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Static and dynamic autocorrelations of charge density, composed of positive point ions and instantaneous
distribution of electron density, are studied in liquid Li in a pressure range from ambient to 186 GPa using
ab initio molecular dynamics simulations. It is shown analytically that the long-wavelength limit of the charge-
charge static structure factor SQQ(k) of liquid metals is proportional to k4. Time-dependent charge-charge
correlations in liquid Li at low pressures show identical relaxation as the density-density time correlation
functions, in complete agreement with the linear response theory, whereas at extreme pressures we observed
different relaxation of the charge and density autocorrelations. The static and dynamic properties of a part of
electron density, that corresponds to the nonspherical distribution around ions, are discussed.
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I. INTRODUCTION

Simple alkali metals Li, Na, K, Rb, Cs reveal fascinating
changes of structural, electronic, and dynamic properties under
pressures. Numerous structural transformations were found
in the solid alkali metals with increasing pressure [1], while
the physical properties of liquid alkalis under high pressure
were essentially not studied. There were reports on rapid
changes in molten Na under high pressure [2]. A tetrahedral
clustering in liquid Li that takes place at pressure ∼150 GPa
and leads to the tetrahedral order of the closest of the nearest
neighbors of each ion was reported in [3]. The electron wave
functions of the highly compressed Li were found [3] to
become mostly of p type and localized in the interstitial
regions. Recently ab initio simulations of liquid Rb [4],
performed in a pressure range up to 27.4 GPa at T = 573 K,
revealed a dynamic crossover observed in the behavior of
self-diffusion and sound propagation as functions of increasing
density. Detailed analysis of electronic and static properties
revealed that the observed dynamic crossover is a consequence
of a structural transition at pressure ∼12.9 GPa to a low-
coordinated phase of liquid Rb with partial localization of
electrons.

Liquid alkali metals at ambient conditions can be success-
fully explored by computer simulations with solely effective
pair potentials [5,6]. However this is not the case when the
liquid metals are studied under high pressure. Essentially
non-free-electron distribution of electron density in solid and
liquid metals under high pressure [7,8] is caused by squeezing
out the electron density into interstitial regions (pockets). In
the case of crystals (such as Li [3,7] or Na [2]) at high pressures
those pockets can become isolated, separated by ionic cores,
and the system turns into a nonmetal. In liquid alkalis at high
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pressures, due to diffusivity of ions the connectivity of pockets
always remains nonvanishing and the system is metallic (or
semimetallic) up to the highest studied pressures [2–4].

However there have been no attempts to characterize the
electron and in general charge distributions in liquid metals
at high pressures. It is not clear how the essentially non-free-
electron density distribution will affect the charge correlations,
which at ambient conditions can be well described by the
linear response theory (LRT) [9,10]. The LRT states that the
screening electron density can be represented as follows:

ρscr
el (k) = χel(k)

4πZion

k2
ρion(k), (1)

where χel(k) is the static electron response function, Zion is the
ionic charge, and ρion(k) is the spatial Fourier component of the
ionic density with wave number k. Here the screening electron
density is assumed to follow the motion of the ions, and this
effect is used in the derivation of effective pair potentials and
classical MD simulations with electron density hidden in the
Friedel-like tail of the effective potentials of metallic systems.

The effect of electron-ion correlations can be studied
explicitly in the scattering experiments. In a recent study
of warm dense Li [11] an analysis of experimental x-ray
scattering intensities in the eV range was performed by means
of electron-ion and electron-electron dynamic structure factors
Sei(k,ω) and See(k,ω). Corresponding static electron-ion Sei(k)
and electron-electron See(k) have been studied in metallic
systems since the 1970s [12,13], initially using the electron
density represented within the pseudopotential theory [14–17]
and later taking it from ab initio simulations [18,19]. Very
important is that for electron-ion and electron-electron static
structure factors there exist exact sum rules in the long-
wavelength limit:

Sei(k → 0) =
√

ZionSii(k → 0),

See(k → 0) = ZionSii(k → 0), (2)
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where Sii(k) is the regular ion-ion structure factor. In binary
systems such as molten salts or liquid metallic alloys the partial
electron-ion structure factors have more complicated sum
rules [12], that were successfully tested recently in ab initio
simulations by comparing simulation results with analytical
long-wavelength asymptotes [20,21].

More general ab initio studies of total charge density
correlation and in particular charge-charge static structure
factors SQQ(k), where the total charge density is composed of
positive point ions and instantaneous distribution of electron
density, were reported in [22,23] for the case of network-
forming liquids. However, to date there have been no studies on
the long-wavelength behavior of SQQ(k), that can be very im-
portant for explanation of behavior of metallic systems under
extreme pressures. If the metallic systems could behave under
extreme pressures like an ionic compound as was reported
for potassium [24], this would be immediately reflected in the
asymptotic long-wavelength behavior of SQQ(k). Moreover, it
is not known how the effects of partial localization of electrons
at high pressures affect the static and time-dependent charge-
charge correlations in liquid metals under high pressures.

Therefore the main aim of this study was in calculations
of the total charge static and time-dependent correlations
from ab initio MD simulations in the case of liquid Li in a
wide range of pressures and the analysis of them in order
to understand the long-wavelength asymptotes of SQQ(k) and
possible effects of high pressures on these correlations. The
remaining paper is organized as follows: In the next section
we give details of our ab initio simulations. The third sections
contains analytical study of the long-wavelength asymptotes
of static charge-charge correlations. We will compare ab initio
results with analytical asymptotes and will consider the effect
of pressure on time-dependent total charge correlations. The
last section will contain conclusions of this study.

II. AB INITIO MOLECULAR DYNAMICS SIMULATIONS

The ab initio simulations were performed for liquid Li
at T = 1000 K at seven different pressures in a range from
ambient pressure up to 186 GPa using systems of 300 particles
(pressures up to 68 GPa) and 600 particles (higher pressures)
in the NVT ensemble in a cubic box with periodic boundary
conditions. The time step in simulations was 1 fs, and after
an equilibration over 3-4 ps depending on the system, the
production runs were executed for 12 ps (12 000 time steps).

The electron-ion interactions were represented by the
lithium all-electron projector augmented wave (PAW) poten-
tials [25,26]. The plane-wave cutoff energy (�2K2

max/2me) was
271.6 eV and the cutoff energy for the augmentation charge
(in PAW methodology) was 428.4 eV. For each pressure the
grid mesh for electron density was chosen to be large enough
to represent the Fourier components of electron density from
−2Kmax to 2Kmax. The generalized gradient approximation in
the Perdew-Burke-Ernzerhof version (PBE) [27] was applied
in order to account for exchange-correlation effects in the
strongly nonuniform (all-electron) density of molten Li. The
electron density was constructed using the single � point in
the Brillouin zone, that is justified by quite large box size.

Up to sixty wave numbers k were sampled in the calculation
of the static and time correlation functions. The smallest wave

numbers in our simulations changed from kmin = 0.353 Å−1 in
l-Li at ambient pressure to kmin = 0.442 Å−1 at 186 GPa. The
calculated static and time correlation functions were averaged
over all possible directions of wave vectors with the same
absolute value.

III. ANALYTIC LONG-WAVELENGTH ASYMPTOTE
OF STATIC CHARGE-CHARGE CORRELATIONS

IN LIQUID METALS

We define the total charge density in a liquid metal
according to Ref. [9] as

Q(k,t) = 1√
N

[
Zion

N∑
i

e−ikRi (t) − ρel(k,t)

]
, (3)

where N is the number of particles in the MD box, Zion

is the bare charge of ionic pseudopotential, and ρel(k) the
Fourier components of electron density corresponding to in-
stantaneous ionic positions {Ri}. Making use of the analytical
expression for electron density from linear response theory in
Eq. (1) one obtains

QLRT (k,t) = 1√
N

[
Zion

N∑
i

e−ikRi (t) − ρscr
el (k,t)

]

= 1√
N

Zion

[
1 − χel(k)

4πZion

k2

] N∑
i

e−ikRi (t). (4)

In the long-wavelength limit and random phase approximation
(RPA) for the electron density response function [9] this
expression reduces to

QLRT (k → 0,t) = Zion

[
k2

k2
TF

− G(k/kF)

]
ρion(k,t), (5)

where kTF is the Thomas-Fermi wave number, kF the Fermi
wave number, and G(k/kF) is the local field correction, which
in the long-wavelength limit is proportional to k2 (Ref. [28]).
Hence, it follows immediately that within the linear response
theory the total charge static structure factor in liquid metals,

SQQ(k) = 〈Q(k)Q(−k)〉, (6)

takes in the long-wavelength limit the form

lim
k→0

SQQ(k) = Z2
ion

[
k2

k2
TF

− G(k/kF)

]2

Sii(k → 0). (7)

Since the long-wavelength limit of the ionic structure factor
Sii(k → 0) = kBTρκT tends to a nonzero constant (if the
system is not in the vicinity of a phase transition), defined
by the temperature T , the mass-density of the system ρ and
the isothermal compressibility κT , one may conclude that the
total charge structure factor SQQ(k) of liquid metals should be
a function of k4 in the long-wavelength limit:

lim
k→0

SQQ(k) = αk4. (8)

In the short-wavelength limit one may take into account
expression (3) and the fact that the Fourier components of
the electron density decay to zero in the limit k → ∞, leading
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FIG. 1. (Color online) Pair distribution function in liquid Li at
1000 K at seven different pressures. A progressive vertical shift of
0.75 was applied for the sequence of pair distribution functions.

to the asymptote

lim
k→∞

SQQ(k) = Z2
ionSii(k → ∞) = Z2

ion. (9)

In the actual case of liquid Li with the all-electron PAW
potential used in the ab initio molecular dynamics, the ionic
charge was Z = 3 and therefore in the short-wavelength limit
the charge-charge static structure factors SQQ(k) tend to the
value Z2

ion = 9.
Since the screening of ionic charge in metallic systems

differs from the one in nonmetallic systems with long-range
Coulomb interactions, such as ionic crystals or molten salts,
the long-wavelength asymptote (8) of SQQ(k) in liquid metals
is different from the S ionic

QQ (k → 0), for which [29]

lim
k→0

S ionic
QQ (k) ∼ k2. (10)

This sensitivity of the long-wavelength asymptote of the
charge-charge structure factor to the ionic or metallic state

of the system can be very important for identifying the
metallic/ionic phase in the above-mentioned case of potassium
at extreme pressures [24] or in metallization of hydrogen
at high pressures via an intermediate phase with partially
molecular and partially ionized hydrogens [30].

IV. STATIC CORRELATIONS CALCULATED
FROM AB INITIO MD SIMULATIONS

The pair distribution functions in liquid Li at T = 1000 K
at the different pressures are shown in Fig. 1. The general
tendency of the applied pressure is the shift in the first
maximum of the pair distribution function from 2.78 Å
at ambient pressure to 1.59 Å at P = 186 GPa with the
corresponding reduction of its amplitude g(rmax) from 1.98
to 1.51. As expected, due to increase of pressure the first
coordination shell gets smaller. At pressures above 100 GPa
we observed a gradual increase of a shoulder in the region
r ∼ 2.2 Å followed by a splitting of the first peak in the
pair distribution function into two separated maxima at the
highest studied pressure, 186 GPa. The number of the nearest
neighbors, calculated from the g(r) at 186 GPa at the distance
1.8 Å, is close to 4. The angular distribution for the closest of
the nearest neighbors in the sphere Rcut = 1.6 Å shows almost
perfect distribution around the angle of 109◦ (left panel in
Fig. 2). This is an effect reported in Ref. [3] as tetrahedral
clustering in liquid Li at pressures above 150 GPa. The
orbital-moment projected density of electronic states (right
panel in Fig. 2) shows the strong p character of states at
the Fermi level predicted in Ref. [3], which explains the
appearance of the tetrahedral structures of the closest of the
nearest neighbors in liquid Li at high pressures. Our results at
P = 186 GPa, obtained from simulations with 600 particles,
completely support the previous findings observed with a much
smaller number of particles [3].

The static ion-ion structure factors, obtained as the sta-
tistical average Sii(k) = 〈ρion(k)ρion(−k)〉 of density-density
correlations at the seven pressures (see Fig. 3), show the
general tendency of shifting the first diffraction peak (FDP)
towards higher wave numbers: from 2.57 Å−1 at ambient
pressure to 3.54 Å−1 at 186 GPa. In the pressure range
40–125 GPa we observed a shoulder on the right slope of the
FDP which shifted from k ∼3.5 Å−1 to higher wave numbers
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FIG. 2. (Color online) Left: Bond-angle distribution between the closest of the nearest neighbor atoms in the sphere Rcut = 1.6 Å in liquid
Li at T = 1000 K and P = 186 GPa. Right: l-projected density of electronic states.
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FIG. 3. (Color online) Ion-ion static structure factors Sii(k) in
liquid Li at 1000 K at seven different pressures. A progressive vertical
shift of 2.50 was applied for the sequence of the static structure factors.

∼4.5 Å−1 at 125 GPa. This shoulder is connected to the
progressive broadening of the first coordination shell above
40 GPa (see Fig. 1) until the split of the first coordination
shell into two well-separated maxima in the pair distribution
function observed at 186 GPa mentioned above.

In order to calculate the total charge correlations we had to
check the electron-ion structure factors and their consistency
with the analytical sum rules (2). The calculated electron-
ion structure factors Sei(k) looked very similar to the Sii(k).
Therefore in Fig. 4 we show the ratio Sei(k)/Sii(k). Since
we used in simulations the all-electron potential for Li, the
total electron density is composed of three electrons per atom,
and thus in the long-wavelength limit the ratio Sei(k)/Sii(k),
according to (2), must tend to

√
3. This is clearly seen in Fig. 4

at the four different pressures shown.
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FIG. 4. (Color online) Ratio of the electron-ion Sei(k) to ion-ion
static structure factor Sii(k) at different pressures. In the long-
wavelength limit this ratio is in perfect agreement with the sum
rule (2).
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FIG. 5. (Color online) Charge-charge static structure factor
SQQ(k) at the seven different pressures in liquid Li at 1000 K. A
progressive vertical shift of 3.00 was applied for the sequence of the
static structure factors.

The total charge structure factor SQQ(k) at different
pressures is shown in Fig. 5. Three main features of SQQ(k) are
observed in its pressure dependence: the SQQ(k) curves tend to
zero in the long-wavelength limit due to the electroneutrality
condition; at the location of FDP in Sii(k) they show a
pronounced peak, whose amplitude increases with pressure
from 4.5 at 1 atmosphere to 9.2 at P = 186 GPa; there appears
with pressure a second maximum of SQQ(k), increasing in
amplitude from 2.7 at 1 atmosphere to 6.45 at P = 186 GPa
and shifting its location from k ∼ 3.5 Å−1 to ∼ 5.3 Å−1

correspondingly; in the short-wavelength limit they tend to
the value Z2

ion. One of the most interesting issues is the
long-wavelength limit of SQQ(k). In Sec. III we predicted
on the basis of the linear response theory that the analytical
long-wavelength asymptote ∼k4, Eqs. (7), (8). The double-
logarithmic plot of the long-wavelength behavior shows that
the simulations at all pressures are in perfect agreement with
the predicted ∼k4 asymptote of SQQ(k → 0) (see Fig. 6).
This means that up to the pressure of 186 GPa liquid Li at
1000 K remains metallic, which is in agreement with the
electronic density of states in Fig. 2 at the highest pressure. The
density dependence of the coefficient α in the long-wavelength
asymptote (8) is shown in Fig. 7. In the limit of high densities
(small rs) the quadratic dependence ∼r2

s predicted within
the RPA (Ref. [28]) is recovered, which is another check of
the consistency of our ab initio study of the charge-charge
correlations in high-pressure Li.
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The higher the pressure is, the more the electron density
distribution is nonspherical between the ions. In Fig. 8 we
show the isosurface of the electron localization function (ELF)
[31] with the ELF value 0.85 in three snapshots of simulations
at ambient pressure (left) and pressures 68 GPa (middle) and
186 GPa (right). It is clearly seen that the share of the localized
electrons in the interstitial space is greatly increased with
pressure. In order to quantify the distribution of the localized
share of the electron density we decomposed the electron
density ρel(k,t) into two parts,

ρel(k,t) = ρscr
el (k,t) + ρorth

el (k,t). (11)

Here the first term on the right-hand side corresponds to
the screening electron density that is spherically symmetrical
around each ion and which follows the motion of ions, i.e.,
ρion(k) due to Eq. (1). The second term on the right-hand side
of Eq. (11) arises mainly from the nonspherical components of
electron density distribution in the vicinity of ions. This part
of the electron density is obtained as the orthogonalized one
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FIG. 7. (Color online) Dependence of the coefficent α at the
long-wavelength limit of SQQ(k), Eq. (8), on the parameter rs [28].
The quadratic dependence ∼r2

s predicted from RPA is valid at very
high pressures and is shown with the dashed line.

to the ionic density:

ρorth
el (k,t) = ρel(k,t) − 〈ρion(k)ρel(−k)〉

〈ρion(k)ρion(−k)〉ρion(k,t). (12)

Then it is obvious that〈
ρion(k)ρorth

el (−k)
〉 ≡ 0

and 〈
ρscr

el (k)ρorth
el (−k)

〉 ≡ 0,

which follow from Eq. (1).
In Fig. 9 we show the static correlator Sorth(k) at different

pressures (left frame) and its peak positions compared to the
locations of the SQQ(k). One can see that the share of the
electron density, which is mainly nonspherical around ions,
increases greatly with pressure, and the main peak of its
structure factor Sorth(k) shifts to higher wave numbers with
increasing pressure. It is obvious that the distance between
the orthogonalized-to-ions parts of electron density should be
larger than the distance between the ions. Therefore one can
observe in the right frame of Fig. 9 that the main peaks in
Sorth(k) at all studied pressures are located at smaller wave
numbers as the corresponding main peaks of SQQ(k).

V. CHARGE-CHARGE AUTOCORRELATION
FUNCTIONS IN LIQUID METALS

The linear response theory works perfectly in simple
liquid metals. It allows us to estimate precisely the screening
electron density (1) that follows the motion of ionic cores.
Therefore ρscr

el (r) can be used for the estimation of effective
atom-atom potentials Veff(r), which have been successfully
used in molecular dynamics simulations of dynamic properties
of liquid metals [6,32]. It is known, however, that in the case of
liquid metals at high pressures and in covalent-bonded liquid
metals the approach of effective pair atom-atom potentials is
not working so good as in the simple liquid metals. It is obvious
that the electron localization effects at extreme pressures [4,7]
change the screening properties of the electron subsystem
and cannot be precisely described by the linear response
theory.

In Fig. 10 we show relaxation of the normalized density
Fnn(k,t) and total charge FQQ(k,t) autocorrelation functions
in liquid Li at four different pressures. At small pressures the
normalized autocorrelation functions are practically identical,
while at pressures above 100 GPa we observed essential differ-
ence in the amplitude of the oscillations of both autocorrelation
functions.

The time correlations of the total charge density are very
interesting because, due to Eq. (11), there can be a deviation
from the regular density autocorrelations

dQ(k,t)

dt
= i

1√
N

Zion

N∑
i

(kvi)e
−ikRi (t)

+ d

dt

[
ρscr

el (k,t) + ρorth
el (k,t)

]≡ i
(
kJscr

tot

)+ i
(
kJorth

el

)
,

where the Jscr
tot (k,t) is the screening current density composed

of ions moving together with their screening electron cloud,
and the Jorth

el (k,t) is the part of electron current density
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FIG. 8. (Color online) The isosurface (red shaded areas) of the ELF at the value 0.85 in snapshots of simulations at ambient pressure (left)
and pressures 68 GPa (middle) and 186 GPa (right).

orthogonalized to the ionic positions. The latter can be
connected to the localized part of electron density which
according to the electron localization functions shown in Fig. 8
increases with pressure.

In order to get an insight into what kind of processes are
responsible for different relaxation of FQQ(k,t) and Fnn(k,t)
we calculated the time correlation functions between the
orthogonalized-to-ions part of the electron density. Having
separated the part of the electron density orthogonalized to
ionic positions we can confirm whether it takes part in an
additional relaxation process at high pressure. For this purpose
we calculated the corresponding time correlation function

F orth
el−el(k,t) = 〈

ρorth
el (k,t)ρ∗,orth

el (k,t = 0)
〉
,

which in the case of liquid Li at pressure 186 GPa is shown
in Fig. 11 at several wave numbers. A remarkable result
is that in this time correlation function one observes the
absence of the oscillations due to propagating collective
excitations. The relaxation behavior of the F orth

el−el(k,t) implies
that at high pressures there exists another relaxation process,
which along with the standard thermal, structural, and
shear relaxations [29,33] should be taken into account
for generalized hydrodynamic description of the density
correlations in liquid metals at high pressures. This relaxation
process specific for high-pressure systems is defined by the
part of the electron density which does not follow explicitly
the motion of ions and can be represented by the nonspherical

part of the distribution of the electron density around ions.
It is obvious that since liquid Li at 1000 K remains metallic
up to the highest pressures studied here, the strength of this
relaxation of nonspherical parts should increase in the small-k
region (as it is demonstrated in Fig. 11) and should follow the
wave-number dependence according to Fig. 9.

VI. CONCLUSIONS

We have studied, using ab initio simulations, the behavior
of charge correlations in a liquid metal in a wide range of
pressures. Taking as a case study liquid Li, we studied the static
and time-dependent quantities at pressures up to 186 GPa. We
confirmed with the simulations of a large system of 600 parti-
cles the earlier found [3] tetrahedral clustering above 150 GPa.

We report here two main results:
(i) We predicted analytically, by making use of the linear

response theory [9,10], that the total charge static structure
factor SQQ(k) in metals has the long-wavelength asymptote
∼k4. Our ab initio simulations of liquid Li at 1000 K and direct
calculations of the SQQ(k) = 〈Q(k)Q(−k)〉 showed perfect
agreement with the theoretical long-wavelength asymptote.
We point out that in ionic systems with localized electrons
in the interstitial space the long-wavelength asymptote of
SQQ(k) should be ∼k2. Therefore the SQQ(k) can be a quantity
that can be used to discriminate between a regular metal
and pseudobinary compound, observed in potassium at high
pressures [24].
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FIG. 10. (Color online) Total charge and density autocorrelation functions at ambient pressure (a), 68 GPa (b), 125 GPa (c), and
186 GPa (d).

(ii) We showed that in regular liquid metals at ambient
pressure the linear response theory works perfectly well and
due to almost perfect spherical screening the cloud of the elec-
tron density follows the motion of ions, resulting in the identi-
cal time-dependent behavior of the density-density and charge-
charge correlations. This is why the pairwise, short-range
effective potentials obtained from the linear response theory
describe perfectly the dynamics of liquid alkali metals at am-
bient pressure. However the high pressure causes an essential
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FIG. 11. (Color online) Relaxation of the autocorrelation
between the part of the electron density orthogonalized to ionic
positions. The time scale τ is equal to 0.20649 ps.

increase of the nonspherical share of electron density around
the ions and a part of electron density does not follow anymore
the motion of ions. This is the reason why the approach
of pair potentials does not work in metals at high pressures
because of the increasing share of the nonspherical electron
density distribution. We showed in the case of liquid Li that at
high pressures the relaxation behavior of the density-demsity
and charge-charge correlations is not anymore identical like it
was at the ambient pressure. The deviation in this difference
increased with the increase of the share of the nonspherical
electron density distribution. We rationalized the role and
behavior of the nonspherical share of electron density repre-
senting it via the contribution orthogonalized to ionic positions.

Remarkably the relaxation behavior of the orthogonalized
part of the electron density to ionic positions can be another
process that along with the thermal, structural, and shear
relaxations should be taken into account in a generalized
hydrodynamic description of liquid metals at high pressures.

ACKNOWLEDGMENT

The supercomputer allocation time in frames of the
CINECA project “Dynamics and thermodynamics of com-
pressed liquid metals studied by ab initio molecular dynam-
ics” is gratefully acknowledged. The calculations have been
performed using the ab initio total-energy and molecular dy-
namics program VASP (Vienna ab initio Simulation Program)
developed at the Institut für Materialphysik of the Universität
Wien [34–36].

014202-7



BRYK, KLEVETS, RUOCCO, SCOPIGNO, AND SEITSONEN PHYSICAL REVIEW B 90, 014202 (2014)

[1] G. J. Ackland and I. R. Macleod, New J. Phys. 6, 138 (2004).
[2] J.-Y. Raty, E. Schwegler, and S. A. Bonev, Nature (London)

449, 448 (2007).
[3] I. Tamblyn, J.-Y. Raty, and S. A. Bonev, Phys. Rev. Lett. 101,

075703 (2008).
[4] T. Bryk, S. De Panfilis, F. A. Gorelli, E. Gregoryanz, M. Krisch,

G. Ruocco, M. Santoro, T. Scopigno, and A. P. Seitsonen,
Phys. Rev. Lett. 111, 077801 (2013).

[5] N. H. March, Liquid Metals: Concepts and Theory (Cambridge
University Press, Cambridge, 1990).

[6] T. Scopigno, G. Ruocco, and F. Sette, Rev. Mod. Phys. 77, 881
(2005).

[7] M. Marques, M. I. McMahon, E. Gregoryanz, M. Hanfland,
C. L. Guillaume, C. J. Pickard, G. J. Ackland, and R. J. Nelmes,
Phys. Rev. Lett. 106, 095502 (2011).

[8] B. Rousseau and N. W. Ashcroft, Phys. Rev. Lett. 101, 046407
(2008).

[9] J. Kohanoff and J.-P. Hansen, Phys. Rev. E 54, 768 (1996).
[10] A. A. Louis and N. W. Ashcroft, Phys. Rev. Lett. 81, 4456

(1998).
[11] E. Garcia Saiz, G. Gregori, D. O. Gericke, J. Vorberger, B.

Barbrel, R. J. Clarke, R. R. Freeman, S. H. Glenzer, F. Y. Khattak,
M. Koenig, O. L. Landen, D. Neely, P. Neumayer, M. M. Notley,
A. Pelka, D. Price, M. Roth, M. Schollmeier, C. Spindloe, R. L.
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[25] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
[26] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
[27] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,

3865 (1996).
[28] S. Ichimaru, Rev. Mod. Phys. 54, 1017 (1982).
[29] J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids

(Academic, London, 1986).
[30] W. R. Magro, D. M. Ceperley, C. Pierleoni, and B. Bernu,

Phys. Rev. Lett. 76, 1240 (1996).
[31] A. D. Becke and K. E. Edgecombe, J. Chem. Phys. 92, 5397

(1990).
[32] J. Hafner, From Hamiltonians to Phase Diagrams: The Elec-

tronic and Statistical-Mechanical Theory of sp-Bonded Metals
and Alloys, Solid State Sciences Series, Vol. 70 (Springer,
Berlin, 1987).

[33] J.-P. Boon and S. Yip, Molecular Hydrodynamics (McGraw-
Hill, New York, 1980).

[34] G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993); ,49, 14251
(1994).

[35] G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15
(1996).

[36] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

014202-8

http://dx.doi.org/10.1088/1367-2630/6/1/138
http://dx.doi.org/10.1088/1367-2630/6/1/138
http://dx.doi.org/10.1088/1367-2630/6/1/138
http://dx.doi.org/10.1088/1367-2630/6/1/138
http://dx.doi.org/10.1038/nature06123
http://dx.doi.org/10.1038/nature06123
http://dx.doi.org/10.1038/nature06123
http://dx.doi.org/10.1038/nature06123
http://dx.doi.org/10.1103/PhysRevLett.101.075703
http://dx.doi.org/10.1103/PhysRevLett.101.075703
http://dx.doi.org/10.1103/PhysRevLett.101.075703
http://dx.doi.org/10.1103/PhysRevLett.101.075703
http://dx.doi.org/10.1103/PhysRevLett.111.077801
http://dx.doi.org/10.1103/PhysRevLett.111.077801
http://dx.doi.org/10.1103/PhysRevLett.111.077801
http://dx.doi.org/10.1103/PhysRevLett.111.077801
http://dx.doi.org/10.1103/RevModPhys.77.881
http://dx.doi.org/10.1103/RevModPhys.77.881
http://dx.doi.org/10.1103/RevModPhys.77.881
http://dx.doi.org/10.1103/RevModPhys.77.881
http://dx.doi.org/10.1103/PhysRevLett.106.095502
http://dx.doi.org/10.1103/PhysRevLett.106.095502
http://dx.doi.org/10.1103/PhysRevLett.106.095502
http://dx.doi.org/10.1103/PhysRevLett.106.095502
http://dx.doi.org/10.1103/PhysRevLett.101.046407
http://dx.doi.org/10.1103/PhysRevLett.101.046407
http://dx.doi.org/10.1103/PhysRevLett.101.046407
http://dx.doi.org/10.1103/PhysRevLett.101.046407
http://dx.doi.org/10.1103/PhysRevE.54.768
http://dx.doi.org/10.1103/PhysRevE.54.768
http://dx.doi.org/10.1103/PhysRevE.54.768
http://dx.doi.org/10.1103/PhysRevE.54.768
http://dx.doi.org/10.1103/PhysRevLett.81.4456
http://dx.doi.org/10.1103/PhysRevLett.81.4456
http://dx.doi.org/10.1103/PhysRevLett.81.4456
http://dx.doi.org/10.1103/PhysRevLett.81.4456
http://dx.doi.org/10.1038/nphys1103
http://dx.doi.org/10.1038/nphys1103
http://dx.doi.org/10.1038/nphys1103
http://dx.doi.org/10.1038/nphys1103
http://dx.doi.org/10.1007/BF02737503
http://dx.doi.org/10.1007/BF02737503
http://dx.doi.org/10.1007/BF02737503
http://dx.doi.org/10.1007/BF02737503
http://dx.doi.org/10.1088/0022-3719/6/4/001
http://dx.doi.org/10.1088/0022-3719/6/4/001
http://dx.doi.org/10.1088/0022-3719/6/4/001
http://dx.doi.org/10.1088/0022-3719/6/4/001
http://dx.doi.org/10.1103/PhysRevB.55.12099
http://dx.doi.org/10.1103/PhysRevB.55.12099
http://dx.doi.org/10.1103/PhysRevB.55.12099
http://dx.doi.org/10.1103/PhysRevB.55.12099
http://dx.doi.org/10.1088/0953-8984/9/20/002
http://dx.doi.org/10.1088/0953-8984/9/20/002
http://dx.doi.org/10.1088/0953-8984/9/20/002
http://dx.doi.org/10.1088/0953-8984/9/20/002
http://dx.doi.org/10.1103/PhysRevE.58.2227
http://dx.doi.org/10.1103/PhysRevE.58.2227
http://dx.doi.org/10.1103/PhysRevE.58.2227
http://dx.doi.org/10.1103/PhysRevE.58.2227
http://dx.doi.org/10.1103/PhysRevB.58.5314
http://dx.doi.org/10.1103/PhysRevB.58.5314
http://dx.doi.org/10.1103/PhysRevB.58.5314
http://dx.doi.org/10.1103/PhysRevB.58.5314
http://dx.doi.org/10.1103/PhysRevLett.75.4480
http://dx.doi.org/10.1103/PhysRevLett.75.4480
http://dx.doi.org/10.1103/PhysRevLett.75.4480
http://dx.doi.org/10.1103/PhysRevLett.75.4480
http://dx.doi.org/10.1103/PhysRevB.58.6124
http://dx.doi.org/10.1103/PhysRevB.58.6124
http://dx.doi.org/10.1103/PhysRevB.58.6124
http://dx.doi.org/10.1103/PhysRevB.58.6124
http://dx.doi.org/10.1063/1.4770269
http://dx.doi.org/10.1063/1.4770269
http://dx.doi.org/10.1063/1.4770269
http://dx.doi.org/10.1063/1.4770269
http://dx.doi.org/10.1103/PhysRevB.87.104201
http://dx.doi.org/10.1103/PhysRevB.87.104201
http://dx.doi.org/10.1103/PhysRevB.87.104201
http://dx.doi.org/10.1103/PhysRevB.87.104201
http://dx.doi.org/10.1103/PhysRevB.68.020201
http://dx.doi.org/10.1103/PhysRevB.68.020201
http://dx.doi.org/10.1103/PhysRevB.68.020201
http://dx.doi.org/10.1103/PhysRevB.68.020201
http://dx.doi.org/10.1103/PhysRevB.70.174202
http://dx.doi.org/10.1103/PhysRevB.70.174202
http://dx.doi.org/10.1103/PhysRevB.70.174202
http://dx.doi.org/10.1103/PhysRevB.70.174202
http://dx.doi.org/10.1103/PhysRevLett.103.115501
http://dx.doi.org/10.1103/PhysRevLett.103.115501
http://dx.doi.org/10.1103/PhysRevLett.103.115501
http://dx.doi.org/10.1103/PhysRevLett.103.115501
http://dx.doi.org/10.1103/PhysRevB.50.17953
http://dx.doi.org/10.1103/PhysRevB.50.17953
http://dx.doi.org/10.1103/PhysRevB.50.17953
http://dx.doi.org/10.1103/PhysRevB.50.17953
http://dx.doi.org/10.1103/PhysRevB.59.1758
http://dx.doi.org/10.1103/PhysRevB.59.1758
http://dx.doi.org/10.1103/PhysRevB.59.1758
http://dx.doi.org/10.1103/PhysRevB.59.1758
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/RevModPhys.54.1017
http://dx.doi.org/10.1103/RevModPhys.54.1017
http://dx.doi.org/10.1103/RevModPhys.54.1017
http://dx.doi.org/10.1103/RevModPhys.54.1017
http://dx.doi.org/10.1103/PhysRevLett.76.1240
http://dx.doi.org/10.1103/PhysRevLett.76.1240
http://dx.doi.org/10.1103/PhysRevLett.76.1240
http://dx.doi.org/10.1103/PhysRevLett.76.1240
http://dx.doi.org/10.1063/1.458517
http://dx.doi.org/10.1063/1.458517
http://dx.doi.org/10.1063/1.458517
http://dx.doi.org/10.1063/1.458517
http://dx.doi.org/10.1103/PhysRevB.47.558
http://dx.doi.org/10.1103/PhysRevB.47.558
http://dx.doi.org/10.1103/PhysRevB.47.558
http://dx.doi.org/10.1103/PhysRevB.47.558
http://dx.doi.org/10.1103/PhysRevB.49.14251
http://dx.doi.org/10.1103/PhysRevB.49.14251
http://dx.doi.org/10.1103/PhysRevB.49.14251
http://dx.doi.org/10.1016/0927-0256(96)00008-0
http://dx.doi.org/10.1016/0927-0256(96)00008-0
http://dx.doi.org/10.1016/0927-0256(96)00008-0
http://dx.doi.org/10.1016/0927-0256(96)00008-0
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.54.11169



