = L. As a
consequence, the thermal conductivity exhibits a increasing
trend when making L larger [18].

Case (b). The coherence length lc is smaller than dSL and
the bulk mean free path 
bulk1,2 is greater than the superlattice
length L. The phonon wave packet is located in only one
layer material so it cannot feel the superlattice periodicity. The
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FIG. 12. (Color online) Schematic representation of all phonon characteristic lengths that are involved in the phonon transport in
superlattices. lc is the phonon coherence length, λ is the wavelength associated to the wave packet, dSL is the period thickness of the
superlattice, and L is its length. For simplification, the two bulk materials 1 and 2 are assumed to have a similar mean free path, noted

bulk1,2. Finally, 
SL represents the mean free path of the wave packet in the superlattice. For each of these six cases, two trends for the
thermal conductivity κ are depicted: one as a function of the period thickness dSL with a constant length L and one with respect to L with a
constant dSL.

phonon dispersion corresponds to the bulk dispersion relations
of material 1 or 2, depending on which layer it is. Therefore,
its group velocity is independent from dSL. Even if 
bulk1,2

is greater than L, the wave packet scatters at the interfaces,
limiting the mean free path in the superlattice 
SL to half of the
period thickness. As a consequence, the thermal conductivity
is higher when the distance between the interfaces increases
and is not sensitive to L.

Case (c). Like in case (a), the coherence length is greater
than dSL, so the phonon transport is still coherent and governed
by band folding. As a consequence, the thermal conductivity
decreases when increasing dSL. Here, the bulk phonon mean
free path is smaller than the system length but greater than
dSL. As the wave packet is not sensitive to the interface

scattering, the mean free path in the superlattice 
SL has
the same order of magnitude as in the bulk material. So, the
thermal conductivity does not depend on the system length,
as the superlattice is large enough to have phonon-phonon
interactions.

Case (d). It is identical to case (b). The transport is
incoherent and the interface scattering still limits the phonon
mean free path in the superlattice, 
SL = dSL. So, the thermal
conductivity increases with respect to dSL and is insensitive
to L.

Case (e). The phonon coherence length should be always
smaller than the bulk phonon mean free path. Indeed, consider-
ing a wave packet, which cannot propagate on a distance equal
to its spatial extension without scattering, is not physical.
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Case (f). When the coherence length and the bulk mean free
path are smaller than the period thickness, the wave packet
is located in only one material layer and encounters many
phonon-phonon collisions before scattering at the interfaces.
So the thermal properties of the superlattice correspond to an
average of the two bulk materials with the addition of the
interface resistance between them. κ is thus independent from
dSL and L.

Interestingly, when the phonon transport is coherent [cases
(a) and (c)], it is always associated with a ballistic transport,
meaning 
SL > dSL. In another word, the observed ballistic
transport in superlattices is a consequence of the fact that the
coherence length of phonon wave packets is larger than the
period dSL.

All phonon modes contribute to the total thermal properties
of the superlattice, each one with its own phonon transport
regime. When considering the evolution of the thermal
conductivity with dSL, the transition from a coherent ballistic
regime [case (a) or (c)] to interface scattering regime [case (b)
or (d)] is different for each normal mode. Consequently, the
minimum of thermal conductivity is obtained when most of
the acoustic phonons undergo interface scattering. Finally, we
wish to recall that this minimum is related to the anharmonicity
of the crystal. Indeed, if one considers a harmonic system, the

coherence length should be infinite and no transition to an
incoherent regime could be observed.

IV. CONCLUSION

In this paper, we have defined the coherence of thermal
phonons at the nanoscale by introducing a microscopic theory
of the phonon spatial coherence length lc(ω). This length
can be assessed from the spatial correlation of the atomic
motion in the crystal. We have introduced the characteristic
dimensionless number lc(ω)/dSL which allows us to predict
the switch from a coherent to diffuse interface transport
regime. It generally explains the thermal conductivity trend
of superlattices widely reported so far in the literature, which
exhibits a transition from a coherent to diffuse interface
transport identified by a minimum in the conductivity trend.
Moreover, this method can help to quantitatively predict the
minimum of thermal conductivity as several phonon transport
regimes are involved in superlattices.
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