
PHYSICAL REVIEW B 90, 014102 (2014)

Diffusion and transformation kinetics of small helium clusters in bulk tungsten

Danny Perez* and Thomas Vogel
Theoretical Division T-1, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

Blas P. Uberuaga
Materials Science and Technology MST-8, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

(Received 20 March 2014; revised manuscript received 23 June 2014; published 11 July 2014)

The production of energy through nuclear fusion poses serious challenges related to the stability and
performance of materials in extreme conditions. In particular, the constant bombardment of the walls of
the reactor with high doses of He ions is known to lead to deleterious changes in their microstructures.
These changes follow from the aggregation of He into bubbles that can grow and blister, potentially leading to
the contamination of the plasma, or to the degradation of their mechanical properties. We computationally study
the behavior of small clusters of He atoms in W in conditions relevant to fusion energy production. Using a wide
range of techniques, we investigate the thermodynamics of the clusters and their kinetics in terms of diffusivity,
growth, and breakup, as well as mutation into nanobubbles. Our study provides the essential ingredients to model
the early stages of He exposure leading up to the nucleation of He bubbles.
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I. INTRODUCTION

One of the primary challenges in the development of
fusion energy sources is related to materials’ stability and
performance. The materials in a fusion reactor such as ITER
experience extreme environments, primarily the interaction
with the plasma and damage by fusion neutrons. In particular,
the plasma bombards the first wall materials with high doses
of He ions which cause significant restructuring and evolution
of the material. While the incident energy of the ions is modest
(∼50 eV), they can still penetrate a few nm into the materials
and subsequently diffuse into the bulk. In these plasma-facing
materials, for which tungsten is a leading candidate [1,2],
this He intake leads to the formation of features such as
He blisters [3] and so-called fuzz, a micron-thick tangle of
nm-thick tungsten whiskers [4–7]. The formation of these
features both changes how the surface of the material interacts
with the plasma but also leads to the release of tungsten into the
plasma, severely disrupting its performance [8]. Thus, there is
a strong imperative to both understand and, ultimately, control
the evolution of tungsten in the presence of plasmas. This,
in turn, requires a detailed understanding of how components
of the plasma, such as He, interact with the material at the
atomic scale. Note that He is not generated by transmutation
reactions [9], so that its presence in the material can be
exclusively attributed to the contact with the plasma.

The evolution of He in metals has been studied for over
50 years and that research has lead to a picture of He evolution
that is both complex and intriguing. He, introduced either via
implantation in laboratory experiments or via transmutation
in reactor applications, diffuses through the lattice, either
encountering traps or other He atoms, as there is significant
binding between He atoms due to elastic interactions resulting
from the repulsion between the He and the metal atoms [10].
Once He clusters grow to a certain size, they can force the
emission of interstitials from the cluster, creating vacancies
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(V) that accommodate the cluster. This so-called trap mutation
process was first identified experimentally in 1977 by van Veen
et al., who found that Kr impurities in W would trap He and
lead to the formation of Frenkel pairs [11]. Soon after, in 1981,
Wilson, Bisson, and Baskes performed molecular dynamics
simulations of He in Ni in which they directly observed this
trap mutation process, though they dubbed it self-trapping [12].
As the He-V clusters accumulate more He, forming proper
bubbles, they grow via the continual emission of interstitials
and, as they grow larger, interstitial loops. This loop-punching
mechanism was first described in 1959 as a mechanism by
which silver precipitates in silver halides released strain as
they grew [13], and was discussed first in the context of
He bubbles by Greenwood, Foreman, and Rimmer that same
year [14]. Trap mutation and loop punching formed the basis
of a model of He bubble nucleation and growth proposed by
Baskes and coworkers [15,16], in which they concluded that
such mechanisms were responsible for the complex retention
behavior of He in metals. The ability of He clusters and
bubbles to grow via trap-mutation-like processes has several
important implications. First, He bubbles can nucleate and
grow under conditions where vacancy mobility is essentially
nonexistent [17]. Second, this growth is insaturable, meaning
a “single” trap site can accommodate a limitless number of He
atoms [18]. Third, He thus drives the generation of vacancies
and interstitials within the material [19–21].

Since these early studies, a large body of work, both
experimental and theoretical, has focused on the migration
of He and the nucleation and growth of small He clusters
and bubbles in metals. Here, we summarize some of the key
results for He behavior in BCC metals, with a focus on W. In
He desorption experiments in Mo, Caspers et al. [22] observed
trap mutation of HeNV complexes into HeNV2 complexes for
N > 6. Lhuillier et al. used NRA (nuclear reaction analysis)
and PAS (positron annihilation spectroscopy) to show that He
bubble formation in W does not require preexisting vacancies
but can form via trap mutation [21], though radiation-induced
vacancies can also serve as nucleation sites for bubbles [20].
Further experimental studies have shown that impurities can
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trap He in W and ultimately lead to trap mutation processes
which nucleate bubbles [11,20,23]. Loop punching from He
bubbles has also been observed in experiments on Mo [17] and
W [20].

Atomistic simulations, using both electronic structure
calculations and classical potentials, have provided details into
these mechanisms. Density functional theory calculations of
He in BCC metals have focused on the properties of single He
interstitials and small He clusters and complexes. These have
identified that He interstitials reside in tetrahedral interstices
in Fe and W [10,24], have very small migration energies
(of about 0.06 eV in W) [10,24], and bind strongly with
impurities in Fe [25,26]. Simulations using potentials have
examined larger agglomerates of He, including the behavior
of He bubbles, within metallic matrices. They have confirmed
that trap mutation is a mechanism for He bubble nucleation in
Fe [27–30] and W [31,32] and that loop punching is indeed a
mechanism for He bubble growth in Fe [30,33,34], Mo [35],
and W [31,32,36]. Simulations have also shown that H aids
in the loop punching of He bubbles [37]. Many of these
observations extend to other metals as well, as reviewed by
Trinkaus [38].

These atomistic simulations provide the details necessary
to parametrize higher level models of He bubble evolution
within materials, which can be applied in kinetic Monte
Carlo [39–41], rate theory [16,42], and cluster dynamics [43],
for example. However, typically, not all of the relevant
thermodynamic and kinetic properties are available, especially
regarding the rates at which He interstitial clusters diffuse and
transform into other complexes. While migration energies and
prefactors have been determined for He interstitial clusters in
Fe [29], systematic studies of He interstitial cluster behavior
have not been reported for He in W. The goal of the present
work is to determine the relevant thermodynamic and kinetic
parameters that describe He in W to inform higher level
models. The current study is concerned with the behavior
of He in bulk W, an environment that is typical of the
nucleation and initial evolution of extended He defects, as
the interaction of small clusters with the surface is very short
ranged [44].

The paper is organized as follows: the different simulations
techniques used in this work are described in Sec. II, the
structure and thermodynamics of He clusters are discussed in
Sec. III A, while their diffusion, breakup, and mutation kinetics
are investigated in Secs. III B–III D, respectively; finally,
implications for the parametrization of cluster dynamics
models are discussed in Sec. IV, before concluding.

II. METHODS

Simulations were carried out using different atomistic sim-
ulations methodologies, namely conventional molecular dy-
namics (MD), temperature accelerated dynamics (TAD) [45],
and statistical temperature (STMD) [46] and multicanonical
molecular dynamics [47,48]. TAD is an accelerated MD
technique [49] that allows for an extension of the time scale
amenable to simulations in cases where the dynamics are
activated, i.e., where evolution occurs through a sequence
of rare structural transitions separated by relatively long
periods of strictly vibrational motion. TAD proceeds by

running simulations at elevated temperatures to speed up the
occurrence of rare transitions, and by filtering these possible
transitions to select those that are statistically appropriate for
evolution at a lower temperature. The end result is that the
dynamics can be significantly accelerated when barriers are
sufficiently high. For details, the readers are referred to the
original publication [45]. A useful side effect of TAD is that
all possible transitions are fully analyzed by the means of a
nudged elastic band (NEB) [50]. This in turn enables one to
easily characterize available transition pathways. A subset of
the MD simulations was also fully analyzed using the NEB
method; i.e., every 100 fs, the trajectory was interrupted to
determine whether a transition occurred. If it did, a NEB
was used to identify the pathway connecting the previous and
current states. In that case, all states and saddles points were
also saved and analyzed.

The thermodynamics of this system were investigated using
multicanonical MD [47,48], a generalized-ensemble method
where one aims at performing a random walk in a collective
variable, in our case the internal energy E. In practice,
this is done by reweighting the interatomic forces during a
conventional canonical simulation at a reference (thermostat)
temperature T0 via

fmuca = T0

T (E)
fcan. (1)

Here T −1(E) = ∂S(E)/∂E, with S(E) being the microcanon-
ical entropy which is related to the density of states g(E).
T (E) is iteratively obtained via the STMD approach [46].
In that scheme, one begins with a constant initial “guess”
Tt=0(E) = T0 (corresponding to conventional canonical MD
at T0) and updates the estimator Tt (E) at every time t by
effectively accumulating a bias potential, as also done in
metadynamics; cf. Ref. [48]. Once Tt (E) is converged, we
record histograms H (E,Q) of the internal energy and other
observables of interest Q. Those histograms can then be
reweighted to any other ensemble and observable averages can
be calculated at any temperature in the range initially covered
by the estimator for T (E).

Calculations were carried out using an embedded atom
method (EAM) description of the interatomic interactions,
with W-W interactions from Ackland and Thetford [51] and
modified by Juslin and Wirth [52], He-He interactions from
Beck [53] and modified by Morishita et al. [54], and He-W
interactions from Juslin and Wirth [52]. The simulation cells
contained 6 × 6 × 6 W unit cells, for a total of 432 W atoms.
The small size of the cell is instrumental in reaching the
long time scales necessary to characterize the dynamics at
low temperatures, or for high-barrier events. We verified that
this size was adequate to properly capture the energetics of
the clusters. For example, for N = 6, we only observe a 0.3%
decrease in the energy of a cluster (compared to the perfect
W bulk) by increasing the cell size by a factor of 2 in every
direction. He atoms are added as appropriate. We investigated
HeN clusters from N = 2 to 7 at temperatures covering the
whole range of relevance to fusion applications, which is
centered around 1000 K. All He atoms are interstitial at the
beginning of the simulations.
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FIG. 1. (Color online) The lowest energy structure of each cluster for sizes N = 1 to 6 [from left to right: (a) to (g)]. (a) Position of the
tetrahedral interstices within the unit cell of the BCC tungsten lattice, adapted from Ref. [55]. The colors are simply guides for the eye to
distinguish tetrahedral sites on the back faces of the unit cell from the front faces. The black lines connect tetrahedral sites separated by
1/4,1/4,0 (in units of the lattice constant of the material) on a given face of the unit cell while the green lines connect tetrahedral sites separated
by 1/4,1/4,0 on opposing faces of the unit cell. Tungsten atoms, not shown, reside on the corners and at the body center of the cube. (b)–(g)
Structures of He interstitial clusters from size 1 to 6. The position of each He atom within the cluster is highlighted in yellow when it occupies
a tetrahedral site and orange (only for N = 5) when it occupies an octahedral site. These are idealized positions within the tetrahedral interstice
sublattice. In reality, atomic forces result in some distortion away from these ideal positions upon minimization of the forces.

III. RESULTS

We are interested in three primary aspects of the kinetics of
He clusters in tungsten: diffusion, breakup into smaller clus-
ters, and “trap mutation” (i.e., conversion from an interstitial
to a substitutional cluster through the creation of a W Frenkel
pair). These three mechanisms control the microstructural
impact of He on the tungsten wall. Each will be discussed
in turn in the following sections.

A. Structure and thermodynamics

We first used TAD to identify the dominant low-temperature
pathways (i.e., the ones with the lowest energy barrier).
This was done by running TAD with a relatively low target
temperature of 300 K (in order to maximize the likelihood of
finding the lowest-barrier pathway) and a high temperature of
600 K. The duration of each simulation varied, being a function
of the typical barriers in the system, but ranged from tens of
nanoseconds to tens of microseconds. The simulation cell for
each size cluster started with the lowest energy structure of
the next lowest size cluster and one additional He interstitial.
The trajectory was allowed to evolve until the two species
encountered one another, forming a larger interstitial He
cluster, and further evolved to allow for diffusion of the cluster.
The trajectory was then analyzed to identify both the lowest
energy diffusion pathway for each cluster as well as the lowest
energy structure for each cluster.

Figure 1 shows the structure of the ground state cluster
geometry for clusters of size N = 1 to 6. The structure of
the tetrahedral interstices in BCC tungsten is illustrated in
Fig. 1(a) while the idealized structures for the clusters are
given in Figs. 1(b)–1(g). There are 24 tetrahedral interstices
at 1/2,1/4,0 positions within the BCC unit cell, including
those on periodic faces. Octahedral interstices, not shown,
reside at 1/2,0,0 and 1/2,1/2,0; there are 18 such sites.
For nearly all clusters, the ground state structure involves He
atoms sitting on tetrahedral interstices within the BCC lattice.
The exception is N = 5, which is discussed below. For the
other size clusters, He atoms first arrange themselves along a
[100] direction across the edge of one unit cell (N = 2). The
structure for N = 4 is two of these pairs lying perpendicular to

one another while N = 3 represents an intermediate structure
between N = 2 and N = 4. The structure for N = 6 becomes
more complex. In this case, the He atoms all lie within the
unit cell. There are still two pairs of [100]-oriented He atoms,
but they no longer lie directly opposite one another, as for
N = 4. This is to accommodate the other two He atoms that
lie on opposite faces of the unit cell and tend to create a
more open structure than the more compact N = 4 structure.
As mentioned, N = 5 is the exception in that not all of the He
atoms occupy tetrahedral positions. First, four He atoms reside
on tetrahedral sites, but break the motif of N = 4, forming two
[100] pairs which are now oriented parallel to one another.
Further, the fifth He atom occupies an octrahedral rather than
a tetrahedral interstice. This seems to have consequences for
the mobility of this cluster, as will be discussed below.

As the size of the cluster increases, so does the strength of
the binding of the cluster, as shown in Fig. 2 for cluster sizes
N = 2 to 6. Coincident with the change in structural motif
discussed above for N = 5, there is a bend in the EN − NE1

FIG. 2. (Color online) Energy change (at T = 0 K) upon removal
of single atoms from a cluster of size N (EN − EN−1 − E1; red, left
axis) and upon complete fragmentation into N single atoms (EN −
NE1; blue, right axis).
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FIG. 3. (Color online) Probability distribution function of the
He-He distance for N = 2 at 1500 K.

curve (EN being the energy of a cluster of size N ) at that size
and a local maximum of EN − EN−1 − E1.

Finite temperatures could affect the zero-temperature prop-
erties described above, which could be particularly important
for fusion applications as operating temperatures are very
high. We therefore computed free energy differences between
different clusters of sizes N = 2 to 6. For this purpose, two
He atoms are considered to be part of the same cluster if they
are closer than a cutoff distance of 2.8 Å. This is a proper
choice, as it contains most of the first peak of the probability
distribution function for He-He distance, as shown in Fig. 3
for N = 2 and T = 1500 K. We verified that the results are
not significantly affected by the precise choice of the cutoff
radius. After obtaining the proper simulation weights wmuca(E)
via individual STMD runs, we perform a multicanonical
production run [applying Eq. (1)] for every N and measure the
2-dimensional joint distribution of E and cluster composition
Q. For N = 2 there can be 2 different compositions (either
a cluster consisting of 2 atoms or two single He atoms), for
N = 3 there are 3 possible compositions—a cluster of 3 (ooo),
a cluster of 2 plus a single atom (o-oo), and three single atoms
(o-o-o), etc. By reweighting the multicanonical histograms
H (E,Q) we can compute the canonical distributions of cluster
compositions at all temperatures T via

P can
T (Q) =

∑
E

w−1
muca(E)H (E,Q) e−E/kBT , (2)

where the sum extends over all energy bins. From these
distributions, one calculates the probabilities pQ(T ) to find
certain cluster compositions Q at a given temperature. As
an example, we plot these probabilities for N = 4 in Fig. 4.
For temperatures T � 2500 K, the most prominent cluster
configuration is a single cluster containing all four He atoms.
Single atoms start to split off at T ≈ 1500 K, though, and most
cluster compositions are present by T ≈ 3000 K.

While these probabilities depend on the volume of the
simulation cell, they can be used to obtain the (volume-
independent) free energy of the different clusters. Writing the
free energy of a cluster of size s as Fs(T ) = −kBT ln qs , with

FIG. 4. (Color online) Probability of finding a certain cluster
distribution for N = 4. See text for details.

qs being the partition function of that cluster, the free energy
difference for the complete breakup of a cluster of size s into s

single atoms reads Fs − sF1 = −kBT ln(qs/q
s
1). Analogously,

the free energy change upon the loss of a single atom from a
cluster of size s reads Fs − Fs−1 − F1 = −kBT ln(qs/qs−1q1).
Based on the formalism developed in Ref. [56], one can
show that the above ratios of cluster partition functions are
related to ratios of the probabilities pQ(T ) to find certain
cluster compositions. For example, q3/q2q1 = p(ooo)/p(o-oo),
and q3/q

3
1 = p(ooo)/(3! p(o-o-o)), and so on. The corresponding

free energy differences are reported in Fig. 5.
At low temperatures, the probabilities of finding single

atoms are vanishingly small (see Fig. 4, for example); hence
it is almost impossible to accurately calculate the probability
ratios. However, the value at T = 0 K can be inferred from
the binding energies reported above. The lines in Fig. 5 are fits
to the data including those points. We note that even without
including those points in the fits, the extrapolation is almost
perfect in all cases (not shown). It is therefore unlikely that
abrupt changes in the behavior of the free energy occur below
1000 K. It can be qualitatively seen that the temperature at
which atoms split off the cluster or at which clusters break
up completely grows with N , in accordance with the behavior
observed at T = 0 K.

B. Diffusion

A crucial characteristic of He clusters is how fast they
diffuse through the lattice. This quantity controls the time scale
on which clusters and bubbles can grow and how far He can
penetrate into bulk W. In the following, we discuss the nature
of the diffusion pathways for clusters of sizes N = 1 to 6, and
then discuss the diffusivity and its temperature dependence, as
measured through direct MD simulation.

1. Diffusion pathways

Figure 6 shows the lowest energy pathway found for each
cluster size. The minimum energy pathway, as identified from
the TAD simulations using the NEB method, is given as a
function of the reaction coordinate in angstroms. It should be
noted that the NEBs were not fully converged all along the
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FIG. 5. (Color online) Free energy change upon removal of single atoms from a cluster of size N (FN − FN−1 − F1; red) and upon complete
fragmentation into N single atoms (FN − NF1; blue).

path; only the highest energy saddle point for each section of
the path was fully converged. However, the rest of the images
are close to converged. In several cases, the pathway involves
multiple steps that were identified in the TAD simulation as
separate events. The pathways in Fig. 6 are a composite of the
unique state-to-state events that lead to the migration of the
cluster.

For N = 1, the simplest “cluster,” the diffusion pathway
goes from the lowest energy structure, which is the He

occupying a tetrahedral interstice in the BCC lattice, through
an octahedral interstice, which is the saddle point, to another
tetrahedral site. The barrier for this process is 0.15 eV. This
process is essentially the opposite of that found for carbon
diffusing within BCC Fe [57].

As the cluster size increases, the pathways for diffusion
become more complex, with more intermediate minima along
pathways that describe net translation of the cluster. For ex-
ample, for N = 2, there is an intermediate minimum halfway
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FIG. 6. (Color online) Lowest energy migration pathway for interstitial He clusters from sizes N = 1 to 6 as identified from TAD
simulations. In these figures, the minimum energy path (MEP) is given by the points on the curve. Tungsten atoms are smaller (blue)
spheres while He atoms are larger (red) spheres.

through the diffusion process. This intermediate minimum is
relatively deep in energy, only 0.06 eV higher than the lowest
energy state. For even larger cluster sizes, there tend to be
very shallow minima, or shoulders, on the side of the largest
saddle peaks in the minimum energy path. Many of these
shallow minima are associated with saddle points that are
extremely small, only a few meV in some cases (e.g., N = 6).
However, along each pathway there are also relatively deep
intermediate minima, sometimes almost degenerate in energy
with the lowest energy state (e.g., N = 3).

Results are summarized in Fig. 7, in which the energy of
the highest energy saddle along the lowest energy pathway is
given versus the size of the cluster. Initially, as the size of the
cluster increases, the barrier increases linearly with the size of
the cluster. However, clusters of size 5 exhibit an extremely low
barrier, which is again increased significantly for N = 6. This
coincides with the structure of the clusters. Recall that all of
the clusters are composed of He atoms residing on tetrahedral
sites with the lone exception of N = 5. That cluster has
one He atom in an octahedral interstice. Interestingly, similar
anomalously fast diffusion for He5 interstitial clusters has been
observed in Fe [29]. For N = 1, the octahedral interstice is the
saddle point for migration, indicating that He at the octahedral

interstice is less energetically favorable than at the tetrahedral
site. This further implies that He mobility might be higher
for such a structure, which is reflected in the low migration
energy.

FIG. 7. (Color online) Migration energies as a function of cluster
size for N = 1 to 6.
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FIG. 8. (Color online) Diffusivity as a function of β for N = 1 to 6. Red squares: MD results; blue line: HTST; green line: SB-HTST.

2. Diffusivity

The diffusivity of the different clusters was directly mea-
sured over temperatures ranging from 300 K to 1400 K by
computing the mean squared displacement (MSD) of the
cluster’s center of mass and using Einstein’s relation

D = lim
t→∞

〈|r(t) − r(0)|2〉
2dt

, (3)

where d is the dimension, i.e., 3. In practice, we used 24
independent simulations, totalling about 600 ns of MD time at
each temperature. The diffusivity was obtained from a linear
fit to the time-dependent MSD. The results are summarized in
Fig. 8. At first glance, the most obvious feature is the depar-
ture from a conventional Arrhenius [D ∝ exp(−�E/kBT )]
behavior. While at modest temperatures the change of the
diffusivity is compatible with the diffusion barriers identified
with TAD (the blue lines are Arrhenius fits using the TAD
values of the activation energies), the Arrhenius curves bend
downwards at high temperatures; i.e., diffusion occurs slower
than suggested by an extrapolation from lower temperatures.
This observations is counterintuitive because one could have
expected that, due to the complexity of the clusters’ energy
landscape, other, higher energy diffusion pathways would have
become active with increasing temperature. This would have
lead to an opposite, i.e., convex, deviation from the Arrhenius
behavior.

The origin of this unexpected behavior indeed stems from
the complexity of the energy landscape. However, not in

terms of a multiplicity of diffusion pathways but of possible
conformations of the clusters. Consider a case where only
one transition pathway is active but where the cluster has
to be found in a specific conformation for the hop to be
possible. As the temperature varies, the relative probability
that the cluster be found in such a “gateway” conformation
also varies, which leads to a non-Arrhenius behavior, i.e., to
a temperature-dependent effective activation energy. In fact,
an explicit expression for this energy can be derived within
the purview of what we term superbasin transition state theory
(SB-HTST):

∂ ln k/k0

∂β
= −[U ∗

G − 〈Umin〉S,β ] = −�Ẽ(β). (4)

This expression states that the apparent activation energy (i.e.,
the slope of the Arrhenius curve) corresponds to the difference
between the saddle point energy for diffusion U ∗

G and the
average energy of the minima (the different conformations)
that the trajectory visits 〈Umin〉S,β during dynamics at inverse
temperature β. The complete derivation is presented in the
Appendix. Finally, integrating this expression with respect to
β, one can obtain a generalized Arrhenius expression:

D = ν̂ exp(−β�Ê), (5)

where the generalized activation energy �Ê is now a function
of temperature, but where the prefactor ν̂ is temperature
independent.

As can be seen from Eq. (4), SB-HTST predicts a lowering
of the slope of the Arrhenius curve at increasingly high
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TABLE I. Parameters of the SB-HTST description of the diffu-
sivity for different cluster sizes. See text for details.

N ν̂ (m2 s−1) f0 (eV) f2 (eV/K2) f3 (eV/K3)

2 3.26 × 10−7 0.26 1.80 × 10−7 −3.79 × 10−11

3 5.61 × 10−7 0.35 8.02 × 10−8 −1.48 × 10−11

4 2.86 × 10−6 0.46 1.98 × 10−7 −3.84 × 10−11

5 1.98 × 10−8 0.16 1.18 × 10−7 −1.30 × 10−11

6 2.32 × 10−6 0.375 4.21 × 10−7 −9.77 × 10−11

temperature, due to the fact that higher-lying energy basins
are sampled increasingly often, in qualitative agreement with
the MD results. Except for a slight undercorrection at N = 3,
SB-HTST in fact quantitatively predicts the behavior of the
diffusivity, as shown by the green lines in Fig. 8. In this
case, 〈Umin〉S,β is measured directly from MD simulations
by periodically quenching the trajectory and recording the
energy of the minima where it was instantaneously located.
〈Umin〉S,β was then fitted to a third-order polynomial in T ,
from which �Ê = f0 + f2T

2 + f3T
3 was finally obtained.

The value of ν̂ was here fitted directly to the MD data.
The results are presented in Table I. For N = 3, where the
disagreement is the largest, we verified that the MSD is directly
proportional to the number of crossings of the diffusion barrier
identified by TAD over the whole temperature range; i.e.,
no other pathway significantly contributes to diffusion. As
SB-HTST is a harmonic theory (i.e., it assumes that the
partition functions of each conformation can be approximated
by a many-dimensional harmonic partition function), the
most likely source of error is anharmonicity of the potential
energy surface. Interestingly, for N = 1, we observe a similar
departure from a perfectly Arrhenius behavior. We did not
observe any other thermally relevant configuration of the
interstitial that could cause a superbasin correction. Therefore,
anharmonicity is probably also the cause of the departure from
the Arrhenius behavior in this case.

C. Breakup

A second key process that controls the size distribution
of He clusters is the breakup of larger clusters into smaller
ones. Even if clustering is energetically favorable, configura-
tional entropy considerations favor isolated He atoms at low
concentrations and high temperatures. Proper consideration
of breakup reactions is also essential to model the time and
position at which clusters will reach a sufficient size to trap
mutate and create a bubble nuclei.

A proper definition of a suitable reaction coordinate to
describe the breakup process is essential. Unfortunately, a
simple choice based on a cutoff distance between atoms is
not suitable. Indeed, defining breakup (formation) as was
done in the thermodynamic analysis above—as the moment
at which the minimal distance R within which every member
of the cluster can be connected to some other member of the
cluster exceeds (falls below) a certain threshold Rmax—gives
an inadequate kinetic description. Indeed, an ideal definition
should be such that both breakup and (re)formation of the
cluster is approximatively a Markovian process, i.e., that it
be well described by a rate constant (in fact, this condition

FIG. 9. (Color online) 1 minus the empirical cumulative reaction
time distribution function F (t) for N = 2 at T = 1500 K with Rmax =
2.8 Å. Red: breakup; green: formation.

is necessary, e.g., if the dynamics are to be described by a
rate theory or a cluster dynamics model). Markovianity in
turn implies that the breakup and formation time distribution
should be exponential, or, equivalently, that the 1 minus
the cumulative reaction time distribution be exponential.
The measured distributions for N = 2 and T = 1500 K for
Rmax = 2.8 Å, reported in Fig. 9, show that this simple
procedure is inadequate because it is associated with an excess
of rapid (re)formation of the cluster; i.e., many “breakups”
really correspond to a short-lived fluctuation of the cluster. As
Rmax is increased, an excess of short-time pseudoformation
also occurs, corresponding to He atoms that came in close
proximity, without bonding for a significant amount of time.
We found that no single value of Rmax gives satisfactory results.
Alternatively, one might consider, following Ref. [58], that
the fully bound R < Rbound and fully unbound R > Runbound

regions of configuration space are well separated (Rbound 
=
Runbound), i.e., that a cluster can temporarily be found in neither
the fully bound or fully unbound regions of configuration
space, but that is bound/unbound status can still be determined
by the last region it visited. In other words, a cluster is
bound if it more recently met the condition R < Rbound than
R > Runbound, and vice versa. In this formalism, spurious rapid
recrossings of the Rmax surface are not deemed reactions
and only unambiguous breakups/formations are counted. The
reaction dynamics can therefore be made Markovian to a good
approximation, as shown in Fig. 10 for Rbound = 2 Å and
Runbound = 7 Å. We find this definition to be adequate for all
cluster sizes and temperatures investigated here.

Using this approach, we directly measured the breakup rate
of clusters in MD between 1000 and 1500 K. The breakup rates
for N = 2 to 5 are shown in Fig. 11. At 1000 K, the lifetime
of clusters is on the order of 10 ns, 0.1 μs, 1 μs, and 10 μs, for
N = 2, 3, 4, and 5, respectively. We did not observe breakup
for N = 6 on accessible time scales. The results indicate a
rapid decrease of the breakup rate with increasing cluster size.
As shown in Table II, where the results of Arrhenius fits to the
breakup rates are reported, the activation barriers for breakup
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FIG. 10. (Color online) 1 minus the empirical cumulative reac-
tion time distribution function F (t) for N = 2 at T = 1500 K with
Rbound = 2 Å and Runbound = 7 Å. Red: breakup; green: formation.

increase significantly with increasing size, which is consistent
with the fact that the binding energy per He atom increases
with increasing cluster size. In fact, these activation barriers
are similar to the binding energy differences for the removal
of single He from clusters (cf. Fig. 2). The corresponding
prefactors are fairly standard, i.e., around 1012 to 1013 s−1.

Given the very large number of transition pathways (the
reverse of every possible clustering pathway), we did not
attempt to exhaustively identify them all in order to perform
an SB-HTST correction (as the net effect would result from
a competition between the superbasin correction and the
activation of more pathways). The observed breakup rates are
remarkably Arrhenius over the probed temperature range, but
deviations at lower temperatures cannot be fully excluded.

While we expect the number of distinct breakup pathways to
be large, the vast majority of the breakups involve a single atom
leaving the cluster. At elevated temperatures more complex

FIG. 11. (Color online) Breakup rate as a function of β. Red
crosses: N = 2; green ×: N = 3; blue stars: N = 4; pink squares:
N = 5. Corresponding lines are Arrhenius fits.

TABLE II. Prefactors and energy barriers for cluster breakup
obtained from an Arrhenius fit to the MD data.

N ν (s−1) �E (eV)

2 1.41 × 1012 0.74
3 1.29 × 1013 1.27
4 1.05 × 1013 1.41
5 8.66 × 1012 1.57

transitions start to activate, but their contribution is modest:
at 1500 K, the 5 → 3 + 2 transition occurs only about 4% of
the time, the 4 → 2 + 2 about 2% of the time. That fraction
becomes even more modest at lower temperatures.

D. Trap mutation

The last process of interest to microstructural evolution is
the so-called “trap mutation” process, whereby an interstitial
cluster of He induces the creation of a W Frenkel pair and
collapses into the newly created vacancy. From then on,
the cluster is practically immobile and can be considered a
nanobubble. Additional He atoms encountering it will also
join the bubble, which will grow by further emitting W
interstitials [14]. We postpone the analysis of the growth
process to a future publication; instead we here assess the
rate at which clusters can undergo this mutation. The mutation
process was observed in direct MD simulations.

A typical mutation event is illustrated in Fig. 12. This
process, with an energy barrier of 1.06 eV, was identified from
an MD trajectory at 1400 K and characterized using the NEB
method. In the initial state, one can clearly see that a W atom
was found especially far from its equilibrium configuration
[cf. panel (a), under the cluster]. As the cluster becomes more
compact [cf. panel (b)], this atom is further pushed away,
which finally leads to its complete ejection [cf. panel (c)] and
to the formation of an interstitial. After a few rearrangements,
the interstitial rearranges into a crowdion configuration (not
shown). This process admits many variants (we have identified
a selection of these), but the associated barriers appear to be
similar to the one described above.

As shown in Fig. 13, the mutation rate increases sharply
with size, as expected. At 1000 K, the lifetime of a cluster
before mutation varies from a few hundred ns for N = 7 up
to a fraction of a μs for N = 5. Once again, the behavior
of the rate is nicely Arrhenius over the range of temperature
we investigated (700–1400 K). The results of Arrhenius fits
to the MD results are summarized in Table III. The energy
barriers extracted from the fits, ranging from 0.701 eV for
N = 7 to 1.20 eV for N = 5, are significantly lower than that
of the reaction pathways we found (e.g., 1.06 eV for the N = 7
transition shown in Fig. 12), but the disagreement decreases
significantly upon consideration of SB-HTST corrections. For
example, for N = 7, the MD results are consistent with a
raw barrier of about 0.9 eV. Based on the slight tendency for
undercorrection observed in the case of diffusion, it is plausible
that a process with a barrier of about 1 eV, as the one described
above, fully accounts for the observed results. However, the
possibility that lower barrier pathways also contribute to the
rate cannot be excluded.
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FIG. 12. (Color online) Possible trap mutation pathway of an He7

cluster. The three snapshots correspond to the initial (a), saddle (b),
and final (c) configurations.

Interestingly, the inverse reaction (the reabsorption of an
interstitial) was also observed for N = 5 and 6. The rate for
this process is however difficult to determine precisely because
the relatively small size of the simulation cell used here might

FIG. 13. (Color online) Mutation rate as a function of β. Red
crosses: N = 7; green ×: N = 6; blue stars: N = 5. Corresponding
lines are Arrhenius fits.

bias the results, as the created interstitial cannot be ejected
far away from the cluster due to periodic boundary conditions.
Therefore, it remains confined in the vicinity, which artificially
increases the recombination rate. We however observe that
mutation makes lower energy states accessible for N = 7, but
not for N = 5, and 6. This is consistent with a higher rate of
recombination for smaller clusters.

IV. DISCUSSION

The quantities reported above (free energies, diffusivities,
breakup rates, and mutation rates) can be used to upscale
atomistic simulation through mesoscale cluster dynamics
models where the population of individual species is obtained
through the solution of a set of coupled reaction/diffusion
equations [43]. These models can be used to bridge the gap
between the nanoscale and relevant device scales and provide
information on the microstructural evolution of the material
over long time scales and large length scales. In that context,
the reaction rates between different species are commonly
obtained by assuming diffusion-limited reactions, i.e., that the
formation rate constant of a species C by collision and merger
of two other species A and B (He clusters of different sizes in
the present context) adopts a Smoluchowski form [59]:

kA+B→C = 4π (DA + DB)(rA + rB), (6)

where the D are diffusivities and the r effective capture
radii. Using the measured formation rates (of the form
kHeN +He→HeN+1 ), we can extract the relevant capture radii
from the atomistic results. We obtain rN � 4.3, 9.9, 15, and

TABLE III. Prefactors and energy barriers for cluster mutation
obtained from an Arrhenius fit to the MD data.

N ν (s−1) �E (eV)

5 2.95 × 1012 1.20
6 1.28 × 1013 1.02
7 6.64 × 1012 0.701
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FIG. 14. (Color online) Potential energy of quenched configura-
tions taken along a 2000 K MD simulation as a function of the distance
between 2 He atoms.

25 Å around 1000 K, for N = 1, 2, 3, and 4, respectively,
decreasing to about rN � 2.9, 7.3, 9.2, and 13 Å around
1500 K. These values are surprisingly large compared to an
effective hard core radius of a single He atom. This points to
a significant contribution from elastic interactions mediated
by the tungsten lattice. This is qualitatively consistent with
the observation that He atoms bind increasingly strongly with
increasing cluster size, even in the absence of purely chemical
binding between He atoms. This hypothesis can be confirmed
directly by calculating the energy of different configurations
as a function of the distance between 2 He atoms. For clarity,
configurations taken along a trajectory at 2000 K have been
quenched before computing the distance and potential energy.
As shown in Fig. 14, the elastic interaction between a pair of
He atoms extends up to a range of about 6 Å. Postulating that
capture occurs once the interaction energy reaches about kBT

yields results that are in reasonable agreement with the radii
inferred from Eq. (6).

A commonly taken approach when parametrizing cluster
dynamics models is to rely on Eq. (6) combined with a
detailed balance condition to estimate the breakup rates
of the clusters. This approach is attractive in cases where
free energy differences are computable using sophisticated
sampling techniques and diffusivities and capture radii can
be estimated using MD simulations, but where breakup rates
are too low to be directly measured. However, as discussed
in Sec. III C, a purely thermodynamical description of the
breakup process is here inadequate because it leads to non-
Markovian breakup kinetics. We next assess whether using
the kinetic approach to computing the formation rates and the
thermodynamic approach to compute the binding free energy
yields accurate results.

Using the free energy change upon breakup �FC→A+B , one
gets

kC→A+B = 1

V
kA+B→C exp(−β�FC→A+B). (7)

Using this last equation with the measured formation rates
[or, equivalently, using the inferred (temperature-dependent)

FIG. 15. (Color online) Breakup rate for the reaction He3 →
He2+He. Red: direct MD simulations (cf. Fig. 11); blue: from Eq. (7).

capture radii] and the calculated binding free energies, the
accuracy of this approach can be assessed by comparing to
the directly measured breakup rates. As shown in Fig. 15
for the breakup of He3, these two approaches are in close
agreement (similar agreement is observed for other reactions).
This suggests that, while the absolute values of the formation
and breakup rates significantly differ in the thermodynamic
and kinetic formalism, their ratio is approximatively the same,
i.e., that the correction to the rate can be described using a
simple transmission factor.

Our results have some interesting consequences regarding
the behavior of He in tungsten. Consider the N = 5 cluster.
At T = 1000 K, it has a diffusivity of 9.14×10−10 m2 s−1, a
rate to breakup of 1.06 × 105 s−1, and a rate to trap mutation
of 2.64 × 106 s−1. Thus, the rate to trap mutation is about
20 times that for breaking up at 1000 K and, on the time
scale of trap mutation, the cluster can diffuse about 19 nm.
In contrast, at 500 K, trap mutation is nearly 2000 times
more likely than breakup and the cluster would diffuse over
10 μm before trap mutating. Thus, whether a cluster such
as N = 5 would contribute more to the growth or nucleation
of bubbles would be very temperature dependent. This has
important consequences for the behavior predicted in higher
level models and illustrates the need to obtain accurate rates
for all relevant processes.

The behavior of these clusters is clearly not a simple
function of their size, with particularly the N = 5 cluster
exhibiting what might be deemed anomalous behavior as
compared with the other clusters. The behavior of the N = 5
cluster is correlated with its structure which, among the clusters
examined here, is the sole cluster to contain a He atom
in an octahedral position in its ground state. Thus, there is
some relationship between, for example, the structure of the
cluster and its kinetic properties, though that relationship is
not trivial.

Finally, it is interesting to note that, even though these
clusters, especially the larger ones, exhibit a very rich and
complex landscape of local minima (hundreds of different
conformations), their migration rates are very well described
by considering them as existing in a superbasin that has a
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key escape pathway. This leads to an excellent description
of the migration rates as a function of temperature using
SB-HTST. These rates are still harmonic on a basin-to-basin
level, but anharmonicity is effectively captured to first order
through the fact that the average energy of the minimum
is itself a function of temperature. We expect that this
modification of harmonic TST will provide a powerful avenue
for analyzing the rates of complex structures such as the
clusters described here. It should also be very useful in
any situation where large regions of configuration spaces are
confined by only a few kinetic bottlenecks. In these cases,
we would expect the superbasin corrections to be significant.
While a brute-force approach to the parametrization of all the
interbasin rates would be prohibitively expensive, the escape
rates out of these bottlenecks can be readily obtained with
SB-HTST.

V. CONCLUSIONS

We investigated the kinetics and thermodynamics of small
He clusters in W in conditions relevant to fusion energy
production. Our simulations yield insights into the structure
and thermodynamics of these clusters, and provide a complete
characterization of their kinetics in terms of diffusion, breakup,
and mutation into nanoscale He bubbles. Our results enable the
parametrization of cluster dynamics models that can bridge the
gap between the nano- and mesoscales and hence facilitate the
prediction of the performance of W as a first-wall material in
the next generation of fusion reactors.
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APPENDIX: SUPERBASIN TRANSITION STATE THEORY

Conventional harmonic transition state theory (HTST) [60]
is usually appropriate when the initial (reactant) state is
composed of a single basin of attraction of the potential energy

surface. We now show that it can be generalized in cases where
the initial state is a superbasin, i.e., a collection of individual
basins. Individual basins can represent different conformations
of the same defect, and intersuperbasin transitions can corre-
spond to a net motion of the defect, or to a certain reaction.
Assume that the transition path of interest originates in basin G

and leaves the superbasin S through a dividing surface G∗. The
TST rate k at which this transition occurs is simply given by
the probability of finding the system in G relative to elsewhere
in the superbasin multiplied by the TST rate for escape from
G across G∗; i.e.,

k = pGkG→G∗ = ZG

ZS

1

βh

Z∗
G

ZG

= 1

βh

Z∗
G

ZS

, (A1)

where the Z are canonical partition functions.
Computing the slope of the Arrhenius curve at a given

inverse temperature β,

∂ ln k/k0

∂β
= 1

k

∂k

∂β

∣∣∣∣
β

, (A2)

where k0 is an arbitrary constant with the units of a rate. Using
Eq. (A1),

∂ ln k/k0

∂β
=

[
− 1

β
+ 1

Z∗
G

∂Z∗
G

∂β
− 1

ZS

∂ZS

∂β

]
. (A3)

From the fact that ∂Z/∂β = 〈−E〉βZ, with E the total energy,
we have

∂ ln k/k0

∂β
=

[
− 1

β
+ −〈E〉G∗,β + 〈E〉S,β

]
. (A4)

In the harmonic approximation, the equipartition theorem
holds, and we get

∂ ln k/k0

∂β
= −[U ∗

G − 〈Umin〉S,β ] = −�Ẽ(β), (A5)

where U ∗
G is the potential energy at the saddle point in

G∗ and 〈Umin〉S,β is the average potential energy of the
minimum of the basin the system is currently in. In analogy
with conventional Arrhenius kinetics, �Ẽ(β) is interpreted
as an effective, temperature-dependent activation energy. As
the temperature increases, the system will spend increasing
amounts of time in higher energy basins, which will lead to
a corresponding decrease of the effective activation energy.
〈Umin〉S,β , and hence �Ẽ(β), can easily be obtained from
direct MD simulations, or estimated by computing harmonic
partition functions. Equation (A5) can then be integrated to
give the rate k(β). Note that in extreme cases one could even
observe a negative effective activation energy if some local
minima in the superbasin are located at energies higher than
the saddle U ∗

G.
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