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vibrations
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A correlated~ective-field theory is defined for interacting oscillators each moving in a local potential
well of arbitrary form. Correlations are introduced into an effective-field framework and determined by
forcing a consistency with the fluctuation theorem. The theory is formulated for both ordered and

disordered phases as a model for a structural phase transition. In the limit of a quasiharmonic local
potential the linearized theory is shown to be formally equivalent to selfwcnisistent phonon theory for
classical motion. In an opposite limit of extreme anharmonicity, with a deep-double-well local potential,
the method is compared to Ising theory and shown to be equivalent to the spherical approximation.

I. INTRODUCTION

As is so often the case in many-body physics,
even a basic model Hamiltonian (stripped of all
but its most essential features) still defies exact
solution. One such example is the model Hamil-
tonian which embodies the essential features of a
structural phase transition and is conventionally
written

K =+[—,
'

p', + V(x, ) —h, x, ] ——Z Z v,~x(x~, (1.1)

where p; and x, are canonically conjugate momen-
tum and displacement operators describing the
motion of ions in the ith primitive cell of a regular
lattice with the symmetry of the soft mode, h& is
an applied field, V(x, ) is a local-potential function
of arbitrary form, and viz is an interaction poten-
tial (v&&

——0} of arbitrary range and directional de-
pendence.

Two quite separate methods of attack have been
used in the literature to probe the statistical prob-
lem defined by (l. 1). One is to employ a renor-
malized-phonon basis with adjustable parameters
which are optimized such that the low-lying excita-
tion spectrum of this effective harmonic system
approximates as closely as possible the corre-
sponding spectrum of the actual many-body sys-
tem. In this scheme, the approximated terms in
(l. 1) are the anharmonicities in V(x, ), which are
replaced by effective harmonic terms whose mag-
nitudes depend on the thermodynamic variables.
The method is now commonly termed the self-
consistent-phonon approximation and has received
considerable attention in recent years. '

The other approach, variously termed mean-fie?d
time-dependent Hartree or self-consistent-field
methods, concentrates upon an equilibrium pic-
ture of local ith cell motion in thermally averaged
surroundings, with propagating excitations (of
arbitrarily anharmonic form) defined as the re-
sponse of the equilibrium distribution to a time-

dependent perturbing field. This independent-cell
scheme approximates the intercell interactions
v&&x, x& by a mean field but allows for an exact
treatment of local potential V(x, ) regardless of its
complexity.

Both methods can be used as zeroth-order bases
for higher-order perturbational or diagrammatic
representations. The primary disadvantage of the
lowest-order self -consistent-phonon (SCP) approxi-
mation is its presumption of effective harmonic
dynamics. Thus, although it is mathematically
well defined for arbitrarily anharmonic V(x, }, it is
obviously a bad starting point for the description
of grossly anharmonie motion such as occurs, for
example, when V(x, ) is of double-well form and
thermal energies are of the order of the well depth
(for which case the dynamic response can even be
double peaked'0). Indeed, recent classical com-
parison" of SCP and the self-consistent-field meth-
od suggests that the latter gives the lower free en-
ergy (and a better approximation to exact series
expansions) at high temperatures for V(x, ) of the
single-well form and at both high and low tempera-
tures for V(x, ) of the deep-double-well form. There
is evidence, however, that SCP is better suited for
the description of low-temperature single well
V(x, ) (pa.rticularly, one suspects, when quantum
effects are significant}, and the low-temperature
restriction can certaintly be removed by systematic
development of SCP to higher orders.

The weakness of the lowest-order self-consis-
tent-field method is the fact that it is a mean-field
approximation and therefore neglects, as its basic
approximation, all static correlations between
cells. Although some information concerning cor-
relations is often extracted from the mean-field
findings by the use of the fluctuation-response-
function relation of statistical mechanics (i.e. , the
equality of the mean fluctuation of a coordinate to
its susceptibility in response to an external field
to which it is coupled}, this merely implies that
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the method is wholly inconsistent in this respect.
In other words, as has long been recognized, "all
simple mean-field-based approximations are in
violation of the fluctuation theorem.

In a recent note' a method has been outlined for
rectifying this fundamental weakness in the self-
consistent-field theory of structural phase transi-
tions. By introducing the concept of a correlated
effective field to replace the old mean field, the
basic simplicity of a single-cell density matrix can
be retained, while the "local-field" picture is
brought into compatibility with the important exact
fluctuation constraint. The strength of what we
shall now call the correlated-effective-field theory
(CEF) is that it retains the simplicity of an inde-
pendent-cell picture and, therefore, remains
tractable for arbitrarily anharmonic dynamics,
while improving the local-field approach to Hamil-
tonian (1.1) to the point where it can compete in
accuracy with SCP even in the low-temperature
quasiharmonic domain where SCP is at its best.

In this paper we extend the work of Ref. 15 to
define CEF for all temperatures, including ordered
and disordered phases. For the quasiharmonic
limit of V(x, ) at low temperatures we also define a
linearized (effective-harmonic) approximation to
the general CEF scheme, since in this linear form
the CEF theory is directly comparable to SCP. We
emphasize very strongly, however, that this lin-
earization is performed solely to enable a direct
comparison with SCP in the harmonic limit. It is
not required for solution to the CEF equations nor
is it an approximation which one would otherwise
make. Thus, for example, in the long-range or
mean-field limit v,z

= const for- all j -i, CEF theory
is exact whereas linearized CEF (like SCP) leads
to spurious (first-order transition) discontinuities
near the critical point.

After defining both CEF and SCP we demonstrate
the formal equivalence of linearized CEF and SCP
(with quasiharmonic potential) for describing linear
response for classical motion. In quantum theory
the two methods are in accord at high temperatures
but deviate at low temperatures. In the opposite
extreme of an Ising limit (deep double well) V(x, ),
we establish the formal equivalence of general CEF
and the spherical approximation.

Throughout this paper CEF theory is discussed
only in its lowest order, for which the field depen-
dence of correlations is neglected. Work in the
next higher order (including the linear dependence
of correlations on field) is now in progress. This
is particularly important since both the spherical
and SCP theories exhibit questionable properties
close to a phase transition i4, ie Jn view Qf the close
relationship demonstrated in this paper between
lowest-order CEF and these more conventional
schemes, we hope later to achieve some deeper

understanding of these difficulties by studying
higher-order CEF.

~ d V(x()
p, = h, — ' +Z v,~[(xq) +A,~(x, —(x,))]

dx)
(2. 1)

and is valid both classically and quantum mechani-
cally [at least to the extent that V(x, ) is expandable
as a Maclauren series about the origin of x,].

We now note that this same equation of motion
can be obtained quite formally from an effective
"ith particle " Hamiltonian,

&g ——zp, + V(x, ) —h, x, -Z v, qx,
1

i

x[(xy) + z ax( —a(x;)], (2 2)

where a =$1 v,JA,&/$&v&1. Writing (x;) =(x)o+m,
to define the zero-field static order parameter
(x)o, it follows from (2. 2) and the use of formal
statistical mechanics that

—1&1
(x,) z = Tr x, exp

~

—p; + V(x, ) —z av(0)x',

—x,(x)o(1 —a)v(0) —h, x,

—Z v(yx((my —am() (2. 3)

where z is the partition function, given by the trace
of unit times the exponential function of (2. 3) and

where v(0) is the zero-wave-vector limit of the
Fourier transform

v(q) = Z v„e""-I', (2.4)

with respect to the lattice, of the interaction poten-
tial v, &. Wrl. tang

(2. 6)

defining

V, = z p, + V(x&) —za v(0)x, —x, (x)o(1 —a)v(0),
(2. 6a)

II. CORRELATED-EFFECTIVE-FIELD THEORY

In CEF theory we concentrate on describing the
motion of the ith "particle" in the many-body sys-
tem as moving in the correlated effective field of
its neighbors. From (l. 1) the effective field at
site i is g~ v, ~x~ and, without restricting the range
or structure of the interaction potential v;&, we ap-
proximate this statistically in the equation of mo-
tion for the ith particle by replacing the operator
xz of an arbitrary (interacting) neighbor by its en-
semble average (x&) together with a correlated con-
tribution A,~(x, —(x,)), as yet of unspecified ampli-
tude A,~, proportional to the instantaneous devia-
tion of the ith particle from its averaged position
(x,). The resulting equation of motion is
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r, =h, +Z v&z(m~ —am, ),
f

(2. 6b)

and verifying, by formal differentiation (noting the
noncommutation of V', and x, in quantum theory),
the equation

where x(q) is the Fourier transform of displace-
ment x, with respect to the lattice, and p/Tr(p) is
the normalized density matrix, where

—1 1
p=exp Z[-.P, +V(x, )] —-ZZv„x, x,

f

—e'~&e ~'=e ~~sr e ~~
gp

(2. 7) -Z h(q }x(-q)
~
.

i
(2. 15}

&x&0= Tr(x, e «~ )/Tr(e "~ ~ ) (2. Qb)

we establish the relationship

e s"~=e ~"'(I+ f e""'x,r, e ~ 'd&) (2. 8}
0

correct to first order of smallness in field h& and
response m, .

Putting P = 1/kT and neglecting any possible field
dependence of o., this result can be substituted into
Eq. (2. 3) when we obtain

&x(& = &«)0+ (&«; x&p &x&p)~ hf +Zv(y(m~ —amf)~,
1 2 (

kT ]
(2. 9a)

where = N(&x, :x,&, —&x,),'),
we find the exact result

(2. 1%a)

Differentiating directly we obtain, to lowest order

k'f&t(q) = &x(-q): «(q)&0 —&x(-q)&0&«(q)&0, (2. 16a)

in which

Px(-q): x(q) = J e""0«(-q)e ~"0«(q) dX, (2. 16b)
0

where X0 is the exact Hamiltonian for zero field and
where ( ~ ~ )0 indicates ensemble averages in the
absence of field. Noting that

~(&x(-q): «(q)&0 —&«(- q)&0&«(q)&0)

Z keg. (q) = N(&x, :x,)0 —&x,)0) . (2. 17b}

p&»:«&O=Tr(e ' & e""&x,e" 4,u)/Tr(e'r()
(2. 9c}

&
~ ~ ~ )0 referring to an ensemble average in the ab-

sence of applied field. Recognizing that such aver-
ages are independent of site i and recalling the
definition of m& as &x&& —&x)0, Eq. (2. 9a) can be
Fourier transformed to give

&m(q)) = (1/kT)(&x: x)0 —&x)0)

& [h(q) + v(q}m(q) —av(0)m(q)], (2. 10)

where

( 1 1/2

m(q)=~ — Z m e"'
}iN

(2. 11)

and N is the number of "particles" in the macro-
scopic lattice.

Writing a wave -vector -dependent susceptibility
}t(q}= m(q)/h(q) we calculate from (2. 10) the form

[X(q}]' = 7'+ av(0) —v(q),

in which

v. = kT/((x: x)0 —&x)0) .

(2. 12)

(2. 13)

Tr[x(q)p]
Sh(q) Trp (2. 14)

To this point the parameter 0. remains a free vari-
able in the theory. It is now determined, and the
theory thereby closed, by requiring the suscepti-
bility }((q) of (2. 12) to obey an exact fluctuation-
dissipation relationship derivable as follows.

From Hamiltonian (1.1) we can calculate X(q) di-
rectly as

Approximating this exact result by its CEF form
(i.e. , replacing Xo by V,

' in &x, : x&&0 and &x,)0),
Eqs. (2. 12), (2. 13), and (2. 17b) can now be com-
bined to give

III. SELF-CONSISTENT-PHONON THEORY

Consider a local potential function of the form

V(«( ) = sg«( + sgx (,2 4 (3 1)

—=E[r + av(0} —v(q)] (2. 18)
a

Equations (2. 6a), (2. 9b), (2.9c), (2. 13), and
(2. 18) are now closed and define the correlated
effective-field approximation in lowest order.

Since the theory is defined for all temperatures
and for arbitrary local potential V(x, ) it is of great
interest to relate it, where possible, to existing
statistical approximations derived under more re-
strictive circumstances. Two points of contact are
immediately evident. For a quasiharmonic V(x, ),
Hamiltonian (1.1}is of a form suitable for approxi-
mation by self-consistent linearization of the nor-
mal mode equations of motion. This is the SCP
approximation originally introduced by Boccara
and Sarma' and since studied in detail by several
authors. ' In an opposite limit of extreme an-
harmonicity we can take V(x, ) in the form of a deep
and narrow double well, when the ensemble average
&x: x&0 becomes independent of temperature and we
regenerate an Ising problem, the literature of
which spans almost a half-century. Let us first
direct our attention to the quasiharmonic situation
and solve (1.1}in SCP approximation.
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with a, positive. The equation of motion for (1.1)
with local potential (3. 1) results from

the SCP picture is completed by the equation

N&u, &
= Z (u(q)u(- q))

or

~ 8~K o ega
x,=, p, = ——(classical), (3 2)

20(q} 2kT

x, = (i/5)['5C, x,], j, = (i/R)[X, p;] (quantum),
(3.3)

where [, ] denotes a commutator and is
~ 0x i = h; —28|x —4Q2«( +Z v(yx~ (3.4)

for both schemes. Writing

x; =(x)„+u, , (3 5)

where (x)„=(x,) and is assumed independent of i
(i.e. , letting h; =h be a uniform field or zero) we
find

ii,. = h —2a, (&x&„+u;) —4a, (&x&„'+3(x)„u; + 3&x&„u;

+ u', ) +Z v, ~(&x&„+u~) . (3.6)

Taking ensemble averages on both sides and as-
suming quasiharmonic motion such that (ii,) = (u;)
=0 gives

h = [2a, —v(0) + 12az&gP&]&«&„+4az&x&h~, (3.7)

and subtracting (3.7) from (3.6) leaves a, motion

u, =~ v„.u, —2a,u, -12a,&x&„u,.2

J

—4a,u', —12a,&x&„(u', —(u', &) .

Introducing running waves

1/2

u, = — Z u(q)e "'f
N a

(3.8)

(3. 9)

and linearizing the resulting equation of motion by
replacing u(q )u(q ') by its ensemble average for
all q' and q", we find

u(q) = v(q)u(q) —2a,u(q)

—12Q2 Xh +

(3. 10)
where v(q) is defined in (2. 4). Using the fact that

Z &u(q)u(-q)) =N&u', &, (3.11)
a

we rewrite (3. 10) in simple oscillator form

u(q) = —0'(q)u(q), (3. 12)

with

0 (q) = 2a, + 12a2(x)„+12a2&u;& —v(q) . (3. 13)

Using the text-book statistical result for quantum
harmonic oscillators

from which, in particular, the uniform static sus-
ceptibility y, (0) follows [using (3. 13)] as

[X(0}]' = 2a| —v(0) + 12a2&sP& + 12a2&x&„. (3.19)

This same equation can also be obtained directly
from (3.7) by differentiation with respect to h if
d&u, )/dh = 0 when h = 0. This is so only if,&x)0 = 0
and it follows that the basic SCP equations conform
to the fluctuation theorem only in the disordered
phase.

IV. COMPARISON OF CEF AND SCP THEORIES

It is evident that no matter how small the an-
harmonic coefficient a2 in (3.1) the basic anhar-
monic character must eventually destroy the valid-
ity of any linearized approximation (such as SCP)
at sufficiently high temperatures. Since the CEF
approximation makes no essential use of lineariza-
tion it is not restricted in this way. Nevertheless,
in this and the following section, it will prove con-
venient to define a "linearized CEF, " since in this
form the theory is most easily compared with the
SCP scheme, and we shall use the abbreviation
LCEF to denote this restricted scheme in Secs.
IV and V.

A. LCEF theory, T~~T„&x&O=O, A=O

With local potential (3.1) the equation of motion
for a particle at site i in the CEF approximation is

x, = —2«,.[ag 2Qv(0)] 4&2«i. (4. 1)

Linearizing the equation gives simple harmonic
motion with frequency 0, where

which closes the set of Eqs. (3.7), (3. 13), and
(3. 15) for the temperature dependence of (x)„, &u&&,

etc.
Consistency of the SCP scheme with the fluctua-

tion theorem can be tested for as follows. Using
the relationship

(x(-q): «(q)& —&x(- q)&&x(q)& = &u(- q): u(q)&,
(3. 16)

the fluctuation result (2. 16a) for SCP becomes

)t(q) Tre Buo= Tr J e~uou(-q)e ""Ou(q)e ~uodX.
(s. 17)

For harmonic 360, the trace in (3.17) is easily
evaluated in the coordinate basis for which the en-
ergy is diagonal to give

X(q) = 1/&(q),

(u(q)u(- q)) = [h/20(q}] coth[KQ(q)/2kT], (3. 14) 0 =2a, —o.v(0)+12a2&x )0, (4. 2)
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and where (x )p in this harmonic approximation,
becomes

[lt(0)] ' = 2a, + 12ap(x')p —v(0) (4. 13)

(x')p = (I/2Q)coth(AQ/2kT) . (4. 3)

In the high-temperature limit, as mentioned, this
quasiharmonic scheme must break down and the
essentially anharmonic nature of (3.1) take over.
Such a situation is readily handled in CEF theory
but, since our present concern is a direct com-
parison with SCP, we shall use (4. 2) and (4. 3) to
arbitrarily high temperatures to define a linearized
CEF approximation.

From (2. 12) in the q = 0 limit, Eq. (2. 18) can
be written

(4. 14)

C. LCEF theory, ordered phase, (x)040, h=O

In the ordered phase the equation of motion for
the ith particle in CEF approximation is

x, = —2a,x, + nv(0)x; + (1 —a)v(0)(x)p —4apx', .
(4. 15)

Putting x; =(x)p+ u; we find

—,=~([X(0)l '+v(o) —v(q)] ', (4. 4}
u, = (x&p[v(0) —2a, ] —2a,u; + nv(0)u,

—4a, ((x&, + u;)'. (4. 16)
where, in the disordered phase,

r = kT/(x: x)„ (4 5)

Assuming quasiharmonic motion we take (u;) = (u;)
=0 and deduce

and (4. 2) becomes v(0) = 2a, + 4a2(x)p + 12a2(u;) (4. 17)

Q =2a~+r —v(0)+12a2(x )p —[}((0)]', (4.6)

thereby eliminating a. Now, as in (3. 17), direct
evaluation of (x: x)p for the quasiharmonic motion
and substitution in (4. 5) gives

u& = —[2a~ —nv(0) +12ap(x)p] u; —4apu, . (4. 18)

Linearizing (4. 18) allows for simple harmonic
motion with frequency 0', where

T= A .2 (4. 7) Q'p = 2a, —av(0) + 12a2(x)p+ 12a2(u;), (4. 19)
As a result, Eq. (4. 6) reduces to

[y(0)] ' =2a, +12a,(x'), -v(0),
and from (4. 4) we have

~Q
=Z I [y(0)]-'+v(O) -v(q)) '.

(4. 8)

(4. 9)

from which it follows that

(u;& = (k/2Q')coth(KQ'/2kT) . (4. 20)

Using (2. 12} and (2. 18) we can again eliminate
correlation 0.' to obtain

Equations (4. 3), (4. 8), and (4. 9) now determine
the linearized CEF theory for the disordered phase.

—=Z {[)((0)]-'+v(0) - v(q))-'
a

(4. 21)

B. SCP theory, T~&T„(x)0=0,h=O

From (3.13) and (3. 18) we can write

[X(0)] = 2a~ —v(0) + 12a2(x )p,

and

(4. 10)

Q' =2a, + r —v(0)+12ap(x&2p

+ 12ap(u';& —[X(0)] ',
where

7 = kT/((x: x), —(x)',) = kT/(u(. u,.).

(4. 22)

(4. 23)
Q (q) = 2a, + 12a2(x )p —v(q) . (4. 11)

where we have noted that (u', ) = (x')p when T & T, and
k=0. Also, from (3. 15},

8 kQ(q}N(x &p
=Z

2Q(q
coth

2kTa
(4. 12)

Equations (4. 10)-(4.12) now determine the tem-
perature dependence of (x )p and the uniform static
susceptibility above T, in the SCP approximation.

Now, comparing Eqs. (4. 3), (4. 8), and (4. 9),
with Eqs. (4. 10)-(4.12), we see that for general
v;,- they are identical in, but only in, the limits
5-0 (classical theory) or T- ~. The coincident
classical equations are

[)((0)] ' = 8a, (x&', (4. 26)

and relates reciprocal susceptibility directly with
the square of the order parameter. Finally (4. 21)
can be rewritten

By direct evaluation in the basis for which the
oscillator energy is diagonal we find

(u&.' u&&/kT=( J e" pu;e upu&dX&=1/Q', (4. 24)
0

and hence

(4. 25)

Equation (4. 22) now simplifies by use of (4. 17) and
(4. 25) to
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„=Z[Ba,(x)', +v(O) -v(q)] ',

when (4. 17), (4. 20), and (4. 27) are now a closed
set of equations in 0, (x)0, and (u', ) and define the
linear CEF theory for the ordered phase.

(4. 27)

D. SCP theory, ordered phase, (x)0%0 A 0

For SCP theory in the ordered phase the relevant
equations can be taken directly from Sec. III. Re-
writing (3.7) for (x)0+0, h=o, as

v(0) = 2a, + 4a2(x)0+ 12az(u;), (4. 28}

(u&) = 2 8—Z [Baz(x)0+v(0) —v(q)]" a, T = 0
(4. 3o)

while the equivalent LCEF finding, from (4. 20)
and (4. 27) is

1/2

(u', ) = & tI —Z [Ba2(x)0+v(0) —v(q)] ~
, T = 0 .

a (4. 31)

V. DYNAMICS

Whereas the dynamical situation for SCP is im-
mediately apparent, with A(q} describing the fre-
quency of normal modes of the wave vector q and
with A(0), in particular, being the "soft-mode"
frequency which goes to zero as [g(0)] a [see Eqs.
(4. 10) and (4. 11)]on approach to the transition
temperature, an analysis of the dynamical situation
for CEF approximation requires a little thought.
It is, for example, immediately evident that 0 of
(4. 8) is not the soft-mode frequency nor, in fact,
the frequency of any wave-vector lattice mode.
The latter, however, are readily described within
CEF theory by use of linear response theory. In
addition, as with the static properties, the method
is not restricted to the quasiharmonic limit, but

[which is exactly (4. 17) of LCEF theory], we see
that this equation, together with (3. 13) and (3.15)
determines the susceptibility and order parameter
for the ordered phase in the SCP approximation.

Comparing (4. 17), (4. 20), and (4. 27), of LCEF
theory with (4. 28), (3. 13), and (3. 15) of SCP, we
see again that for general v, & they are identical in,
but only in, the classical or high-temperature
limits. In this limit the coincident classical equa-
tions are (4. 17) and

kT
Ba,(x)0+v(0) —v(q) ' (4. 29)

and together determine (u&) and (x)0 self-consistent-
ly.

As an extreme example of the differences be-
tween quantum LCEF and quantum SCP which de-
velop at lower temperatures we consider the zero-
point motion. In SCP, from (3.13), (3.15), and

(4. 28) for T=0 we find

may be formally set out for local potential V(x, ) of
any form.

Consider the effective Hamiltonian (2. 2) for
particle i. It is conveniently thought of as describ-
ing an isolated particle moving in a local potential
V(x;) —2 nv(0)x; and perturbed by an effective field

h„,= h, e '"'+E v, ~((x~) —n(x, )}, (5. 1)

where (t&(((&) is the dynamic polarizability of an en-
semble of nonintersecting oscillators each subject
to a local potential V(x) —~nv(0)x'. Fourier trans-
forming (5.2}with respect to the lattice we get

(x(q)) = @(~){h(q) c-'"'+[v(q) —«(0)] (x(q)) ] (5. 3)

and can define a dynamic polarizability }((q, ((&) as

(}((q)) A(~)
h(q)e '"' 1 —(t&(ur)[v(q) —nv(0)]

'

Since 4&(v) can be calculated directly by standard
textbook procedures for the noninteracting ensem-
ble, Eq. (5.4) defines the many-body dynamic
solution within the CEF approximation. For a po-
tential V(x) of general form it is necessary to
solve for the "isolated" local motion x(t), in terms
of which the noninteracting polarizability (t&(((&) can
be formally cast as"

(t&„(((&)=(I/w)d' f ft(E)dE/(E —((&), (5. 5)

(t&z(&o) = ~ tanh(hv/2kT) J (x(0)x(t)

+ x(t)x(0)) e'"'dt, (5. 8)

where subscripts I and R refer to the imaginary
and real parts of the susceptibility (t&(&o), respec-
tively, and 6' signifies the principal value of the
integral.

An excellent exact classical treatment for the
highly anisotropic noninteracting ensemble has
been given by Onodera. ' For the quasiharmonic
limit the theory is simple in the extreme. If (t&(ur)

is the dynamic susceptibility for an ensemble of
undamped independent harmonic oscillators of fre-
quency 0, then it is real and takes the form

A(~) = 4(0)I}&'/(II' —~'),
where

4(0) =(x:x), /kT

(5. 7)

(5. 8)

is the static susceptibility.
From (5.4) the dynamic susceptibility for the

interacting oscillators in LCEF approximation now
follows immediately. In particular, the q = 0 sus-

where we have now allowed for a time-dependent
applied field.

We now define a linear response (x,) in the form

(x,& = 0 ( & (&;e
"' +2 v;s((r,.& —u (x;»), (&. 2&
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ceptibility diverges at a frequency Q, (defining the
soft mode) given by

Q —Q, =(x: x)OQ (1 —n)v(0)/kT, (5. 9)

which, using (4. 5), (4. 7), and (2. 12) for the q=0
limit, reduces to

Q,' = Q'[X(0)1 '/r = [X(0)] ', (5. 10)

in the disordered phase. It follows that within
LCEF (as with SCP) the soft-mode frequency tends
to zero as the square root of the reciprocal sus-
ceptibility as the transition is approached.

VI. ISING LIMIT

(x: x&, =x,'. (6. 1)

As a result the series of coupled equations which
define the CEF approximation for general local
potential V(x) simplify markedly in the Ising model.

The Ising model results within the present frame-
work when we consider the local potential V(x) to
have the form of a. double 5 function, i.e. , V(x)
= -5(x, —x,), where x, is a constant. In this limit
the dynamics and quantum aspects play no part in
the discussion and it follows immediately that
(2. 9c) can be replaced by

(6.4)

using the fluctuation result for the disordered phase,
an expression can also be written for the static
correlation between the motion at sites with the
relative position vector R, in the form

kT e""
N; }((0)-'+v(0) —v(q)

' (6. 5)

Equations (6.3} and (6. 5) together define these
correlations directly as a function of temperature.

Finally, using (6.3) in the limit of diverging
y(0), we locate the Curie temperature Tc in the
form

(6. 6)

B. Ordered phase, &x&0 Wo, h=o

From (2. 9b) we obtain

(x)0 = x, tanh[v(0)x, (x)o(1 —a)/kT], (6. 7)

as the equation for order parameter (x)o. In order
to eliminate n we make use of (2. 18) which, for
the Ising case, can be rewritten

A. Disordered phase

kT

," kT+(xa —(x)0)[ov(0) -v(q)] ' (6. 8)

In the disordered phase, where order parameter
(x)0 is zero in the absence of field, Eq. (2. 13) re-
duces to

r = kT/x'„ (6 2)

and is independent of correlation n. Now, com-
bining (2. 12}for q = 0 with (2. 1&) and (6. 2) allows
us to write an equation,

(6.3)

(x,x„„)=N 'Z (x(q)x( q))e"'"

which directly relates static uniform susceptibility
to temperature. In addition, since

Equations (6.7} and (6. 8) now together determine
(x)0 directly as a. function of temperature.

Students of the Ising problem will immediately
recognize these equations as those resulting from
the generalized spherical model. ""In the latter,
the Ising restriction x; = x', for all i is replaced by
the weaker constraint g, x'; = Nx', thereby allowing
x; to become a continuous variable. The spherical
model is exactly soluble and of some considerable
importance in the theory of critical phenomena. '
Finally we note the formal equivalence of the CEF
theory in the Ising limit to the Onsager reaction-
field approach. The derivation of the spherical
equations from the use of the reaction-field con-
cept for the Ising many-dipole problem was demon-
strated by Brout and Thomas.
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