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We investigate the one-dimensional long-range random-field Ising magnet with Gaussian distribution of the
random fields. In this model, a ferromagnetic bond between two spins is placed with a probability p ∼ r−1−σ ,
where r is the distance between these spins and σ is a parameter to control the effective dimension of the model.
Exact ground states at zero temperature are calculated for system sizes up to L = 219 via graph theoretical
algorithms for four different values of σ ∈ {0.25,0.4,0.5,1.0} while varying the strength h of the random fields.
For each of these values several independent physical observables are calculated, i.e., magnetization, Binder
parameter, susceptibility, and a specific-heat-like quantity. The ferromagnet-paramagnet transitions at critical
values hc(σ ) as well as the corresponding critical exponents are obtained. The results agree well with theory, and
interestingly we find for σ = 1/2 the data is compatible with a critical random-field strength hc > 0.
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I. INTRODUCTION

The critical behavior of spin systems with quenched
disorder [1–3] is even today far from being well understood
in contrast to pure models. Such a system with quenched
disorder is the random-field Ising model (RFIM), where
the spins interact ferromagnetically with each other and
additionally a quenched random field with strength h acts
locally on the spins. In short-range models, it is known
that the proposed equivalence [4–6] of the critical behavior
of a d-dimensional RFIM and a (d − 2)-dimensional pure
ferromagnet does not exist. A lower critical dimension of
dc = 3 for the RFIM resulting from the d → (d − 2) rule
was shown to be wrong [7]. The correct value of dc = 2 was
found by Imry and Ma [8] using their famous domain-wall
argument and later proven mathematically by Bricmont and
Kupiainen [9].

A generalization of the short-range model is random-field
Ising magnets with long-range interactions J (r) ∼ r−d−σ ;
the interaction strength J decays like a power law in the
distance r . The exponent σ allows the tuning of the effective
dimensionality of the model, allowing also for noninteger
dimensions. Similar long-range spin glass models, i.e., with
bond disorder, have been studied recently quite intensively for
the case of the fully connected model [10–13] as well as for
the diluted case [14–17]. For the random-field Ising model, it
turned out that the proposed d → (d − σ ) equivalence [18],
which is analogous to the d → (d − 2) rule for short-range
models, is wrong at higher orders of the perturbative expan-
sion [5,19]. However, when one considers also long-range
correlated random fields the situation is more interesting [20].
A related model is the ferromagnetic hierarchical spin model
introduced by Dyson [21], where the interaction strength de-
cays exponentially with the level of the hierarchy. This model
is solvable with exact renormalization, and the hierarchical
couplings are equivalent to long-range power-law couplings in
real space. Because of this equivalence, the critical behavior
of the Dyson hierarchical model with random fields [22,23]
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is expected to be the same as for one-dimensional long-range
models with power-law interactions.

Further analyses of the RFIM with long-range inter-
actions with renormalization-group theory [19,24] or with
mathematical tools [25–28] have been performed. The re-
sult [19,23,24,28,29] that the lower critical dimension in
short-range models (dc = 2) corresponds to the critical value
σc = 1/2 in long-range models is obtained by a scaling
argument similar to the Imry-Ma argument. In this argument
no long-range order exists for σ > 1/2, whereas for σ <

1/2 a phase transition at zero temperature should occur.
The mathematical proofs by Aizenman and Wehr [25–27]
which investigate the existence of such a phase transition
require [25,27]

|Jx,y | � c · |x − y|−(3d/2+δ) (1)

for the long-range interaction between spin x and y, where
c is a constant and δ > 0. Please note that the δ in Eq. (1)
was added later in an erratum [27] which was published after
the original article [26]. We interpret Eq. (1) in the way that
for d = 1 the value σ = 1/2 is excluded in the proof, so a
phase transition for this value of σ seems possible. In the
proof of Cassandro, Orlandi, and Picco [28] σ = 1/2 is also
not taken into account, which allows for the existence of a
phase transition for σ = 1/2 at hc > 0.

Here, we use a slightly different model, where the couplings
are random and only present with a certain probability, but the
interaction strength J has a fixed value. A central question is to
find out whether there is a finite-disorder phase transition for
the model studied here at zero temperature for the borderline
case σ = 1/2. For comparison we also consider a few other
selected values of σ . In parallel and independent of our work,
the same question was tackled via considering the Binder
parameter and a few other observables [29]. For the present
paper, we consider beyond this a full set of independent
physical quantities, also involving the susceptibility and a
specific-heat-like quantity, to study the disorder-driven phase
transitions and to obtain complete sets of critical exponents.

The outline of this paper is the following: First, the model
is described, second the procedure to obtain a ground state for
a given realization of the disorder is briefly outlined, and third
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FIG. 1. (Color online) Left: One-dimensional spin ring with L =
12 Ising spins. Right: Phase diagram of the Gaussian RFIM (corre-
sponding to Ref. [33]), where “F” denotes the ferromagnetic and “P”
the paramagnetic phase, both separated by the phase boundary.

the physical observables and their expected scaling behaviors
are explained. Next, results for the four investigated values of σ

are presented. Last, a conclusion which includes a comparison
of the results with scaling relations and an outlook is drawn.

II. MODEL

We study one-dimensional random-field Ising magnets
with power-law diluted interactions which are based on the
one-dimensional long-range Ising chain [30–32]. Instead of
all-to-all coupling, where the interaction strength decays
with a power law in the distance [18,19,24], we use diluted
interactions with fixed coupling strength, which recently have
been used for spin glasses [14,16]. The Hamiltonian of the
model used here is

H = −J
∑
i<j

εij Si Sj −
∑

i

(Bi + H ) Si,

where J > 0 (here we choose J = 1) is the ferromagnetic
coupling strength and the Si = ±1 are Ising spins distributed
on a ring with circumference L (cf. Fig. 1). Bi are the local
random fields drawn from a Gaussian distribution with zero
mean:

p(Bi) = 1√
2πh2

exp

(
− B2

i

2h2

)
,

where the width h of the distribution controls the disorder
strength. The external homogeneous field H is zero except
for the determination of the susceptibility, where small fields
are needed, for technical reasons. The dilution matrix εij

takes the value 1 if a bond is present between nodes i and
j and 0 otherwise. A bond between non-nearest neighbors
on the ring exists with probability pij , where pij ∼ 1/d1+σ

ij

with dij = (L/π ) sin(π |i − j |/L) (see Fig. 1) as geometric
distance [10,16] between two spins and σ as parameter to
control the effective dimensionality of the model. To avoid
that pij > 1, one applies a short-distance cutoff [16] so that

pij = 1 − exp

(
−A

d1+σ
ij

)
, z =

L−2∑
i=2

piL.

The constant A is calculated numerically by fixing z, the
average number of long-range bonds per node. As the nodes
1 and L − 1 are already neighbors of node L on the ring, the
sum to calculate z starts at the next-nearest neighbor 2.

The universality class of the model can be changed by
varying σ . For 0 < σ < 1/3 the critical exponents assume
their mean-field (MF) values and for 1/3 < σ < 1/2 the model
is assumed to be in the non-MF region [23]. If σ > 1/2,
one expects no phase transition [19,23–28], i.e., the critical
random-field strength hc = 0 for T = 0.

The MF values [19,23,24] of the critical exponents are α =
0, β = 1/2, γ = 1, and ν = 1/σ . In the non-MF domain, i.e.,
1/3 < σ < 1/2 the correlation length exponent ν is not known
exactly, so only the relations [23]

2 − α

ν
= 1 − σ,

β

ν
= 1

2
− σ,

γ

ν
= σ (2)

are known analytically exact. But if, e.g., α is known (α = 0
seems plausible from the results presented below), the first
relation in Eq. (2) allows the determination of ν and thus of the
other exponents. Here, we focus on σ = 0.25, which belongs to
the MF region, σ = 0.4 corresponding to the non-MF domain,
σ = 1/2 right at the predicted border between the non-MF
region and the domain without a phase transition and σ = 1
from the hc = 0 region.

III. OBTAINING GROUND STATES

The critical behavior of a Gaussian RFIM along the
phase boundary is controlled by the zero-temperature fixed
point [34]. Therefore, it is convenient to study the RFIM at
T = 0 and to alter the random-field strength h to cross the
phase boundary (see arrow in Fig. 1). For the calculation of
the exact ground state at T = 0 for a given realization the
undirected graph is mapped to a directed network [35]. The
maximum flow on this network is then calculated using a
Push-and-Relabel algorithm [36], whereof an efficient imple-
mentation exists in the LEDA library [37]. These algorithms
have a polynomial running time [38] and are faster than
Monte-Carlo simulations (see, e.g., Ref. [39]), because no
equilibration time is needed and the ground state is exact. After
one has obtained the maximum flow, the directed network
is mapped back to a ground-state spin configuration. More
details about the mapping to a directed network can be found
in Ref. [33].

IV. OBSERVABLES

After obtaining the spin configuration of a ground state, we
calculate physical quantities of interest. First, we fix H = 0
and use H > 0 only for the calculation of the susceptibility.
The average magnetization per spin is given by

m = [|M|]h =
[∣∣∣∣∣ 1

N

∑
i

Si

∣∣∣∣∣
]

h

, (3)

where N ≡ L is the number of spins and [·]h denotes average
over disorder. This averaging for fixed h is performed over
different realizations of graphs and random fields {Bi}, where
for each configuration of long-range bonds one random-field
realization is used.

The Binder cumulant [40] is calculated via

g(L,h) = 1

2

(
3 − [M4]h

[M2]2
h

)
, (4)
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where in comparison to the original quantity the thermal
average is omitted, because T = 0 and the ground state is
nondegenerate for a Gaussian RFIM. To determine a specific-
heat-like quantity [41] at T = 0 we measure the bond energy

EJ = − 1

N

∑
i<j

εij Si Sj .

Now we are able to differentiate EJ numerically with respect
to h by calculating a finite central difference

C

(
h1 + h2

2

)
= [EJ (h1)]h − [EJ (h2)]h

h1 − h2
, (5)

which results in the specific-heat-like quantity C. The values
h1 and h2 are two consecutive values of the random-field
strength h, which have to be chosen appropriately. The
disconnected susceptibility is given by

χdis = Ld [M2]h, (6)

in which d = 1 in our case.
For the determination of the susceptibility five different

field strengths Hn = n · HL with n ∈ {0,4} of the homo-
geneous external field are applied to the system for each
realization and each value of h. A parabolic fit (for details see
Ref. [42]) to the data points yields the zero-field susceptibility

χ = dm

dH

∣∣∣∣
H=0

,

which is given by the slope of the parabola at H = 0.

A. Scaling in the non-mean-field region

For σ > 1/3, i.e., below the upper critical dimension the
observables should scale close to the critical point hc like
expected from finite-size scaling (FSS) theory (see, e.g.,
Ref. [43]). The magnetization should scale like

m(h) = L−β/ν m̃([h − hc] L1/ν),

with some scaling function m̃.
Close to the critical point, being a dimensionless quantity,

the Binder parameter is assumed to have the following scaling
behavior:

g(L,h) = g̃([h − hc] L1/ν).

The scaling behavior of the singular part of the specific-heat-
like quantity is

C(h) = Lα/ν C̃([h − hc] L1/ν), (7)

and finite-size scaling predicts for the disconnected suscepti-
bility

χdis(h) = Lγ/ν χ̃dis([h − hc] L1/ν). (8)

The scaling behavior for the susceptibility is expected to be

χ (h) = Lγ/ν χ̃([h − hc] L1/ν).

B. Scaling in the mean-field region

For 0 < σ < 1/3, i.e., above the upper critical dimension
du the usual finite-size scaling forms (cf. section IV A) are not
valid (see e.g. Refs. [23,42,44,45]). At the critical point, the

correlation length of the finite system is no longer proportional
to the system size L, but behaves like [42,45] Ld/du and L

needs to be replaced [45] by � = a1L
d/du in the FSS relations,

where a1 is a nonuniversal constant. Therefore, the correlation
length scaling exponent ν has to be replaced in the preceding
section IV A to obtain scaling relations for the mean-field
region by [42,46]

ν∗ = du

d
νMF = 3, (9)

where du = 3σ , d = 1, and νMF = 1/σ has been used. We
therefore use 1/ν∗ = 1/3 instead of 1/νMF = σ in the mean-
field case σ = 1/4 for our finite-size scaling analyses.

C. Corrections to scaling at the lower and upper
critical dimension

Right at the upper critical dimension (du = 4) of the φ4

model, Brézin [47] showed that the correlation length ξ ∝
L(log L)1/4. So, for d = du logarithmic corrections [42,45] to
scaling are expected and the lattice length L has to be replaced
by � = a2L(ln L)1/du .

Right at the lower critical dimension Leuzzi and Parisi [29]
recently proposed a logarithmic finite-size scaling. For the
Binder parameter as well as for the two-point disconnected
correlation function good data collapses for ρ = 1.5 (corre-
sponding to σ = 0.5) and (h/J )c = 2.31(5) were achieved
with logarithmic scaling. In section V C we investigate the
scaling behavior of some observables for σ = 0.5 to check
whether an algebraic or logarithmic scaling appears.

V. RESULTS

Next, we present the simulation results for the different
values of σ ∈ {0.25,0.4,0.5,1}. System sizes from L = 26 =
64 up to L = 219 = 524288 spins and 103 to 106 samples were
used. All shown data points are averages over the given number
of samples, and the statistical errors result from the bootstrap
resampling method [48]. The average number of long-range
bonds per node is fixed to z = 6. For the determination of the
susceptibility, the applied field stride HL of the homogeneous
field is shown in Table I.

A. Mean-field region σ = 0.25

Figure 2 shows the average magnetization per spin calcu-
lated by formula (3) as a function of disorder strength h. For
small h the system is in the ferromagnetic ordered phase,
where m(h) ≈ 1 and for larger values of the random-field
strength the system is in the paramagnetic phase, where h → 0.
With increasing L the curves get steeper suggesting a phase
transition at a critical value of hc ≈ 5.

To determine this critical random-field strength more
accurately, we calculate the Binder parameter, given in Eq. (4).
Finite-size scaling theory predicts an intersection of the curves
for the Binder cumulant for different system sizes at the critical
point hc. This can be seen in Fig. 3, from which we estimate
hc ≈ 5.1.

Next, we investigate the specific-heat-like quantity C,
where we choose h values with distance h1 − h2 = 0.1 in
Eq. (5). Figure 4 shows the peaks of C close to the critical
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TABLE I. System sizes L, smallest external fields HL and number of samples Nsamp which are used to determine the susceptibility for the
given values of σ .

σ = 0.25 σ = 0.4 σ = 0.5 σ = 1.0

L HL Nsamp/104 HL Nsamp/104 HL Nsamp/104 HL Nsamp/104

64 0.300 100
128 0.065 10
256 0.050 5 0.016 10 0.0150 5 0.0250 5
512 0.039 5 0.011 10 0.0110 5 0.0180 5
1024 0.030 5 0.008 5 0.0075 5 0.0125 5
2048 0.023 5 0.006 5 0.0050 5 0.0090 5
4096 0.018 5 0.004 5 0.0038 5 0.0063 5
8192 0.014 5 0.003 5 0.0027 5 0.0044 5
16384 0.011 5 0.002 1 0.0019 5 0.0031 1

point for different system sizes. One can observe that with
increasing system size L the peak height grows as well as the
peak position shifts to larger values of h.

This impression is confirmed by Fig. 5. Apparently, both
the peak heights and the peak positions behave like a power
law with added constant as a function of the number of spins
L. In fact we tested three different possible behaviors of the
peak heights of the specific-heat-like quantity:

C log
max(L) = a + b ln L, (10)

Calg
max(L) = c · (1 + d · Lk), (11)

Ccorr alg
max (L) = c2 Lα/ν∗ · (1 + d2 · Lk2 ), (12)

a logarithmic divergence, an algebraic behavior, and an
algebraic function with a correction term.

All fits are least-squares fits with a reduced chi square
of χ2

red = ∑n
i [(yi − f (xi))/�i]2/ndf, where the degrees of

freedom of the fit are ndf = n − nparam, which is the difference
between the number of data points n and the number of
parameters nparam in the fit-function f . The data points
(xi,yi ± �i) have an error of �i .
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FIG. 2. Average magnetization as a function of random-field
strength h for different system sizes L and σ = 1/4. Data points
are averaged over at least 103 samples and error bars result from 30
bootstrap samples. Lines are guides to the eyes only.

The logarithmic fit yields a reduced chi square of χ2
red ≈ 200

for system sizes L > 256 and χ2
red ≈ 118 for L > 512, which

is quite bad. A better result is obtained with the algebraic fit
where χ2

red = 6.9 (L > 256) or χ2
red = 4.2 for L > 512, which

is ok. Because of these fits, a logarithmic divergence of the
specific-heat-like quantity can be excluded. The fit by Eq. (12)
does not converge for values α/ν∗ > 0, so that we conclude
α/ν∗ = 0. For the peak positions, fits of an algebraic function

hmax(L) = hc + a2 · L−1/ν, (13)

where ν = ν∗ should apply for the MF case σ = 1/4.
Due to the change of curvature of the data, see inset of

Fig. 5, only system sizes L > 2048 were used for the fit.
The fit by formula (13) gives χ2

red = 9.6, hc = 5.13 ± 0.10,
and 1/ν∗ = 0.215 ± 0.071. This value for 1/ν∗ is a bit off
but still compatible within two error bars with the expected
1/ν∗ = 1/3. We also test, see the inset of Fig. 5, a fit by Eq. (13)
for L > 2048 with fixed 1/ν∗ = 1/3. It yields χ2

red = 13.6
and the curves of both fits are quite close to each other, so
1/ν∗ = 1/3 seems possible. Due to these results, i.e., strong
finite-size corrections, the poor quality of the data for smaller
system sizes and therefore the small amount of usable data
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FIG. 3. Binder parameter as a function of random-field strength
h for different system sizes L and σ = 1/4. Data points are averaged
over at least 103 samples and error bars result from 30 bootstrap
samples. Lines are guides to the eyes only.
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FIG. 4. Specific-heat-like quantity C averaged over at least 104

samples as a function of random-field strength h for different system
sizes L and σ = 1/4. Dashed lines are example fits for three system
sizes with fourth-order polynomials to obtain the maxima of C.

points for the fits, the found value of 1/ν∗ is not included in
the average given in Table II.

Figure 6 shows the maxima of the zero-field susceptibility
χ , where the smallest external fields HL, which were used to
determine this quantity, are given in Table I. It seems that the
larger the system size L, the larger the peak height of χ and the
(slightly) more the peak position is at larger values of h. This
behavior is shown in Fig. 7, where the maxima are expected
to increase like

χmax(L) = a3 · Lγ/ν∗
. (14)

A fit to the data with fixed value γ /ν∗ = 0.33 yields a
reduced chi square of χ2

red ≈ 2600. As visible from the double
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C m
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 4.4
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 4.6
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 5.1

27 29 211 213 215 217 219

h m
ax
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)

FIG. 5. Double logarithmic plot of the peak heights of the
specific-heat-like quantity C as a function of system size L for
σ = 1/4. Dotted line denotes logarithmic fit (10) for L > 256 with
parameters a = 0.33(7), b = 0.15(1), and dash-dotted line is an
algebraic fit (11) also for L > 256 with parameters c = 2.49(7),
d = −1.52(9), and k = −0.17(1). Inset: Peak positions of C as a
function of L. Dash-dotted line denotes a fit for L > 2048 by Eq. (13),
where hc = 5.13, a2 = −2.7, and 1/ν∗ = 0.215. Dotted line denotes
same fit but fixed 1/ν∗ = 1/3, resulting in hc = 5.03 and a2 = −5.82.

TABLE II. Results of the ground-state calculations for the inves-
tigated values of σ (line with “m”). For comparison the theoretical
values [19,23,24,50–52] are given, where for σ ∈ {0.4,0.5} α = 0
was assumed to get estimates of the other exponents [cf. Eq. (2)].
Note that for σ = 0.25 the value for 1/ν∗ is given here. The value
γ = 2 for σ = 1 was obtained by calculating the susceptibility
χ = limH→0 ∂m/∂H ∼ h−2 using the equilibrium magnetization
from Ref. [51]. Theoretical values for γ̄ were obtained by using
the Schwartz-Soffer equation (19), except for σ = 1, where trivially
γ̄ /ν = d = 1 from Eqs. (6) and (8).

hc 1/ν β α γ γ̄

σ = 0.25 m 5.13(6) 0.34(6) 0.62(13) 0 1.06(29) 1.98(39)
t 3.9-6.6 0.33 0.5 0 1 2

σ = 0.4 m 4.5(2) 0.30(6) 0.27(8) 0 1.50(54) 2.74(54)
t 2.5 0.3 0.33 0 1.33 2.66

σ = 0.5 m 3.7(2) 0.25(9) 0.06(3) 0 2.00(85) 3.8(13)
t 0.25 0 0 2 4

σ = 1.0 m 0 0.40(8) 0 0 2.19(53) 2.51(83)
t 0 0.5 0 2 2

logarithmic plot in Fig. 7, the data exhibits a clear curvature,
incompatible with a pure power law. When taking finite-size
corrections into account and using

χmax(L) = a4 · Lγ/ν∗ · (1 + d3 · Lk3 ) (15)

again with fixed value γ /ν∗ = 0.33, this results in k3 =
−0.199 ± 0.009 and χ2

red = 0.31. This reduced chi square
value is much smaller than for a fit without corrections. Thus,
the value of γ /ν∗ seems to be appropriate.

The fits to the peak positions of the susceptibility are shown
in the inset of Fig. 7. A fit by formula (13) with fixed value
1/ν∗ = 0.33 fit parameter yields hc = 4.993 ± 0.023 with
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L = 8192
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L = 1024

L = 512
L = 256
L = 128
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FIG. 6. Susceptibility χ averaged over at least 104 samples with
error bars resulting from 30 bootstrap samples as a function of
random-field strength h for different system sizes L and σ = 1/4.
Dashed lines are example fits for three system sizes with a Gaussian
and additional sigmoidal term to obtain the maxima of χ . Note that
for L = 64 and L = 128 χ values up to h = 8 were used to determine
the maxima, but are omitted here for clarity of the plot.
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FIG. 7. Double logarithmic plot of the peak heights of the
susceptibility χ as a function of system size L for σ = 1/4.
Dashed-dotted line denotes algebraic fit (14) with parameters a3 =
0.075 and γ /ν∗ = 0.33 (fixed). Dotted line is an algebraic fit with
a correction term (15) with parameters a4 = 0.170, γ /ν∗ = 0.33
(fixed), d3 = −1.330, and k3 = −0.199. Inset: Peak positions of χ as
a function of L. Dotted line is a fit by Eq. (13) with parameters
hc = 4.993, a2 = 2.39, 1/ν∗ = 0.33 (fixed), and dash-dotted line
denotes a fit by Eq. (16), where hc2 = 5.073, a5 = 0.6, 1/ν∗ = 0.33
(fixed), d4 = 33, k4 = −0.54. Horizontal lines are hc2 = 5.073 and
hc = 4.993, respectively.

χ2
red = 33.6. A fit with correction term

hmax(L) = hc2 + a5 · L−1/ν · (1 + d4 · Lk4 ), (16)

where here ν = ν∗ and fixed 1/ν∗ = 0.33 gives χ2
red = 7.1.

This value is smaller than for a fit without corrections, so we
keep the chosen value 1/ν∗ = 0.33. Further parameters of the
fit by Eq. (16) are hc2 = 5.073 ± 0.057 and k4 = −0.54 ±
0.72.

Next, we perform data collapses of the observables to obtain
estimates for the critical exponents with another independent
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FIG. 9. Data collapse of the magnetization for σ = 1/4. Collapse
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approach. For the determination of the best collapse we used
a python script [49]. Figure 8 shows the collapse for the
Binder cumulant with parameters hc = 5.117 ± 0.005 and
1/ν∗ = 0.357 ± 0.027. The value of 1/ν∗ is compatible with
the expected value 1/ν∗ = 1/3 within the error bar. The quality
of the collapse is very high below the critical point. Above the
critical point, only the two smallest system sizes exhibit a
notable deviation from a joint scaling curve, which can be
attributed to finite-size corrections to scaling.

The data collapse of the magnetization is presented in
Fig. 9. The parameters of the collapse, which has a high
quality around the phase transition h − hc ≈ 0, have the
following values hc = 5.185 ± 0.003, 1/ν∗ = 0.363 ± 0.020,
and β/ν∗ = 0.208 ± 0.003. This means β = 0.573 ± 0.041,
which is compatible within two standard error bars with the
mean-field value β = 1/2.

The result of the data collapse for the specific-heat-
like quantity is shown in Fig. 10, where the important
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parameters hc = 5.168 ± 0.004, 1/ν∗ = 0.317 ± 0.010, and
α = 0 (fixed) were used. Below the critical point, the collapse
is poor, whereas around and above the critical point it is quite
good.

The data collapse of the susceptibility is shown in Fig. 11.
The important parameters of the collapse are hc = 5.108 ±
0.064, 1/ν∗ = 0.313 ± 0.064, and γ /ν∗ = 0.387 ± 0.023.
The quality of the collapse is very good, except for smaller
system sizes L < 2048, where deviations especially around
the critical point occur.

Finally, the data collapse of the disconnected suscepti-
bility (not shown) for system sizes L = 2048 up to L =
131072 yields hc = 5.146 ± 0.003, 1/ν∗ = 0.342 ± 0.001,
and γ̄ /ν∗ = 0.666 ± 0.005. This results in γ̄ = 1.947 ± 0.020
which is compatible with the mean-field value γ̄ = 2 within
three standard errors.

A summary of the results for all critical exponents is shown
in Table II. We have obtained these values by averaging the
results obtained by different methods, respectively. The error
bars are chosen such that they include the values obtained by
the different methods. This should account for systematical
errors, in particular corrections to scaling. This results in all
values being compatible with the mean-field predictions.

B. Non-mean-field region σ = 0.4

For the non-mean-field region, we expect still a clear phase
transition but with different exponents. We have performed
simulations and analyses in the same way as for σ = 0.25. For
brevity, we omit most plots, since they look similar as for the
mean-field case.

As an example, Fig. 12 shows the Binder parameter as
a function of the disorder strength h for σ = 0.4. One can
see an intersection of all curves close to hc ≈ 4.45 indicating
a phase transition at this point. The inset presents the data
collapse of the Binder cumulant which seems quite good, as
the curves for the different system sizes fall onto one curve.
The parameters for this collapse were hc = 4.454 ± 0.015 and
1/ν = 0.300 ± 0.058.
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and system sizes L = 2048 up to L = 32768. Smaller sizes are shown
for comparison.

We have obtained critical exponents for the other quantities
in the same way as discussed above. The results are sum-
marized in Table II. In particular, 1/ν = 0.30(6) agrees with
1/ν = 0.316(9) from Ref. [29] (for ρ = 1.4 in the cited paper).

C. Borderline case σ = 0.5

The value of σ = 1/2 was conjectured [19,23,24,28] to
correspond to the lower critical dimension. Thus, for σ > 1/2
one has hc = 0. Nevertheless, right at the critical value σ =
σc = 1/2, the behavior could also correspond to hc > 0, as
mathematical proofs [25–28] do not exclude the possibility of
a phase transition for σ = σc. We investigated this issue in the
same way as for the cases σ < 1/2.

The curves of the Binder cumulant (Fig. 13) for different
system sizes do not show a clear intersection. This could be a
hint towards hc = 0.
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FIG. 14. Peak positions of the specific-heat-like quantity as a
function of system size L for σ = 1/2. Dotted line is a fit by Eq. (13)
with parameters hc = 3.899, a2 = 2.20, and 1/ν = 0.307. Dashed-
dotted line is a fit by Eq. (16) with hc2 = 3.898, a5 = 2.13, 1/ν =
0.302, d4 = 11, and k4 = −1. Horizontal line denotes hc = 3.899.
Solid line is a logarithmic fit by Eq. (17) with hc3 = 3.71 and a6 =
2.95. Inset: Peak positions of the susceptibility as a function of system
size L. Dotted line is a fit by Eq. (13), where hc = 3.869, a2 = 5.84,
and 1/ν = 0.316. Horizontal line denotes hc = 3.869. Solid line is a
logarithmic fit by Eq. (17) with hc3 = 3.162 and a6 = 9.46.

Thus, we studied the peak positions of the specific-heat-
like quantity as shown in Fig. 14. When fitting a power law
Eq. (13) we obtained hc = 3.899 ± 0.004 and 1/ν = 0.307 ±
0.014 with a quality of the fit of χ2

red = 1.5. This strongly
indicates hc ≈ 3.9 > 0. Note that we also fitted a power law
with correction term (16). The important parameters are hc2 =
3.898 ± 0.008, k4 = −1 ± 12, and 1/ν = 0.302 ± 0.035. The
reduced chi square is now χ2

red = 1.9. To check for logarithmic
scaling [29] another fit function was taken into account:

hmax(L) = hc3 + a6

ln L
, (17)

which leads to χ2
red = 8.4 with the parameters hc3 = 3.71 ±

0.01 and a6 = 2.95 ± 0.12. Thus, a logarithmic scaling as-
sumption seems less compatible with our results than a
power-law behavior (with corrections).

Furthermore, we obtained the susceptibility and the corre-
sponding positions (and heights) of the peaks. In the inset of
Fig. 14 the data for the peak positions of the susceptibility and
fits are presented. The first one by Eq. (13) yields a reduced
chi square of χ2

red = 0.03 with hc = 3.869 ± 0.033 and an
exponent 1/ν = 0.316 ± 0.021. The second fit by Eq. (17)
yields with hc3 = 3.162 ± 0.023 and a6 = 9.46 ± 0.19 to
χ2

red = 0.06, so both fits are compatible with our data. Indeed,
as the inset of Fig. 14 shows, both curves agree very well in
the range of the data points.

Thus, our results clearly support hc > 0 for σ = 0.5.
Although we cannot determine whether the finite-size scaling
is of logarithmic or of power-law type, both suggest that hc >

0. Recent results which support our findings were provided by
Ref. [53], where the Dyson hierarchical random-field model
(cf. Ref. [23]) for σ = 1/2 was investigated numerically for
system sizes up to L = 221. These results strongly indicate
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that the magnetization converges for system sizes L → ∞ to
one common curve at hc > 0. In Ref. [29], Binder cumulants
of a one-dimensional RFIM on a Lévy lattice are studied.
Finite-size scaling analysis of the Binder parameter at the
value σ = 1/2 (corresponding to ρ = 3/2 in the cited paper)
yielded [29] (h/J )c ≈ 2.31(5) > 0.

Finally note that also the data points of the magnetization
(not shown) for various system sizes converge for L → ∞
to one single curve with hc ≈ 4.0 > 0. The complete set of
resulting estimates for the critical exponents is again shown in
Table II.

D. Region without nontrivial phase transition σ = 1.0

Finally we turn to the case σ = 1 where we expect no
phase transition. Figure 15 shows the Binder parameter for
various system sizes. One can see that there is no intersection
between the curves for different system sizes, which means
that hc = 0. This is supported by the fact that the curves of the
magnetization (not shown) for different system sizes do not
converge towards one curve for L → ∞, in contrast to, e.g.,
the case σ = 1/4 (cf. Fig. 2). Thus, the magnetization jumps
from zero for any value h > 0 to m = 1 for h = 0, meaning
β = 0. Nevertheless, for the specific heat-like quantity and the
susceptibilities, we could study (not shown here) the behavior
when approaching h = 0 in the same way as for the previously
discussed values of σ . This results in ν = 0.40(8), α ≈ 0,
γ = 2.19(53), and γ̄ = 2.51(83), as shown in Table II.

VI. CONCLUSION AND OUTLOOK

We have studied exact ground states of one-dimensional
(d = 1) long-range random-field Ising magnets. The proba-
bility p of placing a bond between two spins depends on
the geometric distance r of these spins as p(r) ∼ r−d−σ .
Since polynomial-time running algorithms exist, based on a
mapping to the maximum-flow problem, we could study large
systems numerically with a high number of random samples.
We studied the model for different values of σ , which are rep-
resentatives for the different expected behavior of the model.
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Table II summarizes the obtained values of the critical point
and the critical exponents in comparison with the expected
values from theory. In the mean-field case for σ = 0.25
the critical exponents agree well within error bars with the
theoretical values. The critical point is consistent with values
found for the Dyson hierarchical version [23] of the RFIM.
In the non-mean-field region for σ = 0.4, the exponents also
agree well with theory. The critical point hc does not agree
with the one found in Ref. [23], but these points are anyway
nonuniversal.

In the borderline case σ = 0.5, in particular the critical
point hc > 0 is an interesting result, as only statements [19,23–
28] of the existence of a finite-disorder phase transition for
σ �= 1/2 have been published so far. In addition, mathematical
proofs [25–28] do not exclude the possibility of hc > 0 for
σc = 1/2 at zero temperature. Recent work [29], which was
performed independently and in parallel to our work, supports
hc > 0. In the cited work, an Imry-Ma argument (cf. also
Refs. [19,23,24,28]) is given and also calculations of exact
ground states were carried out independently of our work, but
it was restricted to the analysis of the Binder cumulant and
few other observables. Nevertheless, all measured exponents
agree with theory, if one assumes the theory [cf. Eq. (2)] for
1/3 � σ < 1/2 to be valid also at σ = 1/2. Note that the value
of β is off by a few error bars, but for values close to zero,
one would have to go to large system sizes to see the limiting
behavior.

For σ = 1, the measured critical point hc = 0 agrees with
theory as well as the value for β. Nevertheless, the expected
jumps [52] in the magnetization as β = 0 were not observed.
As usual for first-order transitions, a real jump can be expected
to be visible only in the thermodynamic limit, i.e., for huge
system sizes.

The found value of the correlation length exponent ν does
agree with theory within two error bars, where ν = 1/2 is
predicted [34,52] for σ = 1. Both values for γ and γ̄ are
compatible with the expected values if the error bars are taken
into account.

Next, we check the Rushbrooke equality [54] for the
different values of σ :

α + 2β + γ = 2. (18)

For σ = 0.25 one gets the value α + 2β + γ = 2.30(54),
which fulfills Eq. (18) within the standard error bar. For
σ = 0.4, formula (18) yields α + 2β + γ = 2.04(70), which
is in good agreement with the expected value when the
statistical error is taken into account. For the borderline case
σ = 0.5 between the non-mean-field region and the region
without a nontrivial phase transition, one obtains α + 2β +
γ = 2.11(90), which fulfills Eq. (18) within error bars. In the
region where hc = 0 and thus σ = 1, one gets α + 2β + γ =
2.19(53), which satisfies the scaling relation (18) within the
statistical error. Because of the large error bars, resulting
mainly from the large errors of γ , the tests of the Rushbrooke
equality are not very significant.

We compare the theoretical and estimated values of the
so-called droplet exponent θ . In the mean-field case one
gets [23] θMF = γMF/νMF = 1/νMF = σ . For σ = 0.25, we
cannot check this directly, as we have measured 1/ν∗ rather
than 1/ν. But according to Eq. (9) we get 1/ν = 0.253 ± 0.048

which agrees well with θMF = σ . In the non-mean-field region
one obtains θ = γ̄ /ν − γ /ν. For σ = 0.4 this yields θ =
0.378(81), and for σ = 0.5 we get θ = 0.452(45). In the case
σ = 0.4 it agrees within one and for σ = 0.5 within two error
bars with the prediction θ = σ by Grinstein [18]. But smaller
deviations from this conjecture could not be determined as the
error bars of these quantities are too large. In the case σ = 1,
we obtain θ = 0.13(16) which is compatible with θ = 0 within
the error bar.

The conjecture [18] θ = σ only holds for the Dyson
hierarchical model [22]. It was shown later that this prediction
was perturbatively wrong at higher orders [19] for models
with interaction strengths which decay like a power law in the
distance. However, for our model, we cannot make a statement
whether the conjecture θ = σ holds or not, because for
σ = 0.4,0.5 our data does not allow the determination of small
deviations from this conjecture because of too large error bars.

In a two exponent scenario, the Schwartz-Soffer equa-
tion [55]

γ̄ = 2γ (19)

would hold. For σ = 0.25 formula (19) is valid, when the
statistical error is taken into account. In the cases σ = 0.4 and
σ = 0.5, Eq. (19) is also fulfilled within statistical errors. For
σ = 1 the Schwartz-Soffer equation does not hold.

To summarize, the critical exponents for the investigated
values σ ∈ {0.25,0.4,0.5,1} agree well with theory, most
values within one, few within two error bars. This deviation
might be due to too large system sizes which are needed to
see the infinite-size behavior. The Rushbrooke equality is
fulfilled for all studied values of σ . The droplet exponent
θ agrees well with theory for σ ∈ {0.4,0.5,1}, although a
statement if the conjecture θ = σ holds is not possible. The
two-exponent scenario is supported by the confirmation of the
Schwartz-Soffer equation for σ ∈ {0.25,0.4,0.5}.

For the critical case σ = 1/2, it was found that hc > 0, as
for other recent numerical studies on the Dyson hierarchical
model [23] and for the same diluted model [29] as studied
here. This is an interesting result, because with the Imry-Ma
argument [19,23,24,28] only conclusions for the cases σ <

1/2 or σ > 1/2 are possible. Rigorous studies [25–28] do also
not exclude σ = 1/2 as possible value of a finite-disorder
phase transition at zero temperature. Our data allows no
conclusion about the type of finite-size scaling behavior, as
both an algebraic as well as a logarithmic behavior is possible.

For future studies, it could be of interest to study the same
diluted long-range model on higher dimensional lattices. At
least d = 2 and d = 3 should be accessible using the highly
efficient maximum-flow algorithms used here.
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