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A simple and general formula for the orbital magnetism has been obtained for a many-body system in
which the one-particle self-energy function depends on both energy and momentum variables. The result
is an extension of the Landau-Peierls formula, which is valid only in the case of an energy-independent
self-energy. Using this formula the effects of spin fluctuations on the orbital susceptibility of itinerant
electrons in a nondegenerate band are examined near the Curie temperature T. If the spin-orbit
interaction is neglected, the orbital susceptibility is modified only to order (T c/€;)>, where €, is the
Fermi energy. In the presence of the spin-orbit interaction, there is a contribution proportional to the
static spin susceptibility which is divergent at T = T .. However this contribution is generally small
since the proportionality constant is of order a?, where a = (137)~! is the fine-structure constant.

I. INTRODUCTION

It is a well-established fact that the Coulomb
interactions between electrons give rise to exchange
forces that enhance the spin susceptibility, result-
ing in the existence of strong magnetism such as
ferromagnetism, antiferromagnetism, etc.! In
the previous discussions, it was assumed that the
orbital susceptibility is not modified appreciably
even when the paramagnetic spin susceptibility be -
comes singular. Although this assumption seems
reasonable, there has been no detailed examination
of the problem thus far. In this paper we examine
the validity of this assumption by investigating the
effects of spin fluctuations? in the paramagnetic
phase near the Curie temperature. The model we
take is the itinerant-electron system represented
by the Hubbard model®

3= Eti,aﬁ,vaj'ﬁUEni,n“ , (1.1)
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where ¢;; and U are the transfer integral and the
Coulomb repulsive energy, respectively.

Before examining the problem, we first derive
a formula for the orbital susceptibility which has
a wide range of applicability. We should mention
that deriving a simple formula which can be ap-
plied to the present problem was not a trivial step.
This is because the main reason for the unsatis-
factory understanding of orbital magnetism is sim-
ply the complex way magnetic fields affect the free
energy, although there is nothing very profound in
the fundamental principles. *™® Such complexity
arises from the fact that the magnetic field affects
the energy and the wave function of each electron
below the Fermi energy, so that arguments sim-
ilar to the Fermi-liquid theory’ seem not to hold
in general.

Historically speaking, however, Sampson and
Seitz, ® who first examined the effects of Coulomb
interactions between otherwise free electrons, ap-
plied the Landau-Peierls formula® to the one-
particle energy spectrum obtained in the Hartree-
Fock approximation. This formula is given by
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where E(k) is the one-particle energy, f(E)
=[eP®® 1 1], g1=kT and p are the temperature
and the chemical potential. Since the orbital mag-
netism in this formula is determined by electrons
at the Fermi energy only, we may doubt its va-
lidity in the presence of electron-electron interac-
tions. This procedure, the application of the Lan-
dau-Peierls formula to the quasiparticle energy
spectrum, has been termed the Sampson-Seitz (SS)
prescription. ® After Sampson and Seitz, several
workers!! applied this prescription to the more
elaborate quasiparticle energy calculated in the
Bohm -Pines theory*? of correlations.

Due to the obscurity of its foundations, the SS
prescription has not been used very much. In-
stead, a simple perturbative method has usually
been used to examine the effects of Coulomb inter-
actions. In particular, Kanazawa and Matsudaira®®
evaluated the correction terms due to a statically
screened Coulomb interaction by use of the
Green’s-function technique. They expanded the
one-particle Green’s function and vertex correc-
tions to the current operator in terms of screened
Coulomb forces and retained the first-order term
in such a way as to maintain the gauge invariance.
In this respect, their calculations are based on
the free-electron energy spectrum and they did not
take into account the full form of self-energy and
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vertex corrections. Although some works'* ex-
amined higher-order corrections in this scheme,
they are simple perturbative treatments.

On the other hand, the SS prescription, if it is
correct, is more satisfactory since it includes the
quasiparticle energy spectrum itself, or the pole
of the full Green’s function. Philippas and
McClure® noticed this fact and proved the validity
of this prescription for the electron gas with stat-
ically screened interactions. In their proof it was
essential that the self-energy function does not de-
pend on the energy variable. Thus it is known that
the orbital susceptibility X is solely determined by
the properties at the Fermi energy if the self-en-
ergy function depends only on the momentum vari-
able. At about the same time, Rajagopal and
Jain'® reached similar conclusions by a different
approach. Using the general expression of the
electromagnetic response based on the Maxwell
equations, they reduced the problem of determining
the orbital susceptibility to that of the vertex func-
tion of the current operator at finite wave vectors,
and solved it variationally in the case of static
screening. Their final results agree with those
of Ref. 10.

In general, however, the self-energy function in
the interacting electron system depends not only
upon the momentum but also upon the energy vari-
able. Contrary to the case where the SS prescrip-
tion holds, we encounter situations where the self-
energy function is solely dependent on the energy
variable. An example is a strongly correlated
electron system in a narrow band represented by
the Hubbard model, Eq. (1.1). The approxima-
tions® thus far developed to treat the effects of
strong correlations yield a self-energy function
dependent only on the energy variable. The orbital
magnetism in such cases has been discussed by
one of the present authors, '® who first derived a
simple formula valid in this case and found that,
even if the band is split off by correlations, there
exist interband contributions caused by a mecha-
nism similar to Van Vleck paramagnetism.!’ In
between these two limiting cases there exist vari-
ous situations where both momentum and energy
dependences are important. For example the dy-
namical screening in an otherwise free-electron
gas!® introduces these dependences, which yield
various important consequences. Moreover in
magnetic metals, which are of interest here, spin
fluctuations? with low excitation energies affect the
one-particle energy appreciably, especially near
the second-order phase transition, resulting in a
strong energy and momentum dependence of the
self-energy function. Since we lacked a simple
formula for the orbital susceptibility applicable
to such a case, we first derive it in Sec. I by
taking an electron gas with Coulomb interactions

as an example. The Green’s-function technique'®
similar to Ref. 16 is employed so that the gauge
invariance is clearly seen. The form of the der-
ivation is conceptionally similar to that of Raja-
gopal and Jain'® in the sense that we are concerned
with the vertex function of the current operator

at a finite wave vector (3 In contrast to Ref.

15, however, we do not treat this function for gen-
eral values of @ but derive the rigorous expres-
sion for the expansion coefficient to second order
in @, which is sufficient to give the orbital sus-
ceptibility in a uniform field. Thus applications,
such as the cross section for neutron scattering, ®
are beyond our scope. The formula thus obtained
is shown to have a wide range of applicability,
which is discussed in Sec. III. The effects of spin
fluctuations are examined in Sec. IV, and discus-
sion is given in Sec. V, where the effects of spin-
orbit interactions are also examined.

II. DERIVATION OF GENERAL FORMULA FOR
ORBITAL MAGNETISM

For the sake of convenience, we consider a sys-
tem in a unit volume represented by the Hamil-
tonian

2
C‘C=Zi;-2-:';l(P;—%A,~) +-;—Ev(1’{—7,) ,  (2.1)

i#

where v(r) =e?/7 is the Coulomb interaction and
A(7) is the vector potential related to the magnetic
field by H=VxA. Although in a rigorous sense, A
includes not only the external magnetic field but
also the local-field correction, we can usually ne-
glect the latter since y itself is small except in the
case of superconductors, which are not treated in
this paper. The static susceptibility in the weak-
field limit is given by?°

_ (L ﬂ)
X=~\H o1/,
where Q is the thermodynamic potential, defined
by

(2.2)

e-ﬂ/kT -B(X-uN)

=Tre (2.3)
In Eq. (2.2), p is held fixed in the course of dif-
ferentiation. As is seen, the expansion of  in
terms of H, or A, up to the second order is suffi-
cient to determine y. We take for the vector po-
tential®

A@) =Rqle! @ _milF )y (2.4)

or H= ﬁXKQ in the limit of uniform fields. By
use of Eq. (2.4), we rewrite Eq. (2.1) as follows:

JC=? E(k)a,‘;a,,+§ viglal. ak_apa,
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where €(k) =k%/2m, v(q) =4re?/q?, and

, R

o= L alrar 2.0
po=§ak'+ak- , (2.7
B=K:1Q (2.8)

Q, Eq. (2.3), can be calculated as a perturbation
series in Ay by use of the thermal Green’s func-
tion G of the system without the magnetic field,
defined by*

. 1 A .
Gk, “")=_E er; dr'e*n (Tay(r)ai(r")
=[ie,+u-€k) == (B, i€)TT , (2.9)

where €,=(2n+1)rT and Z (&, i€,) is the self-energy
function. The correction to € in the second order
of Ag, 9, can be written as'®

2
- o(e] E bt

AV
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xG (", i€,) + (xw)]

J

- (4 /mc*) AL T E? S(, ic,) , (2.10)
where T, (k*, k7; i€,) is the vertex function of 9€/8k,,
which is explicitly defined below by Eq. (2.13),

and the spin-degeneracy factor 2 is included.
Equation (2.10) is quite general. To obtain an ex-
plicit answer for y we need to specify an approxi-
mation for the self-energy function Z and conse-
quently for the vertex function I',. In this paper

we employ the random-phase-approximation

(RPA), *® in which = is given by

Z &, i€) =T 294, i) §k - g, i€, ~iwy)

(2.11)
where w;=27IT and D(g, iw,;) is the dynamically
screened Coulomb interaction

Dlg,iw;) =v(q)(1 - v(q)T? ? Sk, i€,)

-1
x Gk +q, ie,,‘+iw,)) (2.12)

Equations (2.11) and (2. 12) are diagrammatically
shown in Fig. 1, where the dotted and the wavy
lines represent the bare Coulomb interaction v(q)
and the dynamically screened interaction 9(g, iw,;),
respectively, and G is represented by a solid line.
The vertex function I',, consistent with the approx-
imation to the self-energy function, Egs. (2.11)
and (2.12), is determined by the following integral
equation:

T,k k" i€,) = ;’Z +T L LTk —q, k" —q; i€, —iw,) (k" - q,i€,—iw,) Sk —q,i€,—iw,;)D(g, iw,)
1 aq

v

+T ‘E 2T ? T, (" k" i€,)G(k", i€ n) Sk, i€ [SR" = q, i€ —iw;) + Gk +q, i€y +iw;)]
q n

X SD((I', i(‘-’l)ﬁ)(q-’ iwl)g(k -4, Z'En - iwl)

where ¢g*=¢ +Q/2. Equation (2.13) is represented
in Fig. 2, where T, is represented by a doubly
shaded vertex. Before discussing I', for finite val-
ues of @, we note that T', at @ =0, T',(, %, i€,)
=Tk, i€,), is given by

Tk, i€,) =8, [e(k) + = (&, i€,) ] (2.14)
or

- 8,8k, i€,) =Gk, i€, Tk, i€,) (2.15)
In Egs. (2.14) and (2.15), and thereafter, we use

J

’ (2.13)

[

the notation 3,F=3F/8k,. That ') [Eq. (2.14)]is
the solution of Eq. (2.13) in the case of @ =0, is
seen as follows. By use of Eq. (2.15), the second
term of Eq. (2.13) can be transformed as

-T2 8,8k - q,i€, - iw,)Dg, iw,) =9, = (k, i€,),
1 q

(2.16)
whereas in this case of @ =0 the summations over
k' and n’ in the last term of Eq. (2.13) can be per-
formed as

TZ' %} Iok’, i€, )2k, i€ ) [Qk' - q, i€ —iw,) + QR +q,i€0 +w;)]

==T2; kz 0 Gk’ i€ ) [k’ —q, i€ —iw;) + Sk +q, i€y +iw;)]
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= T? 2 [S(e' =g, i€ —iw,)0. Gk’ i€u) + Sk, i€,0)0.G(k" - q, i€ —iw,;)]
=—T??85[9(k'-q,ie,,.—iw,)S(k',ie,,.)]

-0 (2.17)

Here 8,=3/3k,. The second equality is due to the
change of variables k'—~%'~¢q, €, - €, —w;, in the
second term in the bracket and the last equality is
due to the integration over 2’. The schematic rep-
resentation of Eq. (2.17) is shown in Fig. 3 (com-
pared with Fig. 2), where I'3(%, i€,) is represented
by a singly shaded vertex in order to stress the
difference between I',, Eq. (2.13) and Fig. 2, and
I'). Thus the right-hand side of Eq. (2.13) is seen
to be equal to 'S, which is self-consistent. Be-
cause of Eq. (2.15), ®  Eq. (2.10), vanishes in
the limit of @ =0; the first term of Eq. (2.10) can-
celing the second after a partial integration. As
we are concerned with a uniform magnetic field,
the expansion of 2 in terms of Q@ up to the second
order is sufficient, which we will outline in the fol-
lowing.

First we note the following expansion:

9(’3’, ien) g(k-r ien) = 92 - 4-1QaQB(2 - 6&8)
%[8,885G —G84sG]
Ega'i’QaQBTTag (2. 18)

In this equation and hereafter, the summation sym-
bol over components of vectors, a and B, is sup-
pressed in the case where two same indices appear
in one expression. In order to determine the coef-
ficient of @,Q; in T',, we formally write Eq. (2.13)
as follows:

r,=9,e+I,5.6.K , (2.19)

where K is the kernel of the integral equation rep-
resented by the second and third term of Eq. (2.13)
and is diagrammatically given in Fig. 4. In Eq.

T (kien) = < N
G
D (q,iwe) = ~—~——~

FIG. 1. Self-energy function £ due to the dynamically
screened exchange interaction. wv(g) (broken line) and
(g, iw,) (wavy line) are bare and screened Coulomb in-
teraction, respectively. G (solid line) is the one-particle
Green’s function.

|
(2.19), g, =g(k"™, i€, ) and the integration symbol
is suppressed. We expand Eq. (2.19) in terms of
Q. Since §,G.K does not include a term linear in
@, I', can be written as

I,=T0+Q,Q T (2. 20)

where the equation for I'?? can be obtained by in-
serting Eq. (2.10) into Eq. (2.19),

rge=r3ﬂaBK+rngzK (2. 21)

In Eq. (2.21), use is made of the fact that the con-
tribution coming from the expansion of D(q", iw;)
D(g~, iw,) vanishes. The product D(g*, iw,)D(q", iw;)
has no linear term in . In evaluating the effect
of the quadratic term for this product, all other
@’s in Eq. (2.13) may be put to zero and the result
vanishes by use of Eq. (2.17). By use of 7*® and
I in Eq. (2.10) for @', we obtain

2
e
G 2(;) 2 A0, 40,QuQsT

X2 @[(aleszrgm (vesr)] (2.22)

n

Next, we will find the relationship between I‘i‘B and
I). For this purpose, we iterate Eq. (2.21) to get

I =ron®(K + KS*K + KG2KG?K + -+ -) (2.23)
On the other hand, Eq. (2.19) leads to

IY=09,e(1 +S%K+S2KS%K + < - ) (2.24)
or

- 0,6=0,6G3(K+KSPK+.--) (2.25)
Thus we find
T, ; 0,€8°T¥ =T ; (19 - 8,€)7**19 (2. 26)

n n

Consequently, we obtain

2
Q® = 4(%) 2 AgpAq,QuQsT LTI
Al ' (2.27)

Hereafter we suppress the superscript 0 for I'.
That Q% given by Eq. (2.27) is proportional to the
observable magnetic field H? = (2Q X Ao)? irrespec-
tive of the gauge of the vector potential Ay is shown
by the following equations:

T >;, Z:,rin”: -47'7 %) @ri[(a,g )-6a,,8]
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=—12'T EZk)a,(g r,)%=0
n
by use of Eq. (2.15).

T2 2T =
n R

=-27'72; kE (r’régt.+r,r,r,,s% ,
(2.29)

(2.28)

Similarly,

—417 ? Zk)ri[(ayg 2 -8Ga,,8]

where I',,=9,I'y=8,I",, and

T E ;r,r,w” =277 Z) ;r,r,(a,ga, $-Ga,,0)
=272, ; (rérég*+r,r,r,,s®
(2.30)
Thus

Q@ - (E) QxAQ YT Z") ;(ririg‘ +I, I, T, §9

c

, (2.31)

or

2
X=- (%) T L 4 IO, I,8) . (2.32)

By partial integration, Eq. (2.32) can be rewritten
as (see Appendix)

=2) 1D DT, - e

where

(2.33)

2

9
==k, S

Lk, i€,) = lek) + = (&, i€,)]

32
ok, ok,

We emphasize that G is the one-particle Green’s
function including the self-energy correction.
Equation (2. 33) is the fundamental result obtained
in this paper.

III. DISCUSSION OF THE GENERAL FORMULA
A. Validity of Eq. (2.33) in some known cases

1. Free-electron gas

In this case T =0 and €(k) =£%/2m, so that
T,,=T,=m" and I',,=0. Thus by use of ¢"'=i¢,
+u —€(k), we have

Oé/Bky @

FIG. 2. Integral equation for the vertex function I, of
the velocity operator d¢/8k,. T, is represented by a
doubly shaded segment, and k*=k +@Q/2, etc.

K K

re K-q + k'+q =0

K Kk’

FIG. 3. Diagrammatic representation of Eq. (2.17),
the fact that the third term of Eq. (2.13) vanishes if @
=0. The vertex function at @ =0 is written as I'° and
shown as singly shaded segment.

by 0

2p

2% < 8 mk

2_4Kkp sy 9 _ 2

=gt T LS =T Lo MO =-3a kb
(3.1)

where pp=e/2mc is the Bohr magneton. Equation

(3.1) is the Landau diamagnetism. ®

2. Bloch electrons

Although Eq. (2.33) is explicitly derived for an
electron gas in the presence of the Coulomb inter-
action without the periodic potential, it gives us the
Landau-Peierls formula if we take €(k) as the en-
ergy function of a Bloch band and take ©Z=0. In
that case it is seen that Eq. (2. 33) reduces to Eq.
(1.2). That we get the Landau-Peierls formula
even if we ignore the effects of the periodic poten-
tial is due to the fact that this formula only takes
account of the modifications of the motion of Bloch
electrons by the magnetic field in the form of

~(e/c)A), disregarding the interband coupling
completely. This is parallel to the derivation of
Eq. (2.33), where the expansion in terms of @ af-
fects only the one-particle Green’s function. Thus
Eq. (2.33) is applicable to perturbed Bloch elec-
trons with the same range of applicability as the
Landau-Peierls formula.

3. Sampson-Seitz prescription

If the mutual Coulomb interaction is treated us-
ing a statically screened interaction, the self-en-
ergy function is independent of the energy variable.
Thus the sum on » in Eq. (2. 33) affects the G2 fac-
tor only, and Eq. (1.2) is obtained with E(k) = €(k)
+Z(k). By use of the fact that € and £ depend on
|k| only, the result can be written

_ ii)(ldE 2,dE
“"12\ae) 3k 73" @),

Equation (3. 2) is the SS prescription. ®° As is ev-
ident, the energy independence of Z(k, i€,) is cru-
cial to this prescription.

(3.2)

B. Range of applicability of Eq. (2.33)

Equation (2. 33) was derived for the case of the
electron gas. In this case
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FIG. 4. The four-vertex function, K, defined by Egs.
(2.13) and (2.19).

. 4me?
0, iw,) =P in)

g°elq, iw, 3.3)

where €(g,iw,) is the dielectric function. In the
past the dynamical effects, the contribution coming
from the w, dependence of €(g,iw;), have been sup-
posed to be minor and xy was estimated within the
static approximation, which neglects the energy of
an electron-hole pair compared to the plasmon en-
ergy. Because of the fact that the plasmon energy
can be much smaller than the Fermi energy in the
high-density limit, we cast doubt on the validity of
this approximation, although we do not treat this
problem here.

We list in the following other cases where Eq.
(2. 33) can be applied.

(1) The electron-phonon intevaction.

This case has been examined by Tani? by a quite
different method. In this case, D is the phonon
propagator.

(2) The elastic scatteving potential with a finite
force vange treated within the Born approximation.®

In this case, D is given by

Dlg, iw;) =8, | ulg) |%e@) (3.4)
where n;, ulg), and g(q) are the number density of
impurities, the Fourier transform of the scatter-
ing potential and the Fourier transform of the pair-
distribution function of the impurities. The exis-
tence of the Kronecker 5, 6‘,,‘ represents the elas-
ticity of the scattering.

If the perturbing potential has a short range, Eq.
(2. 33) is applicable to binary alloys treated in the
coherent-potential approximation (CPA)* as was
explicitly derived in Ref. 16 and applied later. %

In this case the fact that the self-energy function

is independent of the momentum variable even if we
sum all orders of u(q) makes the formula Eq.

(2. 33) valid.

Note that the periodic potential can also be
treated within this equation by use of the pseudo-
potential method.?® The liquid metal can similarly
be treated.

1V. EFFECT OF SPIN FLUCTUATIONS IN
A SIMPLE CASE

We employ the model Hamiltonian given by Eq.
(1.1). We confine ourselves to the paramagnetic

FUKUYAMA AND J. W. McCLURE 9

state, where the spin fluctuations? are represented
by the transverse component of the spin suscepti-
bility, Xep(q,iw;). Near T=T¢, Dlg,iw,) is approx-
imately related to x,,(q, iw;) as follows:

Dlg,iwy) =-3 U(l +H¥— Xsp(2, iwx)) , (4.1)
B

Xeo(@s i) == uh T 2 20 Gk, i€,) Gk +, i€, +iw;)

-1
x(1+ UT E?g(k,ie") 8(k+q,i€,,+iw,)) .

(4.2)

The factor 3 takes account of both longitudinal and
transverse components of the spin fluctuations.
The self-energy function given by Eq. (2.11) in-
cludes two processes like those shown in Fig. 5.
In the calculations to follow, we assume that the
band energy is given by that of nearly free elec-
trons, i.e., €(k)=k%/2m* with the effective mass
m*. Considering the spherical symmetry of

= (k,i€,) in momentum space, we first rewrite Eq.
(2. 33) as follows:

1 2 1
X=ﬁ(%) T;;?— (B2 + 2kE(h)E 0]? , (4.3)
where

d" ,
Ewm =d? [e®) + Z(k, ZE,,)]
Expecting that the effect is small, which is justi-
fied later, we expand Eq. (4.3) in terms of T and
retain the lowest-order term,

X=XotAX
_l € 27*22 2
Xo=§ \Un*e n 'k So

1/ e | 1 e\ k
:—E(m*c) p(€p)=—w<z) ';n"f— s (4. 4)

1 fe\? o ,
Ax=18m"‘ (;1;) T ;jo‘ dkG3[ - 3Z (g +kZ(y)

+2R2 %] (4.5)

where G =i€,+ - €(R), D¢, =d"Z/dk", €p=kE/2m*
and p(ey) is the density of states at the Fermi en-

ergy in the presence of spin fluctuations. In deriv-
ing Eq. (4.5), use has been made of Eq. (2.15) ap-

70 N

’ \ |

FIG. 5. Electron self-energy function due to spin
fluctuations. Broken lines are Coulomb repulsive force
u.
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plied to Gy, and a partial integration has been per-
formed. In order to evaluate Eq. (4.5), we need
Z, which is determined in the following. Since we
are interested in temperatures near a finite Curie
temperature T, it is sufficient to take out the

w; =0 component in Eq. (2.11), and then to neglect
the contribution with w;#0. This comes from the
fact that (g, iw;) (w;# 0) does not have a singular-
ity in small-g limit even if T=7..%% In this case,
9(g, 0) can be written as?®

®(g,0) == 37 [n+Dg?T*

where n=(T - T¢)/T¢ and D=U/67°v;. Here
vp=kp/m* is the Fermi velocity. Inserting Eq.
(4.6) into Eq. (2.11) and integrating over g, we
have

(4.6)

R 3i - iqo+q,+k
b =2 * Lipf29T4nT7*
z (k,i€,) Py UT om*(Dk) ln(iqo+q,.-k> , (4.7

J

where g2=7D" and ¢, = [2m* (i€, + €£)]!/? (Img,>0).
Using Eq. (4.7) we evaluate Eq. (4.5) as follows:

m*E [ e\
Ay = -
X=*61D (wc) UTe

° (qn+lq )[7k2-3(1q +qn)2]
x5 J(; d (qzn—ké)z[(iqo+qn)z—kz?
(4.8)

Equation (4. 8) is seen to be convergent even if
T=Tcor qy,=0, and Ay at T=T can be estimated
as

2
Ay= ur (i) T&UD™ Lyt (4.9)

T 96 \nc

The summation in Eq. (4.9) can be performed as
follows :

e P N S S A% ST A O
o n T em*Ge, v €0)F T 16m*2(nT o) 1o 2 21T, * +2+27'rTc

(4.10)

B 1 ol  €p ol i€p \| o 1
oo 16m*2(nTc)2[¢ <2 - ZTTTC) 9 <2+ 21To)|  ~ 8m*¥ek  ?

where §’(z) =S (2 +#)7%, and we have made use of
the fact that (7./€;) <1 in deriving the last line.?®
Thus

11 /e 2
Ay = —f— 2 -1
768<1rc> (Tc/€p)* UD

11 /e\? k
=m(;) m%(Tc/EF)z s (4.11)

or

Ax/xo=~ B 1T/ €p)? (4.12)
From Eq. (4.12) we conclude that the correction
due to spin fluctuations is very small in the present
model of a simple nondegenerate band without spin-
orbit interactions.

V. GENERAL DISCUSSION OF EFFECT OF SPIN
FLUCTUATIONS

In Sec. IV we showed that the orbital magnetism
is not appreciably influenced by the spin fluctua-
tions near the Curie temperature if the band is non-
degenerate and the spin-orbit interaction is ne-
glected. Although we confined ourselves to the re-
gion near T, the fact that the correction is small
will not be changed in the system at 7 =0 near the
ferromagnetic instability (paramagnons). We ex-
amined the case based on Eq. (1.1) where the spin
fluctuations and the orbital magnetism originate
from the same kind of electrons. The conclusions,

however, are valid even if the spin system has a
different origin from that of mobile electrons. 3°

The physical reason for the small correction is
that the orbital motions are not directly coupled to
the large fluctuating magnetic field due to spin or-
dering. In this sense the situation is different if
the band is degenerate or if the spin-orbit inter-
action is present. As regards the former, degen-
eracy of the band, some workers®! pointed out the
possibility of an orbitally aligned state besides the
usual spin-ordered state in the model of the doubly
degenerate band at zero temperature, which might
suggest the divergence of the orbital susceptibility
at the finite temperature 7. in some cases. In
realistic fivefold d-orbital metals the situation is
far from clear, although there have been discus-
sions®? of the orbital magnetism of a dilute nonmag-
netic 3d impurity in metals based on the Anderson
model® with orbital degeneracy.

The spin-orbit interactions have different as-
pects, which we briefly discuss in the following.
To discuss this problem we add to Eq. (1.1) the
following energy™*:

1 -
R:m tE 0’(7,-)><VV(7‘;)(P¢ —%Ai)
+2 gk gH l?loz(”i) , (5.1)

where 6(7) is the Pauli spin matrix. V and g, are
the crystal potential and g factor of the free elec-
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tron, respectively.

The susceptibility coming exclusively from the

second term in Eq. (5.1) is the Pauli spin para-
magnetism. Since the spin-orbit interaction is
usually weak, we examine its effect in first order.
In this order the thermodynamic potential has an
excess contribution, AR, due to the mixing of the
two terms in Eq. (5.1). Another possible contri-
bution due the mixing of the first term in Eq.
(5.1) and 3¢, Eq. (2.1), vanishes after the summa-
tion over spin direction. By employing procedures
similar to those in Sec. II, we obtain the following
contribution to AQ2. We find

e
AR =mgouBHAQ,,

3 B
xfo dxfo AN (Teh 1 (@) (N)a (@),

where (5.2)
oz(Q) = ? (a;*r Ap=y = a;+, ak'l) ’ (5. 3)
A Q) =(k*| GXVV)ei¥|k) (5.4)

T, is the time-ordering operator and |k*) is the
Bloch wave function. The time evolution and the
thermal average { ), in Eq. (5.2) refer to the total
Hamiltonian without magnetic fields. In the tight-
binding approximation Eq. (5.4) can be evaluated
to the linear order of @ as follows:

A (Q)=i(E(0)xQ)E , (5.5)
where
i- faix 2oter). (5.6)

In Eq. (5.6) the spherical symmetry of the atomic
potential «(r) is assumed and ¢ (r) is the atomic
wave function; AQ [Eq. (5.2)] yields an excess
susceptibility Ay,

Ax=- _gu% Xsp(oyo) ’

2mc (6.7)

where x ,,(0,0) is given by xs,(¢,iw;), Eq. (4.2),
aS X,,(0,0)=1im,.oxs(g,0). Since & is of the order
of the average of the atomic potential U(r)=- ze/r
(z is the atomic number) with respect to the state
@ (r),* we have

BX/Xep(0,0)= = z€%/2mc?a=-za%/2 , (5.8)

where a is the Bohr radius and a = (137) is the
fine-structure constant. Thus in the pure system
without band degeneracy the spin-orbit interaction
has only a minor effect on the orbital magnetism.

McCLURE

leo

It might be appropriate to point out the close
formal similarity between present case and that of
fluctuating superconductors.® In the latter we
have large contributions near the critical temper-
ature due to the presence of the Meissner effect
below T.. This physical difference is represented
by the fact that in superconductors, where the
electron-electron correlation becomes singular,
the equation corresponding to Eq. (2.17) does not
vanish and the process with two fluctuation propa-
gators remains finite resulting in the divergence
at T=T.. To the contrary, the spin fluctuations,
which are neutral in charge, do not yield large dia-
magnetic currents.
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APPENDIX: TRANSFORMATIONS OF EQ. (2.32)
TO EQ. (2.33)

We first note the following:

TZE [Pi r,zg 94 +T, Fy 4 83]
n R

=+T§§)[é—rir,a,g%gr,r”a,sz], (A1)
By partially integrating Eq. (Al) we get
- T?Z}[% G%,(I%I,)+ L §%a(I,T,)] . (A2)

The first term on the right-hand side of Eq. (A2)
can be transformed as follows, again by partial
integrations:

-irz Z.: G, (I2r,)== T2 ‘@ g°r,
n n
x (2T, T,,+ T, T,,)
== +T2200,8?
n k

x (20, T,y + T, T

YS')

=4 T%} g%s,(2r,T,,+ T, T

yy)'
(A3)
Equation (A3) and the second term of Eq. (A2) add
to give Eq. (2.33), after an additional partial in-
tegration.
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