
PHYSICAL REVIEW B 90, 014301 (2014)

Inhomogeneity as a source of collapse and revival for large-amplitude chirped
coherent A1g phonons in bismuth
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We report a spatially resolved femtosecond pump-probe measurement of the lattice dynamics in bismuth
made at helium temperature over a wide range of excitation levels. We demonstrate that the collapse and revival
of chirped coherent A1g phonons arises due to laterally inhomogeneous excitation conditions, whereas their
enhanced decay can be due to potential damping.
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I. INTRODUCTION

Ultrafast laser pulses, with durations shorter than typical
nuclear vibrations, are widely used to prepare specific con-
densed matter states that would be otherwise inaccessible.
Moreover, the same pulses can be used to study the evolution
of the created state in real time. One of the effects of an
ultrashort laser pulse incident on a crystal is the inducement
of nonstationary lattice states (phonon coherence) in either the
ground or excited electronic states [1]. Ground state coherence,
usually ascribed to impulsive stimulated Raman scattering, is
the dominant contribution in transparent materials, whereas
lattice coherence in the excited electronic state is the main
contribution for opaque crystals that have long-lived electronic
excited states. Among the latter crystals, the most studied
one in the time domain is Bi [1]. Bismuth has two atoms
in the unit cell, and from simple electron counting it should
be a semiconductor [2]. But due to the Peierls distortion
along the trigonal axis coinciding with a fully symmetric
A1g phonon and the trigonal shift in a perpendicular direction
corresponding to a doubly degenerate Eg phonon, the crystal
becomes a semimetal [2,3]. At helium temperature bismuth
exhibits pronounced oscillations of both symmetries (A1g

and Eg) in transient optical reflectivity following ultrashort
pulse laser excitation [4]. The amplitude of the oscillations,
and presumably the atomic displacements, increases with
higher excitation strength. Already at intermediate excitation
strength, the oscillations in Bi were shown to be nonlinear and
time dependent [5]. In this regime, the oscillation frequency
is redshifted and, furthermore, chirped [4–11]: As the oscil-
lations damp, their frequencies return to the values obtained
in low excitation strength experiments. Explanations of the
phenomenon, sometimes referred to as “chirped phonons,”
mainly pertain to two aspects. One attributes the softening
and chirp to lattice anharmonicity induced by high fluence
excitation [5,10], stating that when the oscillation amplitude
damps with time, the contribution to the frequency originating
from the cubic and higher order terms of the lattice potential
becomes less pronounced, and hence the potential restores
to the range where harmonic approximation applies and the
frequency returns to the equilibrium frequency. The other
explanation [8,9] ascribes the softening and chirp to a diffusive
e-h plasma. The screening effect on the bonds between atoms
by the photoexcited plasma gradually dies out as the carriers
on the excited stratum diffuse into the bulk. In bismuth
A1g and Eg phonons both demonstrate chirped frequencies,

nonlinear amplitudes, and a fluence-dependent decay rate
[4,5,11]. Moreover, for Bi there have been theoretical works
which used first-principles density functional calculations to
study the effect of lattice anharmonicity and phonon softening
by the electron-hole plasma on the fully symmetric phonon
dynamics [8,9]. The studies suggested the relative importance
of the electronic softening over lattice anharmonicity that
was experimentally confirmed by coherent control of the A1g

mode [9].
It should be noted that phenomena under high laser fluence

excitation have become a popular topic in recent years due
to the capability of intense laser radiation to produce a high
density plasma and large-amplitude lattice distortions, both
capable of triggering photoinduced transient phase transitions
[12,13]. Increasing the excitation strength in Bi towards the
Lindemann stability limit, it was found that the amplitude
of coherent phonon oscillations is fading away, however, at
a later time the oscillations can reappear. This phenomenon
was initially explained as a quantum mechanical effect and
therefore referred to as “amplitude collapse and revival” [14].
The observation of this phenomenon started a discussion
as to whether the coherent phonons behave classically as
usually assumed, or some quantum effects might contribute
to detected signals [14–16]. However, the results of the
quantum dynamical simulation carried out as a function
of system size suggested that the observed collapse and
revival in photoexcited bismuth [15] cannot be ascribed to
a quantum mechanical effect, but is most likely of a classical
origin. As an alternative explanation, a classical interference
between signals reflected from different parts of the crystal
(polarization beating) was suggested. Such a mechanism of
beats requires the crystal to be excited inhomogeneously,
thereby providing the regions with different atomic amplitudes
and/or electronic densities. In this paper we have studied the
effect of inhomogeneous excitation for large-amplitude A1g

phonons in Bi at helium temperature and concluded that lateral
inhomogeneity combined with phonon chirp can explain the
collapse-and-revival phenomenon, ascribing it to “polarization
beating” instead of “quantum beating.”

II. EXPERIMENT

The pump-probe experiments were performed in a de-
generate pump-probe setup utilizing a 250 kHz regenerative
Ti:sapphire amplifier, delivering 50 fs pulses at λ = 800 nm
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(1.55 eV). In a number of the experiments we also used a
Ti:sapphire oscillator with 35 fs pulses of the same wavelength
and a 80 MHz repetition rate. The induced changes in
reflectivity (�R) were recorded by a fast-scan technique,
enabling a high signal-to-noise level. Crystals were mounted
in an optical helium flow cryostat with a silver paste, with
both the pump and probe beam entering the sample at near
normal incidence. The pump laser beam was polarized along
either the trigonal axis in order to avoid the excitation of doubly
degenerate phonons, or the bisectrix [101̄0] axis, and the probe
beam was always polarized parallel to the binary [12̄10] axis.
The pump beam diameter was fixed at 100 μm, while the probe
diameter was varied between 50 and 100 μm, depending on
the experiment type. The background in the fully symmetric
signal was removed by a high pass filter with a cutoff frequency
of 1.5 THz.

III. EXPERIMENTAL RESULTS AND DISCUSSION

The results of the pump-probe measurements carried out
with the same size (∼=100 μm) of pump and probe beams
are shown in Fig. 1 for four different fluences. The change
in reflection is normalized to the reflection in the absence of
the pump and shown as a function of the time delay between
the pump and probe. At liquid helium temperature and for

FIG. 1. (Color online) (a) Differential change in reflection in Bi
at T = 5 K showing the coherent oscillations for different fluences
(from the top to the bottom: 0.15, 1.2, 7.9, and 9.4 mJ/cm2) in the
case of equal beam size (∼=100 μm) of the pump and probe. Note the
different scales for the upper and three lower panels. (b) Normalized
fast Fourier transform of the oscillatory signals shown in (a).

a pump fluence below 0.15 mJ/cm2, the amplitude of A1g

oscillations is small and increases linearly with excitation
strength [4,11]. In this excitation range, the frequency and
lifetime of oscillations are independent of the pump fluence
and coincide with the frequency-domain data obtained by
spontaneous Raman scattering [11,17]. In the time domain, a
damped harmonic oscillator model fits well the data for delays
up to 100 ps [11]. For the pulses of the regenerative amplifier,
the increase in amplitude rapidly becomes nonlinear and the
frequency and lifetime of the oscillations begin to depend on
time [4–6,11]. Here, the damped harmonic oscillator model
fits the data only for the first few cycles while it gradually goes
out of phase with later oscillations [11], i.e., the frequency
starting at lower frequencies evolves toward higher frequencies
as the oscillations damp. The phonon chirp reflects itself in the
frequency domain as a line-shape asymmetry, as shown in
Fig. 1(b). The fits in real time present such a signal with a low
frequency and a short lifetime component for the early time
delays and with a longer-lived higher frequency component
for the signal at later times [11]. Alternatively, one can fit the
signal to

A(t) = Ae−�t exp[i(νt + ϕ(t))], (1)

where ϕ(t) = βt2 and the instantaneous frequency νinst = ν +
2βt linearly increases in time. The fluence dependence of the
phonon frequency and chirp is shown in Fig. 2. In these data,
the frequency was determined as the inverse of the average
of the first five phonon periods (note that the initial phonon
frequency can be considerably lower than the average, and the
larger softening corresponds to a larger phonon chirp). For high

FIG. 2. (Color online) The A1g phonon frequency, obtained from
the average period over the first five cycles (left scale), and chirp
constant β (right scale) vs pump fluence.
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FIG. 3. (Color online) Semilogarithmic plot of the A1g oscilla-
tions vs delay time, illustrating biexponential decay. The dashed (red)
lines specify the lifetimes of two components.

excitation strengths, the single exponentially decreasing lattice
response stepwise changes to biexponential decay [11], which
is more clearly seen in the data plotted in a semilogarithmic
scale (see Fig. 3). A “new” component, which decays very
fast, increases quite rapidly and becomes dominant in the
coherent response, because the “old” component saturates
for higher fluence. Above a certain threshold the oscillation
pattern in Bi changes spectacularly: The oscillations die out,
however, at some later time they revive, as shown in Fig. 1(a),
exhibiting a collapse-and-revival phenomenon. This behavior
was initially explained in terms of the dynamics of a phonon
wave packet in an anharmonic potential, where the phonon
superposition periodically breaks out and revives to its original
form, implying nonclassical dynamics caused by a discrete
spectrum [14]. The revival is not perfect, signaling that all the
states of the superposition are nearly, but not exactly, in phase.
For a higher fluence, as shown in the bottom panel of Fig. 1(a),
the oscillations die out only to revive again, demonstrating
multiple collapses and revivals with each subsequent revival
happening at a progressively larger delay [18].

In attempting to explain the complicated time-resolved
lattice response in bismuth, we have to bear in mind that both
optically induced lattice distortion and e-h plasma density
can be strongly inhomogeneous in real space due to nonuni-
form excitation conditions. To experimentally minimize the
lateral inhomogeneity arising due to the excitation with a
Gaussian laser beam profile, it is enough to use a probe
spot smaller than the pump spot size, thereby sampling only
a uniformly excited area. Figure 4 depicts large-amplitude
coherent phonon oscillations detected in Bi for approximately
the same excitation conditions as in Fig. 1(a). However, the

FIG. 4. (Color online) The same as the three lower panels in
Fig. 1(a), but in the case when the diameter of the probe beam at
the sample position is twice smaller than the diameter of the pump
beam to ensure a homogeneous excitation profile.

data in Fig. 5 were recorded using a twice smaller probe than
the pump spot diameter [which was the same as for Fig. 1(a)]
in order to provide more uniform excitation conditions and to
investigate spatial variations of the coherent lattice dynamics.
By comparing the data, we can easily see that the collapse-
and-revival pattern disappears for more uniform excitations.
Furthermore, we can scan the pumped area displacing the
probe spot along the bisectrix axis, thus detecting differently
excited areas (high in the center, low at the edges). Even though
in this case each trace exhibits no collapse and revival, the
average of these three traces does demonstrate a clear beating

FIG. 5. (Color online) The oscillations detected for three differ-
ent positions of the probe beam on the pumped area (a) and their
average (b).

014301-3



O. V. MISOCHKO, M. V. LEBEDEV, AND E. V. LEBEDEVA PHYSICAL REVIEW B 90, 014301 (2014)

FIG. 6. (Color online) Numerical solutions of Eq. (2) for an
oscillator without viscous damping, excited (a) displacively and (b)
impulsively. In the left panel the time evolution of the “potential
energy” is shown on the right scale.

pattern arising due to different phases of the oscillations, as
shown in Fig. 6. This phase difference stems from various
phonon chirps that are larger for the central part and smaller
at the peripheries of the pumped area. The collapse is reached
at a time when the phase variation across the width of
the excited area corresponds to ≈π . This time is somehow
inversely proportional to the chirp difference between the
center and the edge of the pumped area and therefore will
increase for every sequential revival, as it has been observed in
experiment [18]. These spatially resolved results demonstrate
that the beating observed at high fluence excitation stems from
different contributions within the laterally inhomogeneous
pumped area. As the initial amplitude, decay rate, and chirp
increase while the averaged frequency decreases with fluence,
the parameters of the coherent oscillations become dependent
on the observation spot. In the center of the pump spot,
the chirp is maximal, whereas for the detection spots away
from the center, the chirp decreases and, as a result, a plane,
uniform phase front of atomic displacements of the excited
area evolves with time into a curved one. It should be stressed
that the peculiar behavior of the large-amplitude coherent
phonons results from phonon chirp. The phonon chirp, that
is, a time-dependent frequency, implies that we are dealing
with a driven oscillator rather than with a free one. The time
evolution of such a driven oscillator crucially depends on
an external time-dependent force, which is primarily formed
by a diffusive e-h plasma. For bismuth, where coherent A1g

phonons are generated kinematically (the so called displacive
mechanism [19]), this means that apart from the force shifting
the potential, one has to take into account the force restoring
the potential to the unexcited situation.

Despite the fact that the collapse and revival vanishes for
laterally uniform excitations, biexponential decay, phonon
softening, and chirp are still present in the data. We now
turn to the behavior of the fluence-dependent decay of large-
amplitude phonons. In attempting to fully describe the lattice
dynamics in a wide range of the used fluences, we are forced

to consider two sources of damping for coherent phonons. The
first one. �1, which is dominant for low fluence excitation,
is analogous to “viscosity friction” on the potential surface,
which damps kinetic energy. However, the experimentally
observed oscillations can be damped by sources other than the
viscous friction. For example, any distribution of frequencies
will broaden the spectral line as well as damp the coherent
oscillations. Therefore, we have to take into account the
damping factor �2 associated with either pure dephasing
and/or different potential curvatures that can effectively reduce
the oscillations. In order to distinguish this kind of damping
from the viscous damping affecting kinetic energy, we will
call it potential damping, keeping in mind that in this case the
oscillations are damped due to a change in potential energy.

To illustrate the assumptions made let us consider a
harmonic oscillator with time-dependent frequency without
viscous damping,

ẍ + k(1 − e−�2t )x = 0, (2)

where the overdot represents differentiation with respect to
time. The solution in terms of amplitude A and phase θ vari-
ables can be written as x = A(t) cos [θ (t)], with the amplitude
being the solution to the nonlinear differential equation [20].
Taking the oscillator excitation either as kinematic (displacive)
or as dynamical (impulsive) and solving Eq. (2) numerically
since there is no general analytic solution, we obtain time
evolution shown in Figs. 5(a) and 5(b). From this figure, one
can see that oscillations damp in time even though the term
responsible for viscous damping is missing. One can see that
the “potential energy” of the oscillator (taken at the classical
turning points) shown in Fig. 5(a) increases in time, reflecting
positively chirped frequency. All the peculiarities result from
the fact that the amplitude and phase for a time-dependent
harmonic oscillator are not uniquely determined variables and
the amplitude and frequency may be time dependent and the
phase nonlinear with respect to time [20]. Physically this
means that the dynamic balance between kinetic and potential
energy just after the generation of large-amplitude coherent
phonons is to some extent destroyed.

So for the condition �1 � �2, which is valid for small initial
displacements and low plasma density, the lattice potential in
Bi can be well approximated as a harmonic potential with
a fixed slope, and the dynamics of the A1g mode resembles
a simple, viscosity damped harmonic oscillator. For larger
initial displacements and/or plasma density when �1 � �2,
the oscillatory frequency effectively becomes time dependent,
starting at a lower frequency and evolving toward a higher
frequency as the oscillations damp.

Now let us try to figure out which factor—anharmonicity
or carrier density—controls potential damping, resulting in
the biexponential decay. First consider the time-independent
anharmonic potential. Since the frequency in the anharmonic
potential depends on the initial displacement, any in-depth
inhomogeneity, stemming from the fact that the coherent am-
plitude at the surface is much larger than that at the penetration
depth end, can induce a distribution of frequencies through a
distribution of initial displacements. Such a distribution of
initial displacements has been observed in Bi by employing
grazing-incidence femtosecond x-ray diffraction [21]. In the
anharmonic potential case, the switch from “fast” to “slow”
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damping [11] must occur approximately for the same coherent
amplitudes corresponding to the situation when atoms cease
to see the anharmonic part of the potential. However, in
the experiments [11] we see quite the opposite behavior:
The change in the damping rate occurs for larger excitation
strengths at smaller amplitudes.

Since the selection rules are modified for the anharmonic
potential one can expect to see higher order harmonics
in the transient response. The relative amplitude of these
harmonics (as compared to the fundamental) must increase
as the initial displacements get larger and the atoms sample
more anharmonic regions of the potential. The dephasing and
viscous damping affecting the damping of the fundamental
and its harmonics in a similar fashion tend to decrease the
amplitude of the oscillations so that the atoms return to regions
of the potential closer to the equilibrium position associated
with higher frequencies. At this, the amplitude and phase
spectra of the harmonics are expected to follow those of the
fundamental [22], i.e., the amplitudes reach a maximum and
their phase flips by π at the resonance frequency. To check the
behavior of the harmonics we obtain the transient reflectivity
of the basal (0001) plane of Bi at intermediate excitation
strength, and in Fig. 7 show the amplitude and phase spectra
obtained by Fourier transforming the oscillations. Only the
first overtone appears in the time-integrated Fourier transform,
even though higher order harmonics are present in the short

FIG. 7. (Color online) Amplitude and phase spectra of large-
amplitude phonons excited on the basal plane [pump and probe
polarizations belong to the (0001) plane].

time dynamics studied by a wavelet transformation [18]. The
faster decay of the higher order harmonics as compare to that
of the fundamental suggests that their damping cannot be due
to dephasing in the static aharmonic potential. We infer that
some anharmonicity responsible for the appearance of higher
order harmonics is present; however, the anharmonicity does
not contribute substantially to the potential damping.

Additionally, a comparison of the phase spectra for the
fundamental and its overtone reveal significant differences.
Indeed, if the fundamental exhibits expected behavior—its
amplitude grows and falls while its phase demonstrates a π

flip at the resonance frequency—the phase behavior of the
overtone is unusual. Instead of a π flip it exhibits a bump built
up around the resonant frequency. Such unusual behavior is
unlikely due to second order scattering since a similar trend
exists for the phase of the doubly degenerate Eg phonons. The
observed features might arise due to phase unwrapping and
are not yet fully understood, but, however, seem to be beyond
the scope of the present paper.

For the case of the electronic nature of potential damping
we must consider two options as the damping term �2 can arise
either due to inhomogeneous screening (the carrier density is
decreasing along the penetration depth) or to homogeneous,
time-dependent screening. In the first case, inhomogeneity
of the photoexcited plasma perpendicular to the excited
surface has to be considered. Up to now we assumed that
one-dimensional (1D) diffusion into the bulk is a dominant
effect to control softening and chirp since both effects increase
with fluence due to increased injection of the photoexcited
carriers, which enhances the screening effect, and we could
ignore the lateral carrier diffusion because the typical spot
size of 100 μm is much larger than the penetration depth,
not exceeding 30 nm for our laser wavelength. The second
option for the electronic nature of the potential damping
is to take into account the time-dependent, homogeneous
potential. The time-dependent potential can be associated with
the forces acting on the bismuth atoms following the creation
of the e-h plasma. It should be stressed that both options will
result in time-dependent frequency and additional damping for
coherent oscillations.

If the broadening �2 is formed by the inhomogeneous or
time-dependent screening resulting from varying slopes of
the potentials, the damping associated with such broadening
can have stronger effects on the decay of higher harmonics
[21], as observed. Therefore, we infer that the main source
of the potential damping in Bi is electronic in nature, coming
from the photogenerated e-h plasma. Additional evidence on
the electronic nature of biexponential decay can be found
in the comparable phonon chirp lifetime and characteristic
decay time of the fast electronic component of the incoherent
response [23]. This fact, together with similar resonance
profiles for the phonon chirp and the fast electronic component
[23], strongly suggest that potential damping �2 is due to
varying slopes of potential on which the bismuth atoms move.
It should be noted that accurate density functional theory
calculations [24] reveal a significant positive contribution to
the displacive force due to the cooling of the excited hot
electron-hole plasma in TiO2. In particular, it was shown
that this ultrafast evolution of the excited-state potential
energy surface could quantitatively explain the experimentally
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observed initial phase using reasonable assumptions for the
parameters characterizing the excited plasma.

To summarize, a fluence-dependent study of the coherent
A1g mode in Bi shows how laser power modifies lattice
properties. The high laser power softens the lattice vibrations
owing to the screening by a photoexcited plasma. It also causes
nonlinear growth of the phonon amplitudes and increased lat-
tice anharmonicity. We demonstrate that near the Lindemann
stability limit the collapse-and-revival pattern appears as a
result of laterally inhomogeneous excitation. In that case, the
beats arise from the interference of polarizations, in which
phonon waves do not have a common level, and are different
from quantum beats, which have a common level. Our results
also demonstrate that a substantial reduction in the lifetime of
coherent phonons that is observed when the large-amplitude

oscillations are produced cannot be accounted for by a simple
harmonic model with viscous damping. Therefore, we suggest
a model where the coherent oscillations are damped as the
result of inhomogeneity or time dependence of the potential
surface. This suggestion needs further testing from a first-
principles theoretical consideration and more experimental
works to obtain a definite answer on the origin of potential
damping.
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