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In this study of the Mossbauer line shape in the presence of electronic relaxation, we first compare
the stochastic model of Clauser and Slume with the perturbation theory of Hirst and discuss the
physical concepts underlying these two theories. %'e then derive the algebraic expression for the
Mossbauer line shape in the presence of relaxation for a nuclear transition (2+ 0+) in the case of an
electronic spin S = 1/2 and of axial hyperfine interactions; the resulting formulas were applied to a
case of isotropic hyperfine interactions, i.e., to the relaxation spectra of "Yb in gold.

I. INTRODUCTION

Recently two theories have been advanced in or-
der to compute the effects of electronic relaxation
on the Mossbauer spectra: the stochastic theory
of Clauser and Blume' and the perturbation treat-
ment of Hirst. Vfe first recall the main lines of
these two types of calculations. As regards
Birst's theory, we emphasize that it differs from
conventional relaxation calculations in that the
"secular approximation", which is neither neces-
sary from a theoretical point of view' nor com-
patible with experimental conditions, is not re-
tained; we also discuss the conditions of validity
of the perturbation treatment. Then assuming
that relaxation is due to a fluctuating field acting
on the electronic spin and that it has a "spherical"
character ('extreme narrowing" and isotropic in-
stantaneous fluctuations), we derive the form of
the relaxation matrix and relate the spectral den-
sity of the fluctuating fieM to the longitudinal re-
laxation time Tj of the electronic spin S. %e then
demonstrate that in the simple case worked out by
them (pulses of form h 8 ), CIauser and Kame's
theory is formally equivalent to that of Hirst in
two cases: any 8 when the stochastic pulses
are small, and any amplitude of the pulses
when 8=&.

As an application, we consider the case of a
Mossbauer transition (2' -0') (frequently en-
countered in rare-earth nuclei) for which we de-
rive the form of the relaxation spectra in the
presence of axial interactions and of an effective
electronic spin 8 = —,'. FinaQy we describe and in-
terpret the experimental results we have ob-
tained on '~ Yb diluted in gold, in a, cubic sub-
stitutional position, where its hyperfine interac-
tion inside the lowest electronic level I'~ (with ef-
fective spin S = —,) is isotropic.

II. ATOMIC SYSTEM, ITS COUPLING WITH LATTICE,
MOSSBAUER LINESHAPE

A. Energy levels of radioactive paramagnetic ion

Let us consider a Mossbauer nucleus, with an
excited state I(J, = m) and a ground state I, (I,~
= m, ), and the Mossbauer transition, with energy
AA taking place between I and I~.

The nuclear states are the eigenvectors of a
nuclear Hamiltonian, X» such that

Z„~fm&=nfl~fm&,

Z„~f,m, & =0 .
Let us now assume that the nucleus belongs to a
paramagnetic ion embedded in a crystal. The
crystal acts on the electronic properties of the ion
both through static effects (crystalline field) and
through dynamic effects (relaxation).

Concerning static effects, in the case of an
iron-group ion, the orbital moment is generally
quenched. Then in the lowest (singlet) orbital
level, the magnetic hyperfine structure Hamil-
tonian may be written

Kh„= I ~ A' 8 (in excited nuclear state),
(2)

3C~,=I, ~ A,' ~ 8 (in nuclear ground state) .
In addition, both states may exhibit quadrupole
effects which. we will neglect for the moment.
Also both the electronic and nuclear spins may be
subjected to a magnetic field. Neglecting the
nuclear Zeeman effect, the Zeeman Hamiltonian

&i=~~Ho g'S; (

A', A', and g, often are anisotropic tensors.
Concerning static effects, in the case of a

rare-earth ion at low temperatures, we have to
consider only the properties of the lowest elec-
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tronic level arising from the mulbplicity J in the
crystalline field. If this level is degenerate it
may happen that in it, the total electronic angular
momentum X can be replaced by an effective spin
8 (in cubic symmetry this is possible for the ir-
reducible representations I'6, I7, I'4, and I'5 but
not I"8). Then X» and 3' also take the same form
as Eqs. (2) and (3). In whatfollowstheeigenvalues
of S, wiQ be denoted by p. , p. ', v, and v'.

In the case of levels X'6 or X'~ the effective spin
is 8= —,

' and the magnetic hyperfine interaction and

Zeeman effect are isotropic

3Cb y
=A I 8 (or Ag f~ ~ 8 ),

(4)
3Cg =gag Ho'8

We will define Ko =Kh +3Cg,. in numerical dis-
cussions it wiQ be assumed for convenience that
3C~ & Xh„so that 3CO-X~ (the opposite case 3'
»X»„which is much simpler has already been
considered by a number of authors).

It must be borne in mind that the complete
static Hamiltonian of the radioactive ion is Xo
+K&. The levels of this HamQtonian are sche-
matically represented in Fig. l.

In order to describe them, we need a complete
electronic plus nuclear, or atomic" basis. The
corresponding kets will be denoted by I Ff) for
multiplicity F arising from the excited nuclear
state I and by I Gg) for multiplicity 6 arising
from the fundamental nuclear state I,.

8. Relaxation

In addition to splitting the electronic levels, the
matrix acts on the ion like a thermal bath (with
Hamiltonian Ks) and gives rise to relaxation in and
between its electronic levels. The relevant in-
teraction Hamiltonian will be denoted by +. Here
we sh~'lI only be interested in relaxation of the
lowest electronic level with effective spin 8. In
the coupled electronic plus nuclear scheme, relax-
ation will take place inside the multiplicities F and

Q

%hat we want to investigate is the effect of this
relaxation on the y-ray emission and absorption
between I' and G.

C. Mossbauer spectrum

=IteII d«" Tr ~Ms'~(0)&MrN(~)) (5)
Af av

Multiplicity F
kets IF f )

Hossbouer
transitice

I+S

where p = &I' —m (I' is the Mossbauer linewidth);
the average is relative to the bath variables and
the trace is taken over the atomic variables; M&,
with components Mz„, is the electromagnetic (elmg)
multipole operator associated with the Mossbauer
transition assuming pure multipole character, and

M~ (t) is the same operator taken in the Heisenberg
representation:

M I (t) = exp [(i/5) (Ko+3C, + Xs)t] M z,

xexp[- (f/ff) (Kg++ +X~)t]
= V'(f}M,V(f) .

(We have dropped the nuclear Hamiltonian X„
which would have the trivial effect of adding the y
transition frequency 0 to the frequencies of the
excited states I Ff). )

FinaQy 0 is an atomic density matrix in the nor-
mal representation. In an absorption experiment,
a is the equilibrium Boltzmann matrix of level G.
In an emission experiment e is the density matrix
of level E, which may or may not be equal to the
equilibrium Boltzmann matrix, depending on the
radiative feeding and on the rate of thermalization
of this level. In the latter case o might be a func-
tion of t. '

In practice and in what follows we sh~&& be in-
terested in temperatures which are high compared
with the hyperfine coupling A (A/h-10 to 10~
MHz-10 ~ to 10 ' K). Then a is always propor-
tional to the unit matrix and I(&o) reduces to

For simplicity let us consider the case of a
powder in the absence of external magnetic field,
but without excluding the possibility of local mag-
netic fields with fixed directions with respect to
the local crystalline axes. 4 Then, it is possible to
show that the Mossbauer intensity at angular fre-
quency ~+0, i.e. , at a distance ~ from the center
of the spectrum, is proportional to~'5

I
I

I

I

I

Multiplicity 6
kets IGg)

I(~) = HeF(f )
FIG. 1. Schematical representation of the levels of

the coupled "electronuclear" system K0+Xz.
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I(&u) = Re(E(P))

=Re dte" g m,'„ f f O'Ct

e'
&& &f'

I
Mf e I

g'& &g'
I
U(i) lg&)., (7)

%e see that contrary to what occurs in formulas
relative to nonspectroscopic radioactive tech-
niques such as perturbed-angular correlation
{PAC) or nuclear orientation (NO), e one of the
evolution operators U(t) in this formula acts in-
side the excited nuclear state I', while the other
one acts inside the nuclear ground state G.

In Eq. (7) the matrix elements of l(f I, are known.

The computation of the Mossbauer spectrum re-
duces to a calculation of the average values:

(&f
I
U'(f) If'& &g'I U(i) Ig&)... (6)

f(&o}=Re[Tr[MLe(u(p)) M ]] .
Let us now make the "high-temperature" assump-
tion, so that o is a scalar and make explicit all
indices. Then [compare with Eq. (7)],

f(~) = Re& &g IM is If &

~(&fg l~(~) If'g'&);&f'IM-lg'& .

This formula shows that the calculation of the
Mossbauer spectrum reduces to that of the matrix
elements of the Laplace transform of the average
evolution superoperator (u(t))a, .

In what follows, we shall find that in the pres-
ence of both the static Hamiltonian Ko and the re-
laxation, the average equation of motion of ML, has
the form

in the presence of hyperfine interactions, local
electronic Zeeman effect, and electronic relaxa-
tion-the average being taken with respect to the
lattice.

D. Liouville formalism

= —Xo+R Ml,

which is equivalent to

Ml, (t) —= ('u(t))~, Ms(0)

= exp {[(i/apc,"+ft]i)M, (O),

(16)

(1V)

The above formulas can be simplified by re-
sorting to the Liouvtlle formalism. Following
Clauser and Blume let us associate with a con-
ventional operator C, the Liouville operator C",
such that

c"a= ca —ac = [c,a],
then

~iCg -iC iC"~

(9}

The Liouville operators associated with Hamil-
tonians ~ and X=3CO+++3Ce will be denoted by
Xo and X". To the relevant evolution operators
Uo(i) =e ' o™and U(t)= exp[- (i/n)(3CO+~+3C )f],
there corresponds Liouville superoperators
'u~(t) and 'u(f). In terms of all these operators,
the Heisenberg equation of motion of the elmg
multipole moment M& takes the form

dMI. i x ™
dt

Its solution [equivalent to Eq. (6}]is

M, {f}=e'* e'""'M. (O}=~(i)M.{0)

and, after averaging over the lattice, the Moss-
bauer line shape Eq. (5) is given in terms of the
average superoperator (u (i))„by

f{&g)= Re die ~' Tr[ML, o&'u(t))~ M~ ] . (13)

Let us introduce the Laplace transform (u (P))„of
the superoperator (u (t)) . Equation(13) becomes

where R is a relaxation supermatrix. Taking the
Laplace transform of this equation, one finds that

(v(p))„= [p- (i/ff)xo ft] '.- (18)

Consequently the problem which we have to solve
consists, first in determining the relaxation super-
matrix R, second in inverting the supermatrix
P —(i/g)'JCO-8 and finally in applying the result in

Eq. (15). Hirst's theory, on the one hand, and
Clauser and Blume's theory, on the other hand,
differ in the models of electronic relaxation which
are used in order to obtain R.

III. SPECIFIC FEATURES OF HIRST'S AND OF CLAUSER
AND BLUME'S THEORIES AN D COMPARISON BETWEEN

THESE THEORIES

A. General formulation of Hirst's theory

The quantity ML, (i) [Eq. (1V)] is obtained by solv-
ing the equation of motion':

=+ (i/If) [Xo+X,+ 3Ce,PM~], (19)

where p is the Boltzmann density matrix of the lat-
tice, under the assumption that X, is small (per
turbation limit), using the standard approach of re-
laxation probl. ems as discussed in Chap. VIII of the
book by Abragam. ' In the interaction representa-
tion, and after making the usual transformations,
Eq. (19) becomes

(d(pixy))
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=-p ' »ia~t[[%(&), [3Cf(&-&),pMf(~)]]]«,1

(2o)
where the trace is taken over the degrees of free-
dom of the lattice (bath), which is in thermal equi-
librium. The interaction Hamiltonian X, between
the radioactive atom and the lattice is taken to be

3C, =RA R, (21)

d Affg —Z((gf (Og)Mfg+~ Rfg f tg~ Mf Igkdt f lgl

identical to Eq. (16) as indicated above (the index
I. has been dropped for simplicity).

As shown by Hirst in Eq. (4) of Ref. 2 the ma-
trix elements g, & ~. of the relaxation supermatrix
R are linear combinations of the Fourier trans-
forms of the correlation functions associated with
the bath variables F'.

23yg y rgb = Z t~cl~ ((dg~ T) ~ (24)

in which the circular frequencies ~„ like (df Qpf. ,
involve differences between the eigenvalues of
Hamiltonian 3C0 (which acts inside E or G).

Concerning J,, it has been assumed that for
symmetry reasons only the functions

sa
Z„,(&, T) =

ii d~ c '-"'»,.«[-ps""(O)Z'*(T )]

d7 e '"'(E' '(0)E"(~))., (25)e

for which q = —q, are different from zero [Z, (&o, T)
=Z„,(&u, T)].

The lattice Boltzmann equilibrium impli. es that

( + T) e-fi e/ihsr g ( T)

In the high-temperature approximation (3C0/ks T
«1), the exponential factor reduces to unity.

B. Validity of Hirst's equations

As discussed by Abragam the condition for the

in which the F"s are operators involving the bath
variables and the dimensionless K"s involve the
electronic variables of the radioactive atom (reso-
nant system}. After completing all the calcula-
tions and using as basis vectors the eigenvectors
of Xo in order to display the time dependence of
the matrix elements, Eq. (20) takes the form (see
Refs. 2 [Eq. (4)] and Ref. V].

dMyg exp(i ((uy —(uy. —(u + (u, ) i)
f ~g~

x Q y
~ aMyt (22)

or alternatively in the normal representation the
form

validity of the perturbation method used by Hirst
is that

(3C', /s') T,'-((z'&/a') T,'«1 (27)

and corresponds to a situation where the broaden-
ing of the lines of the spectrum due to relaxation
is small compared with the intervals between these
lines.

But the secular approximation is not necessary,
and we will take advantage of this fact since we
are interested in situations where the Mossbauer
spectrum cos.lesces, i.e. , for which R-3Co/h'.

Assuming that in the region of greatest physical
interest Is3CO&)IR «103C0 then in this range, condi-
tion (28). for the validity of perturbation theory and
therefore of Hirst's theory can also be written

(I/)I)3C, «(1/~, ) .
Xo is of the order. of the hyperfine structure, i.e. ,
3CO/A-102 to 10~ MHz.

Thus the condition for the validity of Hirst's the-
ory in the domain where the spectrum coalesces
is that 7, «10 ' sec where 7, is the correlation
time of the relaxation Hamiltonian acting on the
electronic variables (in practice on the spin 8).
Typical correlation times of a lattice bath are of
order 10 sec or less; it follows that this condi-
tion is not very restrictive.

As pointed out by Hirst in many previous theories
one did not treat the coupled electronic and nuclear
moments as a single quantum-mechanical reso-

or alternatively, since R~, ~, -J,(w, T) -(E'/g')T„
R«1/T, ,

where 7, is some characteristi. c time associated
with the lattice fluctuations.

%hen X, is a true random fLmction of time as in
most of Chap. VIG of Ref. 8, T, is the correlation
time of the random function. %hen the bath quan-
tum variables are made explicit and X& does not
contain the time explicitly, as in the case here,
T, -hn(E) where n(E) is the density of states of the
lattice which comes into play when one averages
over the bath variables in expressions such as
Eq. (25). As an example, for electronic relaxa-
tion by the conduction electrons (see Sec. IV),
-a/Z, (Hef. 8, p. 25V).

On the other hand, in relaxation theories one
often. makes the "secular approximation" which
consists in neglecting all the terms in the right-
hand side of Eq. (22) for which

cof —{d'f ~ —(0& + (d&~ + 0 ~

This approximation is valid under the condition
that

R «(dy (dye (d~+ &dg~ or R «3C0/8
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nant system. Instead the nuclear spin was singled
out and considered as being submitted to a fluctu-
ating electronic spin S. In these conditions the
Hamiltonian responsible for relaxation was no

longer X„but rather K0 itself and the correlation
time associated with this Hamiltonian was not 7,
but instead T„ the relaxation time of the electron-
ic spin. The condition for the validity of perturba-
tion theory was that (3C2(&/K2) T,«1, instead of
(X', /g') 7., «1 or equivalently Z(&/i2 ~, «1 [see Eq.
(29) above]. But T, - I/ft (see below) is much
longer than „1si nce H «I/7, [Eq. (28)] and thus
is much more likely to become of the order of
)f/X, at low temperatures. In this case (precisely
in the most interesting region), these previous
perturbation theories' were no longer valid and
one had to resort to stochastic theories.

Spite~c&2f 2ef&2x&2f2o/1 .In many problems it is
convenient to assume "spherical relaxation, " i.e. ,

"
Z, ((v„T) independent of (d, : extreme

narrowing,

J',(&u„T) independent of q, i.e. , "spherical
symmetry".

As shown by Eq. (26) or by application of the fluc-
tuation-dissipation theorem, the first of these two
conditions implies that l~, /ks T «1 or 3C(&/ks T
«1: This is the high-temperature assumption;
when it is satisfied and when inequality (29) is ful-
filled, extreme narrowing is automatically re-
alized. ' The second condition implies that the in-
stantaneous fluctuations associated with 3C, are
isotropic.

C. Application of Hirst's theory to relaxation caused by Auctuating magnetic field acting on electronic spin

Let us assume that inside the atomic E and G levels relaxation proceeds through the coupling of S with a
fluctuating field, H."

X, =gp., s H,

and that the conditions for "spherical relaxation" are fulfilled. Then Eq. (20) can be written

(30)

(31)

and the matrix elements of the supermatrix 8,
which enters Eqs. (22) and (23), are found to be

Ry y. ~ = —,'S J(S) (-Ss(S ()Ss il

~» &/Ill/'&&s'Is&Is&)
Xs P ~ &g

with

2 2 -+SO

2g J(T)=
2 2 j (H~(0)H,*(-7 )), d7 . (33)

a s&(2

Since S only operates on the electronic variables,
this may alsv be written, using as basis vectors
the eigenvectors of S, I2, I2 S„I„1„:
(Im Sv, I m Sl/,

~
8

~
Im S v, I m S p )

=II „.S„~—', S /(S)(-Ss(S+1)S „~S,„

~ »& Isl '&&s, 'IIS;IIs&) (ss)

As shown by Eqs. (32) and (34) the relaxation ma-
trix depends on only one parameter —,

' g Z(T). In
order to find its physical significance, let us i.n-
vestigate what the relaxation equation of ( S, )
would be in the absence of hyperfine coupling.
Dropping this coupling in K~ the equation may be

written in the interaction representation as

g'Z(T) (S, ) . — (36)

Therefore, by identification with the standard
definition of the longitudinal relaxation time T, of
the electronic spin,

g2J(T) =1/T1 .
Note that, for a spin —,', one also has, in terms of
the transition probabilities W,

I/ T1 ~1/2 - -1/2 + +-1/2" 1/2 (3S)

which at high temperatures reduces to 1/T, = 2 W.

Consequently, when $= —,',
,g J(T) = W. — (39)

Before applying the preceding results [Eq. (34)] to

= - -sf s ((Is(i(i ), Isis(i - ~), s:II &&, ,

(35)

where a double average is taken, on the lattice bath
and on the density matrix of'the electronic spin.
After completing all the calculations, and under
the assumptions of spherical relaxation, we find
that
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the computation of the Mossbauer line shape, we shall
compare them with the theory of Clauser and Btume.

D. Clauser and Slunl's theory

We have seen in Eqs. (14) and (15) that the Moss-
bauer line shape is related to the Laplace trans-
form (a(p))„of the average evolution superopera-
«r (u(t)).,

In Clauser and Blume's theory the relaxation
HamQtonian is assumed to consist in a sum of random
independent pulses acting on the electronic spin:

X,(t) = eZ V, 5(t —t, ) . (40)

To each of these, there corresponds a transition
operator;

(41)

Then, after n pulses in a time interval g, the usual
evolution operator is

fI(t)=V,(t-t„)Z„" T, II,(t,) . (42)

The probability that n pulses take place during this
time interval is given by a Poisson distribution,

P„(t)= [(Xt)"/n!]e "', (43)

%=).(v'„—1) . (45)

In terms of these, they find that the Laplace trans-
form of the evolution superoperator „which enters
the expression of )he M5ssbauer line shape is

(s(t))„=[p—(t/ti)x"0 '&tt] '. - (48)

fn this case too (L(t&))„has the form of E&l. (18).
It now remains to make explicit the relaxation

mechanism and the matrix W. In Chap. III of
their paper, Blume and Clauser consider pulses of
the form

V& =hq ~ 8 =
I hlu ~ 8,

where the direction u and length I hl of the ficti-
tious dimensionless field h are independent ran-
dom variables. Then,

e

e fh( ~ S (48)

In the t&articular case of a stptn 3= —,
' and assuming

isotropic pulses, if one defines the average values
over the pulse intensity Ih, I,

where X is the mean frequency of the pulses. Blume
and Clauser resort to the Liouvilie formalism (Xo
-3C"„V,- V,", and U-'lt). They also introduce an
average transition operator (averaged over the
type of pulses),

&„=(e '"&)., (44)

and define a relaxation supermatrix,

referred to ti)e basis states I 8, S,), takes the
form [Eqs. (25) and (34c) of Ref. 1]

(pv l'vvl p v )=-', x&(--, 5„„,5

2E&.~Is~I '&&~'~I~~I~&). &»&

It appears that this matrix is formally identical to
Hirst's matrix It [Eq. (34)] apart from the replace-
ment of

1/T, =$xx . (51)

%e must now investigate why-at least for S= —,'—
Hirst's matrix 8 and Clauser and Blume's matrix
W are equivalent, except for the microscopic inter-
pretation of the multiplicative factor.
E. Comparison behveen Hirst's theory and Clauser and Blume's

theory

It is easy to demonstrate that for small I Al, the
theory of Clauser and Blume must lead to a relaxa-
tion matrix formally identical to that obtained by
application of Hirst's theory (Sec. III C) n&hatever
S. In addition for S= -„ this identity remains true
whatever h.

Let us first consider the case of arbitrary S.
In the stochastic approach the variation of ML dur-
ing one pulse h ~ 8 is given by

M z~~-lM e-~n 5
L L L

%'ith an average number A. of pulses per unit time,
the variation of ML due to relaxation is

= X&M =!&(e'"' M e '"'I —M } (53)
]reim

Let us now assume that I h„j«j.. Then it is possi-
ble to expand the exponential factors and, taking
into account the fact that h„= 0, we find

= ——'X([h ~ 8, [h ~ 8, M j j)„
r elax

= ——,'&(h'}„([u S, [u S, M, jj)„.(54)

By comparison, in Hirst's approach we have found
[E&l. (31)]

,' g'Z(T—) by —', xX .
And in this case too, the factor in front of the
brackets [E&1. (50}], i.e. , -', xA, can be interpreted
as one-half the inverse relaxation time of the
electronic spin 8: Indeed it has been noted by
Clauser and Blume that W=- -', xX is the probability
that one pulse produces a flip of 8 from+-,' to ——,'.
But we have recalled that for a spin S= —,', —,

' T, = W.
Therefore, in this theory

x = (sinm-', h)„, 1 —x= (cos~-', h)„, (48)

it is easy to see that the relaxation matrix S', when
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d. Ho. S, H-. .S, ~, „.

%e see that the same double commutator occurs
in both cases. Thex efore, assuming isotropic
pulses in the first ease and spherical relaxation in
the second case, one may expect to get the same
relaxation matrix apart from a multiplicative fac-
tor which is egual to —,')(-', (h~)) or —,'g2Z(T), respec-
tively.

In the particular case of a spin S=-,', the formal
identity of the two matrices remains true whatever
Ih I. This stems from the fact that in this case we
have the identity

e '"'~ = cos -,'g —2(i sin-,' h) u ~ 8 . (55)

Hence dropping linear terms in u, which vanish
upon averaging,

~g, =(sin'-,' a)[- X, + 4(u S)SS,(u S)] . (57)

It is seen that the second-order polynomial in S
which appears in the bracket does not depend on the
strength of h. Equiva, lently, after averaging, Eq.
(53) is found to be replaced by

of the electronic spin S [in Hirst's case (Sec.
III C) this is true whatever S]. It now remains to
relate T, to the microscopic mechanisms which
are responsible for the electronic relaxation.

In solids the interactions that cause relaxation
are usually described either classically as ran-
dom stationary Quctuating couplings or quantum
mechanically as couplings with a bath having a
continuous final density of states. In both eventu-
alities this coupling acts continuously on the elec-
tronic system. Hirst's model, which corresponds
to a continuous disturbance appears to be well
suited to handling such couplings. On the other
hand, stochastic models which assume discontinu-
ous pulses, are better adapted to collision prob-
lems in gases. In this last case, assuming A. col-
lisions per unit time, during each of which the atom
is submitted to a transient Hamiltonian X„ the
equation of motion of the density matrix generally
may be written (assuming for simplicity that K, is
small" )

dt dt

x([3f;,(&'), [&,(f"), o(f )]])„. (60)
~ = —SX(sin'2 g)„([u S, [u S, M~]]),„,dt

which still contains the same double commutator
as Eq. (54) so that proportionality remains true,
with a multiplicative factor -', A(sin —,

' h)„=-', xX, as
found above. This result is clearly due to the fact
that e '"'~ is linear in Swhen S=-,'.

But this simple property does not hold for general
spin. Indeed it has been established that

This expansion is a polynomial in S of degree 2S,
which becomes linear in S only for small h, . One

must however point out (Blume, private communica-

tion) that this limitation could, in principle, be
circumvented by using for V; a more general ex-
pression of the following type:

2$

V, =Z a~ Y~ (i) T~(S) .

In this ease, the complete equivalence of the Hirst-
Clauser and the Blume theories would follow what-

ever S.

F. Microscopic interpretation of multiplicative factor

%e have found that for a spin S=-,' in the presence
of a random field, in both Hirst's and Clauser and
Blume's theories the multiplicative factor in front
of the relaxation matrix must be identified with
—,
'

T~, where T, is the longitudinal relaxation time

For constant pulses of intensity 3C~ and length v'„

[3Ci [3Ci, ol] .do A. V',

col 1

Clauser and Blume's limiting case [Eq. (54)] is
obtained by taking 3I:,/8'= (h 8/1;) and making v

go to zero.
It is difficult to establish a connection between

such a model and real phenomena taking place in
solids. For this reason, whenever a detailed
microscopic interpretation of the relaxation rates
will be needed, Hirst's approach seems to be
preferable, inasmuch as its conditions of validity
are not very restrictive. A final remark should
however be made. Prior to Hirst's theory, there
had been some attempts to solve the problem of
relaxation effects in Mossbauer spectra along the
same lines, ' but in the absence of any definite
model of electronic relaxation these treatments
remained purely formal. Hirst made major prog-
ress by applying his formulas to a simple case
of spherical relaxation, where the relaxation ma-
trix can be entirely calculated and expressed in
terms of a single parameter. By comparison, in
the most general case, the super-relaxation-ma-
trix of an electronic spin —,

' without hyperfine cou-
pling is a function of nine parameters which are
a priori unknown; if, in addition, this spin is cou-
pled with a nuclear spin, at low temperatures
where the J,(~„T)depend on ~, the relaxation
matrix in the coupled (I, 8) scheme may involve
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still more unknown parameters. For this reason
the detailed interpretation of relaxation effects in
Mossbauer spectra using Hirst's theory is re-
stricted to cases where the relaxation mechanism
is perfectly known in order that the relaxation
supermatrix can be entirely calculated and ex-
pressed as a function of a very small number of
unknown parameters.

IU. APPLICATION OF HIRST'S THEORY TO MOSSBAUER
TRANSITION 0'~2+, IN PRESENCE OF HYPKRFINE

COUPLING MTH KLECTRONK SPIN S=~ SU83ECT TO
RELAXATION

A. Formulation of problem

Mossbauer transitions 0'„-2' (I~ = 0, I= 2) are
frequently encountered in the even-even nuclei of
the rare-earth series. For such transitions Eq.
(15) (relative to the Mossbauer spectrum of a pow-
der) may be put into the form

I(~) = Res(p)

=Re Z Z&l, =o, ol~,'„IIm&&Im'I~, „II,=O, O&

N

x&(lmsp), (I,=o, O, sp) I {k(P)}„
x

I
(Im '8 p, '), (I, = 0, 0, Sg ) & . (62)

But by virtue of Edmonds [Ref. 15, Eq. (2. 5. 4)],

K&I, =o, ol ~,'„IIm&&Im'I~, „II,=o, o&

xl (Imsp, ')(O, o, s p, )&, (64)

in which {@Q)}„=1/(p —R —(i/lf)Ã0).
We must evaluate {'it(p))„ in the presence of

electronic relaxation. Up to now we have con-
sidered the case of an isotropic hyperfine inter-
action K= AI ~ 8 and assumed a relaxation Hamil-
tonian of the form X&=gp~H ~ 8. Note that X& may
represent either relaxation due to a real magnetic
field or, alternatively, by virtue of the properties
of the Pauli matrices, any type of relaxation pro-
cess, provided the quantities Z, (m, T) which enter
R are adequately adjusted.

In the present chapter we will consider the case
of axial symmetry. %'e write the hyperfine inter-
action as

3C„,=A„I,S,+A, (I,S,+I„S„)+P[sl)-I(I+1)], (65)

where we have allowed for a possible quadrupole
effect [P= eQV„/4I(2I-1)). The local electronic

, x const;

the constant being independent of m. Then, within
a constant factor;

I(~)=Re Z &(Imsp)(o, o, sq)l(~Q)).,

Zeeman effect, if any, will be represented by

(66)

1/Tg=2W~, 1/Tg= W~+ Wi, . (7O)

8. Computation of Mossbauer line shape

%e must compute the matrix

ti(f)=f -R-(I/g)X", ,

and invert it. We will find that the matrix 'o(p) fac-
tors into submatrices of low dimensionality, so that
the calculation can be performed algebraically.

The general matrix element of '0(p) is

& (Ims, )(oosi ) I ti(p) I
(Im'sv')(oosi ')

&

=-& p, vml ti(p)l p' '
&v.m (72)

The dimension of this matrix is (2I+1)(28+1)2
x(2I+l)(2S+1), i.e. , since I=2 and 8= —,', the
dimension of the matrix is 20 x20.

It is clear that

In the relaxation Hamiltonian, we want to take
account of the uniaxial symmetry, but at the same
time to keep the extreme narrowing assumption.

The simplest way to do this consists in writing

'ICi=g„gsH, S, +g, ps(H„S„+H„S„), (6V)

with the convention that all the quantities Z, (~, T)
associated with H', H, H, in the coupled IS scheme
are taken to be equal to a constant J(T), the de-
parture from isotropy being entirely included in
the apparent Lande factors g,', and g,' (which will
generally differ from the real Landd factors g, and

g, ). Let us now define W„and W, :
(ss)

In terms of these two parameters Hirst's matrix
becomes [compare with Eq. (24)]

&mv, oplRlm v, op, &

=5~~ [5„5..(- k Wii —Wi)+2wii &vlS.
I
v'&

x&i 'Is,
l
»+ w, (&.l s. l

v'&& i 'I s
I i &

+&vl 8
I
v')

& i 'I s, l i &)] . (69)

As concerns the parallel with the theory of Clauser
and Blume it is interesting to note that the ma-
trices represented in Tables I and II of their article
correspond, respectively, to W„=O, W, =ii. and to
w„= w, (=-; x~).

The two-parameters expression (69) for R is
more general; as a matter of fact, within the ex-
treme narrowing assumption, it represents the
most general relaxation matrix in axial symmetry
for an electronic doublet exhibiting hyperfine
structure. Note that 8', and S'„are related to the
longitudinal and transverse relaxation times T&

and TI of the electronic spin by
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(pvmlpl p v m &=5,„.5,5„.p .
Also we have seen that, since the relaxation ma-
trix operates only on the electronic spin

(pvmlRI p v m &=5„„.R,„„,„., (74)

in which R„„„.„.is given by the bracket of Eq. (69).
One notes that its only nondiagonal matrix ele-
ments are such that p, = v and p, = v .

As regards the matrix elements of , after
relation (26) of Ref. 1,

( pvml3col p, v m &
= 5„„5~~ ( QIKol p )

-G„.&v'm'Ix,
l ~ &,

( pl3Col p ) =ns„„.g (local Zeeman effect in the
ground state). In the excited state inspection of
Eq. (69) shows that ( v m

I Ro I
vm & is nonzero

I
only if v +m = v+ m.

From all the preceding remarks, it follows that
if we consider the set of states

I f(m) &
= I++, m),

I

- -, m &, I
-+, m - », and I+ -, m+», ~(p) has

no matrix elements between states belonging to

two different sets, i.e. ,

(y(m)lv(p)lf(m')&=0 if m'~m .

Therefore the matrix U(p) factors into seven sub-
matrices: two 1xl matrices [sets f(3) and (-3),
reducing to

I
—,+, 2 & and I+, —,—2 &], two 3 x3

matrices [sets f (2) and f ( 2)],-and three 4 x4
matrices [sets f(1), f(-1), f(0)]. Furthermore,
in the absence of local Zeeman effects, the ma-
trices for f(m) and f(-m) a.re identical for each
m, so we need consider only four different ma-
trices.

%'e now must invert these matrices. But in

virtue of Eq. (64) we only need the matrix ele-
ments

&~~ml& '(p)li em&

=&i iml(&(p)), .l

~'~'m&,

i.e. , four elements for each of the matrices of
dimension higher than 1. Taking symmetry into
account, it is sufficient to calculate nine of them.

C. Results of calculations and discussion: (Mossbauer spectrum of a powder)

After completing the calculations the expression of the line shape in the case of a poaoder spectrum is
found to be f{&o)= Re [E (P) ] with

A A C C EE(p)= —+ —,+ —+ —,+ —,8 8' D O' F

in which (expressing 3C, in angular frequency units)

A =2[p+ W„+ W, + i(-,'A„+ n —3p)](p+2W„+sip)+A', ,

8= [p+ W„+ W, +i( ,'A„+ n ——3p)][(p+ W, +sip)'+A~ —W~ ]+Af [p+ W, + i(A„+6p)],
C= [p+ W„+ W, +i(-A„—n+Gp)](2[p+ W„+ W, + i(n —6p)](p+2W, —3ip)+ ~ A„j+A, [p+ W„+ W, + i(n —6p)],

D = [p + W„+ W, + i(-A„—n+ 6p)]b Am [p + W, + i(-,' A„—3p)] + [(p + W, —3ip)' + -,' A~ —Wf ]

x [p+ W„+ W, + i(n - GP)]] + [P + W„+ W, + i(n - GP)] [P + W, + i(- -,'A „-3P) ]A', + -,'A', ,

E=3A2[p+ W„+ W, +i(- —,'A„—3p)]+2{p+2W, —Gip)[[p+ W„+ W, +i( ,'A„—3p)]~+ -n2],

F= 3A~ (p+ W~ —6ip)[p+ WR+ Wj + i(- gA„—3p)]+ [(p+ Wj —Gip) —Wf]([p+ W„+ W, +i(- 2A„-3p)]

+ nQ+ pe

(77)

In this formula, p=-,'I'- j{d, and A, 8, C, and D are deduced from A, 8, C, and D by replacing o, by

Let us recall that this expression being relative to a powder spectrum, the electronic Zeeman Hamil-
tonian 0.9, must represent the effect of a molecular field parallel to the local Oz axis for each crystallite,
and not the effect of an external magnetic field.

Particular eases

a. Cubic symmetry. Here W'„= 8",=8',M

A, =A( =A, and P=O. In the absence of electronic
Zeeman effect (n = 0), and in the slow relaxation
limit (W=0) the spectrum consists of an asymmet-
ric doublet:

""=p. ~ p--~. (7s)

This doublet corresponds to the eigenvalues F = —,
'

and ~ of the total angular momentum F =1+5
(I= 2, 3= —,'), i.e. , to the eigenvalues K= A and E
= ——,'A of the hyperfine Hamiltonian X=AI ~ S.

b. Extreme anisotropy. Here A, = 0. This is
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p+2 Wj —Ging

(p+ Wj —6iP) —W,

This result is in agreement with Abragarn's Eq.
(64) [Ref. 8, Chap. XI, when it is applied to three
pairs of lines characterized by 5=+4„, +-,'A)i and

0, and making the identification p = i(d, O'J A.
In the slow relaxation limit (W, = 0), the spectrun

consists of five Zeeman-type lines shifted by the
quadrupole effect:

1 1 1
2&(P)= . + . i +

p —6ip p —i(3p —a A„) p —i(3p+ 2A„)

1 1
&+i(6P+A„) p+i(6P —A„)

' (8o)

D. Mossbauer spectrum in presence of external field

Let us now consider a single crystal with uni-
axial symmetry around Oz and observe photons
propagating along Oz. In the presence of an ex-
ternal field applied parallel to Oz (Xs = n 8,
=g„psHOS, ) and taking account of the relative in-
tensities of the components of the y radiation, it
is found that the Mossbauer spectrum' given by
(elmg quadrupole transition, I, =O, 1=2)

z(f ) =-', (c/D+ c'/D') . (81)

It should be noted tQat the same expression is also
valid for an isotropic powder (A„=Ay Wg = Wj P
= 0) submitted to an external field parallel to the
propagation direction of the y ray.

E. Remark

The preceding results have been derived under
the assumption that the levels associated with
Hamiltonian 3C0 are equally populated (K~/ks T
«1). If the electronic Zeeman Hamiltonian 3Cz

happened to be much larger than the hyperfine
structure K„„contrary to what we assumed for
simplicity, it could happen that 3C r /ks T & 1 while

K„,/ks T «1. But when X~ » 3C„ the hyperfine
interaction may be reduced to its diagonal part
and, as already mentioned, this simple case has
been studied by a number of authors.

U. APPLICATION TO EXPERIMENTAL STUDY OF YbAu
ALLOYS

Dilute YbAsc alloys have already been the subject

the effective-field case. Neither 5'„nor 0. appear
in E(p) which is given by

p+ 2 8'~+ GiP

(P+ W, +6iP) +A~ —W~m

p+ 2%~ - 3iP
(P+ Wj. 3iP) +4 Qi Wi

of numerous experiments'~ ~ which have shown

that the ytterbium is in a trivalent state whose
lowest electronic state is the Kramers doublet F',
separated by about 80K from the next electronic
levels I'6 and I 8.

Using the 84.3-keV Mossbauer transition of
Yb in dilute Tm Au sources, we have studied

the relaxation spectra of ytterbium in gold. Pre-
liminary results have already been published. ~3'~

A. Sample preparation

The two metals (Au, purity 5N5 and Tm, purity
3N) were melted together in an induction furnace
under argon atmosphere, in a beryllium oxide
crucible. The thulium had been neutron activated
before the alloy was prepared. The dilute alloy
samples were rolled so as to reduce the y-ray
absorption by the gold matrix and were then an-
nealed to eliminate defects introduced by rolling.
A number of different thulium concentrations were
used (1.3, 0.V5, 0. 5, and 0.2 at. %) so as to test
the influence of interaction effects between impuri-
ties. An inactive sample was prepared with 0.75-
at.% thulium so as to verify that the thulium was in
solution, using crystalline parameter and resistivi-
ty measurements at 300 and 4.2 K. This sample
was later irradiated and annealed and gave Moss-
bauer results similar to the other samples.

8. Experimental setup

The cryogenic apparatus used to cool simulta-
neously the source under study and the single line
mobile absorber Yb86 enriched in Yb is shown
schematically in Fig. 2. The setup is unusual in
that it uses horizontal movement transmitted to the
absorber under vacuum by means of a short rod of
thermally insulating material followed by a stirrup
which passes around the source. The absorber is
cooled to about 15 K by soft copper braids connected
to the liquid-helium reservoir. The driver is also
under vacuum in a container fixed on the side of
the cryostat at the position of an external window.
The source is introduced from the top of the cryo-
stat in an aluminum jacket transparent to y rays,
and which can contain thermal exchange gas. Its
temperature is controlled to + 0.02 K near 1.3 K
and to +0.05 K near 20 K. Among other advantages
this system allows one to change the source rapid-
ly without warming up the cryostat and without
demounting the moving parts. In addition the
transmission of the movement to the absorber takes
place under better conditions than in the cryostats
with vertical movements, which need much longer
connection rods. The velocity was calibrated us-
ing a Co source fixed at the opposite end of the
drive. The cryostat has a capacity of 5 l of liquid
helium, which allows runs up to three days. The
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Liquid

Nitrogen

Liquid

He).ium

tioned, ' are least when the thulium impur ity concen-
tration is lowest and appear to be due to inhomogene-
ities in the crystal field due to neighbor effects. Much
more dilute alloys are being studied.

The behavior of the spin-flip rate 8' as a func-
tion of T is shown in Fig. 4. The linear law ex-
pected at low temperatures according to the Kor-
ringa-type relation

[Z„n(E~)] ks T (22)
1 2m ~ gq —1

2' h gg

3 cm! spc;

~t
I ~

I I ~ 7 QJ
O"
N
0

~ 0

p+
P
0

FIG. 2. Schematical representation of the experimen-
tal setup. 1: source; 2: mobile absorber; 3: thermal
exchange chamber; 4: braided copper wires for thermal-
ization (a) liquid-nitrogen temperature and (b) liquid-
helium temperature; 5: stirrup transmitting the move-
ment to the absorber (represented only by dotted lines);
6: aluminum foil shiel. ds; 7: Fiberglas rod; 8: copper
parts; 9: aluminum jacket; 10; indium joint; 11: Ge(I i)
detection diode; 12: Tufnol rod; 13: beryllium windows;
14: Co' source for calibration; 15: drive under vacuum;
16: thermometer (germanium resistance); 17: heating
resistance; 18: rubber 0 ring.

y rays were detected using a Ge(Li) diode which
was needed to separate the 84.3-keV y ray of

Yb from the x rays at 69 and 78. 6 keV produced
by the decay of "Tm in gold.
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C. Results and discussion

Figure 3 compares Mossbauer spectra obtained
between 1.3 and 20 K with the sample having the
lowest concentration in thulium (0.2 at. '%) with the
best least-square-fit curves using the theoretical
formulas for the isotropic case in the absence of
magnetic field. In addition to the spin flip rate
W, the isomer shift, the intensity of the spectrum,
and the background level were fitted by the use of
a computer. On the other hand, the hyperfine
constant A of the excited state of ' Yb was taken
as A/k=910 MHz, using the value deduced from
EPR measurements carried out on Yb, and the
Mossbauer linewidth was fixed at the value of
I', , = 2.V mm/s obtained with the same absorber
and a source of TmB&z~ which is close to the
natural linewidth.

The small deviations between the theoretical
line shape and the experimental one for slow-re-
laxation spectra, which we have already men-

~ z '
~

e ~ ~ I ~
~ ~

~ I ~ +s

0

0 0s & ~ ~ 1s ~

~ ~
y ~ e+ ~

~ ~

e ~ a ~ 0 ~ ~ ~

~+J

T=20 K

FIG. 3. Experimental spectra of Yb 7 in gold. The
solid line represents the result of a least-square fitting
(see text), In our representation the positive velocities
correspond to positive energies.
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FIG. 4. Thermal evolution of the spin-flip rate. The
dotted line represents the preliminary result given in
Ref. 3.

J,f = —0.43 + 0.10 eV . (34)

A more detailed study is underway, the results
of which will be published separately. Already it
has been observed that at low temperatures the
Korringa law is only approximately foQowed be-
cause of a Kondo anomaly whi@h is exhibited by
the. relaxation rate. a~ This complements the re-
cent resistance measurements of Murani~s which
also show Kondo behavior in YbAu alloys. ~6

D. Remark

At temperatures below 1 K we are well into the
slow-relaxation region; the line shape of the Moss-
bauer spectrum does not change appreciably any
longer and ceases to give any precise information
on the electronic relaxation rate. But when tem-
perature becomes comparable to the hyperfine in-
terval 6 =-', A, the ratio of the intensities of the
two Mossbauer lines tend to depart from its high-
temperature value -'„due to unequal populations of

is approximately obeyed and its slope gives an
estimation of the coupling constant J,, between the
local moment and the conduction electrons:

i J,f i
=0.3S+0.03 eV, (83)

with g=3.43 for I'„@~=+7, and s(Er) =0.16 eV ~

per atom per spin. This value is in agreement with
that obtained from EPR measurements

the hyperfine sublevels. The extent to which ther-
mal equilibrium is approached before Mossbauer
emission depends on the ratio r„/T~, where 7„ is
the lifetime of the Mossbauer state. U v„/T,
happens to be of order unity when &/ks & 1, then
the ratio of the intensities of the two Mossbauer
lines gives complementary information on the
electronic relaxation in this temperature range.

This problem, as well as that of the behavior of
the electronic relaxation rate (and of the Kondo
correction to it) when 6/ks T 1, is investigated
in more detail in a separate publication. 37

VI. CONCLUSION

In conclusion we would like to emphasize the
interest of the Mossbauer technique, together with
the present theoretical interpretations, for the
determination of electronic relaxation rates.

The other method most similar to the Mossbauer
effect for such measurements is EPR. Nevertheless
these two methods present certain differences
which make them complementary.

On technical grounds, it has already been pointed
out by Hirst that the Mossbauer effect has the ad-
vantages of a larger temperature range, an easier
temperature regulation, and is not affected by the
metallic state of the samples. However, there
also exist some differences of principle: EPR re-
quires an applied magnetic field (which will be a
source of trouble in the study of Kondo anomalies),
Mossbauer effect does not. In EPR local symme-
try defects mainly give rise to an additive (inhomo-
geneous) line broadening, while their effect in
Mossbauer spectroscopy is to alter the general
form of the spectrum. ~~

As concerns EPR the sum of both effects results
in a linewidth of the form

bH= a(c, H)+ bT

(impurity concentration c, applied magnetic field
H), where the intrinsic relaxation rate if repre-
sented by the second term b T. The residual line-
width a(c, H) is often rather large, resulting in a
reduced accuracy in the determination of T,.

Conversely it should be noted that the Mossbauer
technique cannot be so widely applied as EPR.
Also the determination of Tj is most precise when
1/T, -E/8 (hyperfine interval); this last condition
will not always correspond to the temperature
range where the Kondo effect manifests itself.
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