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The current-voltage characteristics of a magnetically coupled pair of infinite type-II superconducting
films of finite thickness, separated by an insulating layer, are calculated. The main features of the

time-averaged primary and secondary flux-flow voltages

V, and V, versus the primary and secondary

currents I, and I, are found to depend upon only five parameters: the primary and secondary critical
depinning currents I, and I, the primary and secondary flux-flow resistances R, and R, and a
coupling current I,, which is proportional to the maximum coupling force exerted on a secondary
fluxoid by the displaced primary-fluxoid lattice. Model calculations of the current-voltage characteristics
are performed to illustrate predicted behavior under varying strengths of current, pinning, and coupling.

I. INTRODUCTION

Since the discovery by Giaever! that fluxoid mo-
tion in a primary superconducting film could induce
fluxoid motion and an associated voltage in an ad-
jacent secondary superconducting film, the theory
of magnetically coupled superconducting films has
undergone a relatively slow development. Proba-
bly the most important step towards such a theory
was made by Cladis, Parks, and Daniels, 2 who
stated the equations of motion for the primary and
secondary fluxoids, ignoring pinning but including
a periodic coupling force between a secondary flux -
oid and the primary-fluxoid lattice. Their main
result was to show qualitatively why slippage be-
tween the primary and secondary lattices should
occur for sufficiently high fluxoid velocities. Be-
cause of strong pinning effects and associated in-
stabilities in the specimens of most experiments to
date, there has seemed to be little hope of obtaining
good quantitative agreement with this theory.

As will be described in the following paper,
however, coupled granular-aluminum films, in
which the pinning force can be made quite small,
are almost ideal systems for the study of magnetic
coupling. Experiments in these films show good
qualitative agreement with some of the features of
the Cladis-Parks-Daniels theory, 2 but point up the
need for generalization of this theory, not only to
include the effects of bulk pinning and applied cur-
rents in both the primary and the secondary, but
also to make provisions for detailed quantitative
comparisons between experimental and theoretical
values of the maximum coupling force.

In this paper we shall discuss in Sec. II the ori-
gin of the periodic coupling energy, which is re-
sponsible for the primary-secondary coupling force.
In Sec. III we shall derive equations of motion for
the coupled system, including the effect of pinning
and of currents in both films. The current-voltage
characteristics that emerge from a solution of these
equations are displayed for a variety of combina-

2

tions of current, pinning, and coupling. In Sec.
IV we shall discuss these results and outline some
prospects for future theoretical and experimental
work.

II. COUPLING ENERGY

Let us consider a pair of infinite type-II super-
conducting films parallel to the x-y plane. The
lower film, called the primary, has thickness d,
and penetration depth A, and is separated by an in-
sulating layer of thickness d; from the upper film,
called the secondary, which has thickness d, and
penetration depth X;. (The terms primary and sec-
ondary are used because a pair of magnetically
coupled films may be regarded as adc transformer. )

When a magnetic field is applied perpendicular to
the films, singly quantized fluxoids are present in
the two films. We assume that the energetically
most favorable configuration of these fluxoids is a
perfect triangular lattice of fluxoids in each film.
The average flux density is B=¢,/A, where ¢,
=hc/2e and A = 3d%V3 is the area of the unit-cell
parallelogram for the triangular lattice of nearest-
neighbor distance d.

The Gibbs free energy is minimized when the
primary-fluxoid lattice is in perfect registry di-
rectly below the secondary lattice. When the pri-
mary lattice is displaced from registry through the
vector S, the energy increases, primarily because
the magnetic field energy and the kinetic energy of
the supercurrents in the region between the films
are higher in the displaced configuration than when
in perfect registry. The increase in energy of in-
teraction of a secondary fluxoid with the primary-
fluxoid lattice is then E,(S), which we call the cou-
pling energy. The coupling energy has the same
periodicity as the primary-fluxoid lattice, E,(5+1)
=E/®S), where 1 is a fluxoid-lattice vector. Note
that E.(0) =0 by definition.

When the current and field distributions are given
to good approximation by the superposition of the
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current and field contributions from individual flux-
oids in the two films, it is convenient to write

E()=2v(13) . 2.1)
1

Here v('i, 5) is the change in interaction energy be-
tween a secondary fluxoid at the origin and a pri-
mary fluxoid whose initial and final displacements
from the origin are 1 a.nd 1+5. The sum extends
over all lattice vectors 1 in the primary. As shown
in Ref. 4, it is possible to write

o(1, ) =@n)2 [ Pqi(@e’ e -1),
where 7(qg) is the two-dimensional Fourier trans-

form of the primary-secondary-fluxoid-interaction
energy and q is a wave vector perpendicular to the

(2.2)

z axis. Combining Eqgs. (2.1) and (2. 2) and making
use of
ZetT-a2n? 206G -8) (2.3)
1 g

where the sum is over all reciprocal-lattice vec-
tors g, we obtain
E8)=A"12"5(g)(e'®¥ - 1) . (2.4)
g
The prime on the summation denotes omission of
the term with g =0.

As will be shown in Ref. 4, #(gq) may be obtained
with the help of the London model®® for the prima-
ry and secondary fluxoids. In general, #(q) is a
rather complicated function of d,, 2,, dg, A,, d;,
and the magnitude of ¢g. It is real and negative,
and its magnitude is a monotonically decreasing
function of ¢. In the limit as ¢ = 0, the exact ex-
pression for #(g) reduces to

(q) ~ - (¢§ /41¢%) [X, coth(d,/,)
+Xg coth(d,/N) +d; ], (2.5)

and, when ¢ > ;! and A;!, which we shall call the
large-q approx1mat10n we have

(q) = - (0§ /8mEN2
X(1 - e ®)(1 -~ e™%s) (2.6)

Once #(q) is obtained, the coupling force F,(3)
exerted upon a secondary fluxoid for primary-lat-
tice displacement S may be expressed as the gra-
dient of E,(S). From Eq. (2.4) we obtain

F,(8) =V E,(S)

S)e-qd,

—zA“Z)’gv(g) LT 2.7

For numerical computations it is convenient to
choose as dlrect and rec1proca1 ~lattice vectors
j =ma, +nd, and g, = 27r(mb, +nb,), where m and
n are integers and the fundamental lattice vectors
are

-
a, =dxX,

- (2.8)
by =d}(2-3/V3),

A =3d(x+9V3) ;
by = (2/dV3)3 .

The length of a reciprocal-lattice vector is g,,
=(41/dV3)(m? —mn +n?)Y/2, 1t is sometimes also
useful to introduce coordinates X and Y via

§=X3,+Y3,, (2.9)
such that
8om* 8=2m(mX +nY) . (2.10)

The coupling energy and coupling force then may
be written as

E X, Y) =20 (1 — gi2rimxenD)y (2.11)
F.X, Y)= —z( ) 27 [(2m -n)3,
+(2n — M)A, Ju, e 2 K (2.12)
where
Upn= —A"D(g,) (2.13)

and the sum includes all integer values of m and »
except the term for which m=n=0,
For small s (s<d), E.(8) is quadratic in s,

EJ(8)~ 3ks?, (2.14)

forming an isotropic potential well for the second-
ary fluxoid, such that the coupling force F, (*) is
isotropic and linear in 8. That is,

s<d

F.(3)=k8, s«d (2. 15)
where
k——Z) g2 u, . (2.16)

These results may be derived by expanding the ex-
ponentials in Eqs. (2.11) and (2.12) and using the
relations
203 0ty =20 Mty = 23" 1P 1y (2.17)
mn mn mn
which follow from the symmetry of é,,,,,.

At sufficiently low fluxoid density, the summation
over reciprocal-lattice vectors in Eq. (2.4) may be
expressed as an integral over g. When s<<d we
then may replace the argument g by q and 2 ¢ by
A(2n)y2 [ d%q, where A(27)? is the density of recip-
rocal-lattice sites, to obtain

E,(5)~ @n)? [ d%qd(g)(¢i¥-1)=0(0,5).  (2.18)

Referring to Eq. (2.1), we see that Eq. (2.18) sim-
ply states that at sufficiently low flux density the
dominant contribution to the coupling energy arises
from the interaction between the secondary fluxoid
and the nearest primary fluxoid.

At very low fluxoid density the coupling force is
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thus optimized and is given by
F.(5)~ v,0(0,5) . (2.19)

Recently, Sherrill” calculated this force in the ap-
proximation d, < A, and d;<< \,. His result yields
the correct order of magnitude for the full coupling
force in thin films at sufficiently low flux density
that the intervortex spacing d is large by compari-
son with the superconducting film thicknesses d,
and d,.

At sufficiently high fluxoid density, the summa-
tion of Eq. (2.4) involves values of g for which the
magnitude of 7(g) is decreasing rapidly with in-
creasing g. It is then a good approximation to re-
tain only those terms in the summation involving
the six shortest reciprocal-lattice vectors of length
g10=47/dV3. We call this the one-reciprocal-lat-
tice-vector approximation. From Eq. (2.11) we
thus find

E (X, V)= 2um[3 - cos2nX - cos2nY

-cos2n(X+Y)]. (2. 20)

Contours of constant E, within the unit cell are
shown in Fig, 1,

The minimum values of E, (E,=0) occur when the
primary fluxoids are located directly under the
secondary fluxoids at the points F (integer X and
Y). The maximum values of E, (E, = E, ., = 9u44)
occur when the primary fluxoids are directly un-
derneath the points C (X=Y=3and X=Y=3%), the
centers of the equilateral triangles formed by the
secondary fluxoids. Saddle points S, at which

E,=4(8E, nas)=8uyg, occur when the primary flux-
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oids are directly underneath the midpoints of lines
connecting adjacent fluxoids in the secondary lattice,
where (X, Y)=(3,0), (0, ), (z, 2), (1, 3), or (3,1).

The corresponding force ’l’i‘c is normal to the con-
tours shown in Fig, 1, and its magnitude is inverse-
ly proportional to the distance between adjacent
contours. The maximum force is very nearly iso-
tropic. In the one-reciprocal-lattice-vector ap-
proximation, Eq. (2.12) yields

F.(X, )= 87/3d*)up{a,[2 sin27X + sin2n(X + Y)
- 8in27Y ]+ a,[2 sin27Y + sin2n(X + ¥)
- sin2nx]} . (2.21)

For displacements s along the line FSF of Fig. 1
we obtain

F,=F, 2= (8muy,/d)sin(2ns/d)% , (2.22)

which has maximum magnitude F, pa. = 8muyy/d at
§=0.250d. For s along the line FCSCF, we obtain

F,=F,,0i= (16muyy/d,) sin(37s/d,)

X cos(ms /dy )}t , (2.23)

where d;=a/3 and fi=s/s. The maximum magni-
tude of F,, F_; nax=1.016 F 4, Occurs at
s=0.258d. Both F, and F, are plotted in Fig, 2.

We may use the one-reciprocal-lattice-vector
approximation at this point to obtain the qualitative
behavior of F,, ... as a function of flux density B.
Combining the above result with Eqs. (2.13) and
(2.6), we obtain

F i max = (368 /32180202 g )e 4104

X (1 = e610%)(1 - e~510%) . (2. 24)

FIG. 1. Contours of the
coupling energy E.(§) as a
function of the primary lat-
tice displacement §, for §
within the unit cell of the
triangular lattice. Contours
are calculated from Eq.
(2.20) for E,/E pay=0.1,
0.2, ..., 0.9. Minima (E,
=0) occur under thesecon-
dary fluxoids at points F.
Maxima (E, pa, = 9%;,) occur
at points C. Saddle points
(E,=8uy,) occur at points
S.
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FIG. 2. Coupling force exerted on a secondary fluxoid

for primary-lattice displacements along symmetry direc-
tions of Fig. 1. Shown are (a) along FSF, F./F o max
=sin@ns/d) [Eq. (2.22)] and (b) along FCSCF, F/Fqimax
[Eq. (2.23)], where Fg, p,, =8muyy/d and d is the nearest-
neighbor distance. The maximum coupling force is nearly
the same for the two directions.

We see that, since B=_gZ(¢,/3/81%), Eq. (2.24)
yields F,, nax < B in the field range for which gy,
obeys A1, A1, d;, d;'< gy y<«<d;! or, alternatively,
for whichthe intervortex spacing d obeys d; < d < d,,
dsx )\p! Xs'

In general, we may say that at low flux density
the maximum coupling force saturates at a value of
the order of the maximum primary-secondary-flux-
oid-pair—-interaction force. With increasing flux
density the effect of the field contributions of ad-
jacent fluxoids is to smooth out the inhomogeneities
in the magnetic field between the films, to decrease
the amplitude of the oscillation in E, versus s, and
thereby to reduce the magnitude of the maximum
coupling force, roughly as B!, Eventually, when
the interfluxoid spacing d is of the order of the in-
sulator thickness d; or smaller, the field presented
at the secondary by the primary lattice is extreme-
ly homogeneous, and, as is seen from Eq. (2.24),
the maximum coupling force decreases exponen-
tially with further increase of B.

IIIl. EQUATIONS OF MOTION

A. Derivation of equations

For simplicity, we consider only the case for
which the primary- and secondary-fluxoid motion
is in the * x direction, parallel to a lattice vector.
In the following we thus assume that s=s,% and that
F.(s)=F, (s, )%, where F, (s +d)=F,(s). For fur-
ther simplicity, we shall use in the following calcu-
lations the coupling-force model F,,(s,)=F,,

X sin(27s,/d), where F,, is to be regarded as a
function of d and the specimen parameters A, A,
d,, d,, and d;. A sinusoidal model was first used
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by Cladis, Parks, and Daniels? and is justified in
the one-reciprocal-lattice -vector approximation,
as is seen from Eq. (2.22).

We write now the equations of motion for the pri-
mary and secondary fluxoids. We allow for the
possibility of a transport current density Jj, (J;,)
in the y direction in the primary (secondary), which
exerts a Lorentz force per unit length J,, 9y/c
(J;, ®o/c) upon the primary (secondary) fluxoids, ®
We may represent the combined strength of surface
and bulk pinning in the primary (secondary) films
by the critical current density J,, (J;.). The driv-
ing force in the x direction on a fluxoid is J,, @yd,/c
- F,,(s,) in the primary and J,, ¢yd, /c + F,(s,) in the
secondary. When the magnitude of the driving force
is less than J,, ¢yd,/c (J,. @od,/c) there will be no
fluxoid motion in the primary (secondary). How-
ever, when the magnitude of the driving force ex-
ceeds this value, flux motion results. Assuming
negligibly small Hall angle, the net force on a flux-
oid in such a case is balanced by a viscous-drag
force 7,%,d, (n,%,d,), where 7, (1,) is a field-depen-
dent viscous-drag coefficient and %, (%,) is the x
component of the fluxoid speed in the primary (sec-
ondary). The y component of the electric field gen-
erated by this motion is

E,, = &DB/C= pP[JM Fdpe

- Cch(sx)/(podp] (3- 1)
in the primary, and
E, = ’.‘sB/(": ps[sz F e
+CF . (s,)/ @od ) (3.2)

in the secondary, where p, = ¢,B/1,c* (p, = 9,B/N,c?)
is the primary (secondary) flux-flow resistivity and
B is the magnetic flux density in the films, The
upper (lower) sign holds when the y component of
the electric field is positive (negative).

It is convenient to introduce V, = L,%,B/c (V,
=L,%,B/c), the voltage measured across length L,,
and I, (), the current through width L, and thick-
ness d, (d) of the primary (secondary) film. Equa-
tions (3.1) and (3. 2) may then be written compactly
as

V,=I} ~L,)R, , (3.3)
V,=(8I2 +I,\)R,, (3.4)
where

8It=1,%1, , (8.5)
SIF=I,%I,, (3.6)

I,=d,,L.d,, (8.7

I=dyLyd,, (3.8)
Le=Jdy.Ld,, (3.9)
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FIG. 3. I,—I; map for magnetically coupled films with
relatively weak pinning and parameters in the ratios
Ie:lg:1p=1:2:4 and Ry: Rg=2:3. The behavior of the
current-voltage characteristics in each numbered region
is discussed in the text and summarized in Table I.

Lie=dse Led, (3.10)
R,=L,p,/L.d, (3.11)
R,=L,p,/L.d,, (3.12)
L,=cF (s,)L./¢o=Iysin(2ns /d) , (3.13)
Iy=cF,L /o, . (3.14)

The upper (lower) signs hold when the voltage is
positive (negative). As we shall see shortly, the
current-voltage characteristics of the time-aver-
aged voltages V, and V, versus I, and I, depend up-
on only five parameters: I, (I,.), the depinning
critical current of the primary (secondary) alone;
R, (R,), the flux-flow resistance of the primary
(secondary) alone; and I, a quantity we call the
coupling current, which is proportional to the max-
imum coupling force.

B. Results with weak pinning

To understand the current-voltage characteris-
tics dictated by Eqs. (3.3) and (3. 4) under condi-
tions of relatively weak pinning, it is helpful to
consider an I,-I; map, shown in Fig. 3, which is
drawn for parameters in the ratios [,.: I,;: I;=1:2
:4and R,: R;=2:3. For combinations of I, and I,
that fall within the six-sided region (labeled region
0) centered on the origin, bounded by the lines I,
=lo+lye, Iy==Ig-Iye, I;=Ig+1, Ig==-14 o A
+I,=L.+I,, and I, +I,= - I,, - I, tolal pinning oc-
curs; that is, there is no flux motion in either film,
and V,=V,=0. When [;=0, for example, as shown
in Fig. 4, total pinning (V,=V,=0) occurs for [, in
the range 11,1 < I, +1,.

For combinations of I, and I, that fall within re-
gions 2 or 8 on the I,-I, map, perfect coupling oc-
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curs. Here the combined Lorentz force from cur-
rents in the two films is sufficient to depin both the
primary and secondary fluxoids; that is, [, +II
>I,.+I,,. Furthermore, the coupling between the
primary and secondary fluxoids is sufficiently
strong that the two lattices are locked together with
a fixed relative displacement |s,| < id, and they
move at constant speed parallel to the x axis.
Eliminating I,, from Egs. (3.3) and (3.4), we find
that the common voltage in the two films under con-
ditions of perfect coupling is

V,=(8I} +SI}R , (3.15)
where the upper (lower) sign holds for positive (neg-
ative) voltage and

R'=R;'+ R} . (3.16)
When I, =0, for example, as shown in Fig. 4, per-
fect coupling (V,=V,=V,) occurs along the line AB,
given by V,=(I, - I,. - I )R.

Inserting Eq. (3.15) into Eq. (3.3) and solving

for I,;, we obtain
w
>
a
>
V++
/
L/ A :
0 Tpetlse I53(0)
I

FIG. 4. Time-averaged primary and secondary volt-
ages V, and V, vs primary current I, when I;=0 for
weakly pinned, magnetically coupled films with parame-
ters in the ratios I :I;.:Ip=1:2:4 and R,: Rg=2:3. For
0 <Iy<Iy;+I,, total pinning (region 0 of Fig. 3) occurs,
and V,=V,=0. Along line AB, which has slope R (R
=R;'+R;"), perfect coupling (region 2) occurs, and V,
=Vs=V,. Atpoint B, where V,=V =V, = U —I,)Rs and
I,=L;4(0) =I,, — I, ;R/R, + IR/ Ry, Where Ry=R,+Rg, the
(++) decoupling condition occurs. For I,>L}(0), the films
are partially decoupled (region 4*°). For large I, Vs
approaches (I, —I,.)R, (dashed).
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sin(27s,/d)=i5/I, (3.17)
where
i =(8I;R, -8I*R,)/R,, (3.18)
R,=R,+R, . (3.19)

The first sign of #; is associated with 37 and the
second with 6I%. In the perfect-coupling regions
the magnitude of sin(27s,/d) in Eq. (3.17) does not
exceed unity. When the magnitude of i3 [Eq. (3.18)]
exceeds I,, however, partial decoupling of the pri-
mary- and secondary-fluxoid lattice occurs and one
lattice begins to slip relative to the other. Four
conditions at decoupling are possible; let us label
these the (++), (+-), (-+), and (- —) decoupling
conditions, where the first sign of a pair refers to
the sign of V and the second refers to the sign of
32 and I,, = I sin(27s,/d) at the onset of slippage.
When I, =0, for example, as shown in Fig. 4, the
(++) decoupling condition, where i,s=+1I;, isreached
at point B. In general, the four decoupling condi-
tions are reached along four corresponding lines on
the I,-I; map given by the solutions of |45l =1,
With the help of Eq. (3.18) we find that the slope of
each decoupling line is
dl; R,
EI—;, = R—s . (3.20)

As will become clear in Ref. 3, to assist in the
experimental evaluation of the parameters I,., [,
R,, R, and I, it is useful to denote by V,, the
voltage V,=V, at the (++) decoupling condition.
From Egs. (3.3) and (3. 4) we obtain

V= (I F IR, = (8I* tI)R, . (3.21)

From this equation we find that the value of I, at
the (+=) decoupling condition as a function of I is

I:,(Is) =xl,.+ I+ I,c)R,/R,
+I,R,/R, . (3.22)
Similarly, the value of I, at the (++) decoupling con-
dition as a function of I, is
I:’;(I,) =+l + (I, ¥ I,,_.)R,/Rs

*IR,/R, . (3.23)

Finally, we denote the combination of values of I,
and I, that makes V, zero by

(3.24)
I, (3.25)

In Egqs. (3.21)-(3.25) the first upper (lower) sign
in (++) is associated with the upper (lower) signs
preceding I, and I,., and the second upper (lower)
sign in (&) is associated with the sign preceding
Io-

When I, =0, for example, as shown in Fig. 4, the

Lyy=tl,x1,,

= i:I.u'?‘: I.
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(++) decoupling condition at point B is characterized
by

V. (I,=0)=(,- LR, (3.26)
I;T!(O) =Ikc ‘IscRa/Rﬁ +IoRt/Rt . (3. 27)

Returning to the I,-I, map of Fig. 3 we note that
there are six regions (1, 3, 5, 7, 9, and 11) for
which the combinations of I, and I, are such that,
although the primary and secondary lattices are
slipping relative to each other, neither lattice ever
comes instantaneously to rest. For these regions,
whose boundaries are listed in Table I, the combi-
nation of the Lorentz force and the coupling force
in each film is always sufficient to exceed the pin-
ning force, producing a nonzero, though time-vary-
ing, fluxoid speed. Subtracting Eq. (3.4) from Eq.
(3.3) and making use of %, - %, =$,, we obtain a
differential equation for s, versus time,

Vos=Vp=Ve= (L,B/c)s,
=[##2 - I,sin(27s,/d)]R, . (3.28)

The slippage period 7, the time required for s, to
change by a distance d, is easily found by integra-
tion to be

T=(L,Bd/cR (i) - 15T"/%, (3.29)
such that the time average of Eq. (3.28) is
Vos=V, = Vo= (i3 -1 ,,)R,
=G4 R {1 -I3/(5P1 /2 . (3.30)

Thus, in regions 1, 3, 5, 7, 9, and 11, the time-
averaged primary and secondary voltages are giv-
en by

V,=(I}-1,)R,, (3.31)

V,=(0I3+1,)R,, (3.32)
where

Ly=im{1 -[1 -13/ar12} (3.33)

a result similar to that of Cladis, Parks, and Dan-
iels.?

Returning to the I,-I, map of Fig. 3, there are
four remaining regions, 4, 6, 10, and 12, for
which the fluxoid motion in the primary and second-
ary films is considerably more complicated than
that described above. In regions 4*°, 6*°~, 10*°",
and 12*°-, for example, while one of the lattices is
continuously advancing, the other lattice may first
move forward, be pinned, move backward, be
pinned, then move forward, all during one cycle,
provided the coupling between the films is suffi-
ciently large. The behavior in regions 4, 6, 10,
and 12 is summarized in Table I.

To compute the primary and secondary voltages
in regions 4, 6, 10, and 12, therefore, we derive
from Eqs. (3. 3) and (3.4) differential equations for
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TABLE I. Summary of the behavior of the primary and secondary voltages V,
and V, in the regions of the I, — I, plane bounded by dashed lines shown in Figs. 3

and 8.
Region Definition® v, Vs V, and ¥, Comments
| Iy =Iys| <Ip, 0 0 V,=Vs=0 Total primary
0 and seconda
| Is +IPS | <Isc plnnmg i
oIy >1, + + 0<V,<V, Partial
1 if<=1I, decoupling
oIy +615>0 + + V,=V,=V, Perfect
2 litl <l coupling
8I3>1, + + 0<V,<V, Partial
3 i, decoupling
sI3>1I, + +0,— V<V, Partial
4 YARIATA decoupling
iy >1
4* Ig> I — Lyl + +,0 0<V,<V, Partial
secondary
pinning
. I >1y: + 0 Vs=0<7, Total
4 secondary
1Ig) <Igo=1
s I s¢ 0 pinning
or
, Iy>Ig: + +,0,— V<V, Partial
4%
TARIAS S secondary
pinning
4- Ig<= |I=1l + 0,— Vs<0<7, Partial
secondary
pinning
oI >1, + - V<0<V, Partial
5 sIz< =1, decoupling
ips >,
sI;<—1I, +,0,— - V<V, Partial
6 TARINS decoupling
ips >1y
6* I,> | L.~ Iyl +0 - Vs<0<V, Partial
primary
pinning
. Lo >Iy: 0 - Vs<V,=0 Total primary
6 .
FARIACIA pinning
or
v Iy > 1, +,0,— - V<V, Partial
6% primary
1| <Iy~
Vpl <lo=Tpe pinning
6" Iy<— L~ 1l 0,- - Ve<V,<0 Partial
primary

pinning
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TABLE 1. (Continued)
Region Definition® vy Vs V, and V, Comments
8l;<~1Iy - - V<V, <0 Partial
7 igol, decoupling
8I; +6I:<0 - - V.=V =V Perfect
p +0ls s=V,
8 |55 1<y coupling
sI3<~1, - - V,<Vs<0 Partial
9 i <=1, decoupling
FARIAT M - +0,—  V,<V, Partial
decoupling
10 sly< =1,
<=1
10- Ig<= | Io=1,) - 0,- V,<V,<0 Partial
secondary
pinning
. I >1y: - 0 V,<V,=0 Total
10 seconda
gl <Ig= I, pmnmg"y
or
- Ig>Ig: - +0,~ V<7V Partial
1 secondary
< —
Vgl <Iy—I, pirning
10* 1> | I =1y - +0 V,<0<V, Partial
secondary
pinning
813 >1 - + V, <0<V, Partial
11 sy<—1I, decoupling
ips <=1,
11y} <Iy+I, +,0,— + V, <V, Partial
12 oI2>1, decoupling
ipe<—1I,
12° Iy<= L —1l 0,- + V,<0<V, Partial
primary
pinning
120 Ipe >1y: 0 + V,=0<7, 'I“ota.l primary
FARIANESA planing
or
Lpo- Iy> I +,0,= + V,<V, Partial
PRI primary
pinning
12* I,> 11— 1y +0 + 0<V, <V, Partial
primary
pinning

oIy=I, %Iy, 6I3=1,%1,, and ijs= GI;R,~6I3R.)/(Ry+Ry).

905
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FIG. 5.
coupling for I;=0 and ratios Ij.:1I

(a) Reduced displacements x,/d, s,/d= (x,—x)/d, and x,/d vs reduced time ¢/7 under conditions of partial de-
wo:lp:l,=1:1:2:5 and R,: Rg=1:1.

Note that ; =d/t, where d is the nearest-neighbor

distance. The slippage period 7, calculated from Egs. (3.3) and (3.4) of the text, is here 7=0.361L Bd/cl,cR,, such that

Vs =V, = Vo=L,Bd/cT=2.TTL,R,.

Similarly, V,=L,B%,/c=3.14I,.R, and V=L ,BZ,/c =0.37I,.R,.

(b) Coupling current

Ls=1, s1n(2ws/d) vs reduced primary-secondary displacement s,/d. As seen from Eq. (3.4) of the text, when I;=0 the
value of I, relative to +I, determines the time intervals during which the secondary lattice is pinned (4, C, E), moves

forward (B), or moves backward (D).

s, versus time ¢ similar to Eq. (3.28). However,
two or three such equations are necessary to de-
scribe a complete cycle, during which, at various
times, one of the lattices moves forward, is
pinned, or even moves backward.

Figure 5 illustrates the resulting behavior of
%(2), x,(?), and s.(f)=x, — x, versus time ¢ for a
typical point on the [, axis in region 4. Since here
I, =0, the motion of the secondary fluxoids is
governed by the ratio of the coupling force to the
pinning force. In time intervals A, C, and E, when
the pinning force exceeds the magnitude of the cou-
pling force ([,< |I,.l), the secondary fluxoids are
pinned; in time interval B, when the coupling force
exceeds the pinning force (I, >I,.), the secondary
fluxoids are driven in the forward direction; in
time interval D, when the magnitude of the nega-
tively directed coupling force exceeds the pinning
force (I, < -I,.), the secondary fluxoids are driven
backward. Although the maximum secondary-flux-
oid speed is the same whether it moves backward
or forward, the secondary fluxoids spend more time
traveling forward than backward, thereby making
net forward progress. The time -averaged volt-
ages are V,=L,Bx,(1)/cT, V,=L,Bx,(1)/cT, and
V=V, - V =L,Bd/cT, where T is the total time
required for slippage by one lattice vector d.

When I =0, it follows from the equations of mo-
tion that for larger values of I, and faster motion
of the primary fluxoids, the secondary fluxoids are
increasingly unable to follow the primary lattice.

As a result, the secondary fluxoids spend nearly as
much time moving backward as moving forward,
thereby making less net forward progress. Accord-
ingly, the time-averaged secondary voltage Vs de-
creases monotonically with increasing I,.

The qualitative behavior of V, and V in the thir-
teen major regions of the I,-I; map of Fig. 3 is
summarized in Table I. It is a straightforward
problem to develop a computer program which com-
putes V, and ¥V, versus I, and I, for magnetically
coupled films characterized by the five parameters
L., I, R,, Ry, and I;,. Shown in Fig. 6is a
computer-generated plot of Vs versus I, for a series
of values of I;. The ratios of [.: [,.:Iyand R,: R,
are the same as those assumed for Fig. 3. Also
identified in Fig. 6 are the portions of the V -vs-I,
curves for which the behavior is characterized by
the corresponding numbered regions in the I,-I,
map of Fig. 3. Shown in Fig. 7 is the computer-
generated plot of 17,, versus I, for the same param-
eters and values of I, used for Fig. 6. Structure in
this plot may be correlated with corresponding
structure in Fig. 6.

C. Results with strong pinning

To obtain the results described above and dis-
played in Figs. 3-7, we have assumed implicitly
that I, is sufficiently large that perfect coupling can
occur when I;=0. When 0<I;< [, however, since
the maximum coupling force exerted by the primary
lattice on a secondary fluxoid does not exceed the
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FIG. 6. Theoretical time-averaged secondary voltage V, vs primary current I,, calculated as described in the text
for secondary currents I;=—2.0, —1.9, ..., 1.9, 2,0 mA. Model parameters I,;=0.1 mA, I;;=0.2 mA, I,=0.4 mA,
R,=0.2 @, and R;=0.3 © were selected to describe weakly pinned magnetically coupled films. Numbered regions cor-

respond to those of the I, —I; map of Fig. 3.

pinning force on it, we find that V=0 for I,=0, re-
gardless of the value of J,. The only manifestation
of the presence of magnetic coupling in this case is
the altered shape of V, versus [,. When 0<I,<I,,
+I,, we find V,=0, but when I, >, +I,, we find
7,=[(I, _Ipc)2 _IOZ]UZRp ’ (3- 34)
which is obtained by solving Egs. (3.3) and (3.13).

We may see more clearly the behavior of cou-
pled films subject to relatively strong pinning by
consulting Fig. 8, which is an I,-I; map appropriate
to a hypothetical strongly pinned specimen with pa-
rameters in the ratios I,;: I,:I,=3:4:1and R,: R,
=2:3. At the center of this map is the six-sided
region 0, within which there is total pinning of both
the primary and secondary lattices.

Within region 4° bounded by the lines I, =1, +I;,
I,=I,, -1, and I, = - (I,. - Iy), the secondary lattice
remains totally pinned, but the primary lattice al-
ways moves forward under the combined influence
of the Lorentz force, the pinning force, and the
coupling force, yielding V, versus I, as given by
Eq. (3.34).

When a transport current is passed through the
secondary lattice, the resulting I orentz force may
be sufficient, when acting in combination with the
coupling force, to exceed the pinning force and to
drive the secondary lattice into motion. In fact,

when I, +I, >I,. +I,. and |i3t| <I,, which defines re-
gion 2 of Figs. 3 and 8, perfect coupling (V,=V,
=V,) may occur, just as discussed in Sec. III B,

The behavior under other combinations of I, and
I, in Fig. 8 may be analyzed using the approach of
Sec. III B and is summarized in Table I. Numeri-
cal computations of V, and ¥, versus I, and I, may
be performed using the same computer program as
discussed in Sec. IIIB. Shown in Fig. 9 is a com-
puter-generated plot of V, versus I, for a series of
values of I, for a specimen whose ratios of [,.: I,,
:Iyand R, : R, are the same as those assumed for
Fig. 8. Also identified in Fig. 9 are the portions
of the V,-vs-I, curves for which the behavior is
characterized by the corresponding numbered
regions in Fig. 8. Shown in Fig. 10 is the asso-
ciated plot of V, versus I,.

We note here that if there is any magnetic cou-
pling at all between two films (that is, if I, >0),
then a region of pevfect coupling can always be
achieved for an appropriately chosen range of pri-
mary and secondary currents. As we have seen,
this is true even for strongly pinned specimens for
which, in the absence of a secondary current, pri-
mary-fluxoid motion produces no secondary-flux
motion. This result yields a rule of thumb which
may be useful experimentally: To determine the
presence of magnetic coupling, one should look for
structure in a plot of the secondary voltage versus
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FIG. 7. Theoretical time-averaged primary voltage Vp vs primary current I, for secondary currents I;=—2.0, —1.9,

..es 1.9, 2,0 mA. Model parameters are those used for Fig. 6.

The four dashed lines illustrate the decoupling voltages

V=W, 31, FI)R, [Eq. (3.21) of the text]. Note also that, for primary currents well above the decoupling current, V,
asymptotically approaches (I, —I,)R,, regardless of the value of I,.

the primary current—not just at zero secondary
current, but also at secondary currents large
enough to drive the secondary fluxoids into motion.

D. Results with weak pinning and passive secondary load

We return to the case of weak pinning considered
in Sec. III B, for which I,>I,.. We further consider
the case for which any transport current in the sec-
ondary must return through a load resistance. One
way to visualize the connection of the load resis-
tance is to regard a portion of the secondary of
length L,, width L., and thickness d, as being con-
nected in series with load resistance R;. The cur-
rent carried in the y direction by the secondary,
which must be returned in the opposite direction
through the load, is I, =J,,L,d,. Since the voltage
drop V =E, L, along L, in the secondary must be
equal to the voltage drop across the load resistance,
we obtain

V.,=-LR,. (3. 35)
s S

Thus, in the presence of a load resistance, a sec-
ondary voltage induces a secondary current that,
in turn, produces a Lorentz force in opposition to
the flux motion producing the voltage. This result
may be regarded simply as a consequence of Lenz’s
law.

Under conditions of perfect coupling, we may

combine Eqs. (3.15) and (3. 35) to obtain

V=1, % (I, +I,0)]Rege (3.36)

where the upper (lower) sign holds for positive
(negative) voltage, and

R} =R;'+R;'+RF . (3.37)
Under open-circuit conditions, when R, is infinite,
we obtain I;=0 and R.,,=R. The slope R, of V,
versus I, decreases monotonically with decreasing
load resistance and vanishes under short-circuit
conditions when R, vanishes. Equations (3. 36) and
(3. 37) thus justify the corresponding empirical for-
mulas derived by Giaever on the basis of his ex-
periments. !

The onset of voltage under perfect-coupling con-
ditions occurs when I, =+ ([, +1.), as is seen from
Eq. (3.36). The value of [, at which decoupling oc-
curs is, from Egs. (3.21), (3.22), and (3. 35),

Igg=t(Lo+ 1) = Iy —Ig0)
X[1+R;*RE +RIN] . (3.38)

Similarly, from Eqgs. (3.21) and (3. 35) we obtain
the voltage at decoupling,
V=2 - I )R +R)™, (3.39)

where in the above two equations the upper (lower)



9 THEORY OF MAGNETICALLY COUPLED TYPE-II... 909
coo sy P , mary, the secondary, and the load is, in general,
" Sl 1202 1 WD T
ol :,.? [ o, -~ - _ Ve (3 40)
FERES e L Py =1, |V,|)+(V3/R,) .
HEORTIES L NS T 3
RE gg )'//:,"(p\)/'/\';” Ps=lsc< |V3|)+<Vi/R,> ’ (3.41)
o Istlsetlo ST I
O ngrneecto g Tt N e il Pp=( VE/RL) ’ (3.42)
: TOTAL T
SECONDARY o1 1 .
109 INRING : Y ‘:l;c:r ' if:zr:: o ) P where the brackets denote time averages. The
_i PINNING |

first term on the right-hand side of Eqs. (3.40) and
10” TN | Tsr It To 4 (3. 41) represents power dissipated locally at pin-

_____________ - . A
. ,c;\yo“i’ql’ T; ! 1: Is *=lac -To ning sites; the second term represents power dis-

9 " /\;’,;@/:\f’ - :é o sipated via viscous losses almost uniformly be-

\,,‘:’; 8 \f: :{ov , :6_35 50;%6+;:? 5 tween pinning sites. The sum of P,, P,, and P
A E :ét A0S is, of course, equal to the time-averaged power in-

put to the primary, P, =(I,V,).

FIG. 8. I,-I, map for magnetically coupled films with The power delivered to the load, P, ={VZ/R,),
relatively strong pinning and parameters in the ratios is greatest at the decoupling condition, where V
Tpe:Ig:1p=3:4:1and Ry: Rg=2:3. The behavior of the =V,,. With the help of Eq. (3.39) we find that the
current-voltage characteristics in each numbered region maximum power delivered to the load, obtained

is summarized in Table L. when R =R,, is

Py max=ilo - INR; . (3.43)
signs hold when the voltage and the primary cur-
rent at decoupling are positive (negative). With further use of Eqs. (3.38) and (3. 39), we find
The time -averaged power dissipated in the pri- that the transfer efficiency of the device is then
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FIG. 9. Theoretical time-averaged secondary voltage V, vs primary current I,, calculated as described in the text
for secondary currents I;=-1.4, —=1.3, ..., 1.3, 1.4 mA. Model parameters [,,=0.3 mA, I;,=0.4 mA, I,=0.1 mA, R,
=0.2 &, and Rg=0.3 Q were selected to describe strongly pinned magnetically coupled films. Numbered regions cor-
respond to those of the I,—I; map of Fig. 8.
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FIG. 10. Theoretical time-averaged primary voltage V, vs primary current I, calculated as described in the text for

secondary currents I;=—1.4, —1.3, ..

.» 1.3, 1.4 mA. Model parameters are those used for Fig. 9.

The four dashed

lines illustrate the decoupling voltages V= (I, T I, 7Io)R, [Eq. (3.21) of the text]. Note also that, for primary currents
well above the decoupling current, V, asymptotically approaches (I, —I,)R,, regardless of the value of I,.

PL mn/Pn ’_'%[1 +R:/2R) + (Ipc"'Isc)/ (Io - ,u:)]-l ’
(3.44)
where P, =1,3V,, isthepower delivered tothepri-
mary. Thus at least as much power is dissipated
in the transformer as is delivered to the load un-
der these conditions.

The transfer efficiency of the transformer can
be improved by reducing the load resistance, but
at the expense of the power delivered to the load.
When R; <R, or R,, the transfer efficiency be-
comes

PL/PHIg —IS\M/I)M=

which approaches unity in the limit of very weak
pinning, but the load power then becomes

PR (Iy~I 'Ry <Py .

I-I,

1,75, (3. 45)

(3.46)

IV. DISCUSSION

The above treatment describes well, we believe,
the essential features of the behavior of magneti-
cally coupled superconducting films. We dis-
cussed in Sec. II the periodic coupling energy and
how this yields a periodic coupling force whose
maximum value is very nearly isotropic. We then
examined in Sec. II the equations of motion and
found that the important features in the current-

voltage characteristics are determined by only five
parameters. Of these five, the most interesting
from the present point of view is I;, which is pro-
portional to the maximum coupling force, discussed
in Sec. II.

A theory based upon the London model of the de-
pendence of I, upon the magnetic field B and the
specimen parameters d,, d,, d;, \,, and A, will
be presented in a subsequent paper.* Within this
theory, the temperature dependence of I, enters via
that of A, and A,. Experimental results should soon
reveal how successfully the London model can ac-
count for the details of the behavior of I,,.

Some of the results of the present paper (in par-
ticular, the current-voltage characteristics in re-
gions of partial decoupling) depend upon the sim-
plifying assumption of a sinusoidal coupling force,
Eq. (3.13). Since this assumption is justified only
when the one-reciprocal -lattice -vector approxima-
tion holds and when slippage occurs parallel to a
lattice vector, a more general treatment to include
more realistic coupling forces would be desirable.
Such a generalization is straightforward, although
computations of the current-voltage characteristics
would be more time consuming because of the nu-
merical integrations required.

For simplicity, in this paper we have ignored
edge effects. If flux pinning in coupled films is not
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essentially homogeneous throughout the bulk, but is
most pronounced at the specimen edges, as is the
case for edge pinning, ? then our equations of mo-
tion will need important revisions. Moreover,
there remains the unanswered question of the de-
tails of the primary-secondary-fluxoid interaction
near the specimen edges, where fluxoids are nu-
cleating or annihilating. Such edge effects probably
will have to be included in a description of coupling
between thin superconducting strips of narrow width.
Another subject for future investigation is the be-
havior of coupled films in the presence of high-fre-
quency oscillatory components of the primary and
secondary currents. Such components may well

produce structure in ¥, and ¥ when the period of
oscillation is close to an integer multiple of the
natural period 7 of slippage between the primary
and secondary lattices.
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