
PH YSIC AL BE VIE% 8 VOLUME 9, NUMBEB 2 15 JANUARY 1974

Explicit exponential frequency dependence of multiphonon infrared absorption*
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The nearly exponential frequency dependence of the infrared absorption coefficient P observed by

Rupprecht, Deutsch, and others has been explained previously by evaluating the individual n -phonon
contributions to P, summing the results, and noting that the suxn was nearly exponential over a fairly
wide range of frequencies. A new derivation of the multiphonon absorption coefficient yields

p c e ' directly, rather than as a sum on n, and provides a prescription for estimating the range

of «o over which the nearly exponential behavior extends.

The nearly exponential frequency dependence of
the infrared absorption coefficient P observed' in
I iF, NaF, NaCl, KCl, KBr, MgF2, CaF2, BaF2,
SrF2, MgO, Al~O„SiO2, TiO3, BaTi02, and
SrTiO, has been explained by a theory of multipho-
non absorption in which the individual n-phonon
processes were calculated, summed, and the sum
observed to be a nearly exponentially decaying
function of frequency &. Since this frequency de-
pendence of P has attracted wide attention, a deri-
vation of the exponential dependence in closed form,
rather than as a sum over the individual n-phonon
contributions, is of interest. A brief description
of the results was presented elsewhere in connec-
tion with the temperature dependence of P.

This derivation is accomplished as follows:
First, our previous approximation ' of using the
central-limit theorem to reduce the multiple sum
over phonon coordinates to a Gaussian is not made.
Rather, using a mell-known integral representation
of the energy-conserving 5 function reduces the
previous expression for P to a time integral of a
sum over rE. This infinite sum on n is expressed
as a sum of a few simple functions, which are eas-
ily integrated to give the closed-form exponential.
The details are as follows.

The previous formal expression for P is '

p= Q 2 p„with

p„= (const) f(~)&u 4 (Ajn!)

xg" ~ Q f (u-Q(u, IIo, ,
Ql 0 21 2 l 1

where f(~)= 1 —e ~ r is very nearly independent
of the laser frequency «d for most cases of interest,

(dr = )zsT/6,

oo --Wq (zz(z + 1)N(()p /(do
t t l t

= fz /2p&zzz,

~&z is the reduced mass, p~ is the damping length
in the Born-Mayer potential, S'z is a dimension-
less constant that is of order unity for large u&,
and is very small for small u, , nz, are phonon
occupation numbers, 2N is the number of ions in

the crystal, and the higher-order terms in the
perturbation expansion give rise to the vertex-cor-
rection factors

tL=1

A =-1+2 E+O(E ) A =Q ~~ Vl (2)

where A. ~
= 1.94, A, =- 3. 93, Ae = 7. 15, A~ = 12. 36,

and

$ a QBozzo/5(l —2po) )zz (d« .
Here 8 is the bulk modulus, p=-p„//a, the sub-
script 0 denotes 7=0, and (d is a frequency near
the top of the phonon spectrum. Equation (1) can
be written down immediately from the well-known
expression for P with «d» ~& {«d& is the reststrahl
frequency) and standard perturbation-theory re-
sults, apart from the details of A„and 8'+, which
are not needed here. In the previous calculation, '

the central-limit approximation was used to reduce
the zz-fold multiple sum over Qz ~ ~ ~ Q„ in Eq. (1)
to a Gaussian whose position, height, and width
are given by single sums over phonon coordinates.
The sum of these Qaussians then gave a nearly ex-
ponential frequency dependence of P.

Representing t)((d —$(do ) by

(2zz)
' zff e'"'g exp(- z(do l)

and using the approximation

A„/zz'zz! a D", (3)

reduces (1) to

where g(t)=Dgo ooe ' o'. The value of D and the
range of zz over which (3) is valid are obtained by
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plotting ln(A„'/n n! ) as a function of n as discussed
below.

In order to illustrate the central features of the
calculation as simply as possible, we first approx-
imate by n4~4, where ~ is an average frequency
having a typical value w~ u&. Physically, the pho-
non driven at frequency ~ decays into n phonons
whose average frequency is ~. The resulting sum
in (4) can be written

+ g"= (I-g') '-1 g-
tl=2

When this expression is substituted into (4), the
term

(2v) ' f dte' '(1+g)

= 5(&u)+X 'Q We(no+1) nz'6(~z —&o)

vanishes for»~, . where +~ is the greatest pho-

non frequency. Evaluating the remaining integral

f dt e'"'(1-g) ',
which has a simple pole at /=i', where v is the
solution to I-g(ir) = 0, gives

P= Poe

Po= (const)f(~)
—4dg(~~) '

4fj
(5)

The equation for 7,

1 —D"N'Q Wo(no+1)&u 'oe o =0, (6)

is easily solved numerically for specific cases. '
The following approximate solution illustrates the
general dependence of ~ on T, A„, etc. , although
it is too crude to afford accurate values of v. Ne-

glecting the angle dependence of S'z and using the
Einstein approximation 6(&u —&uz) to the density of
states gives

v = —~s' In[SD~, Ws(ns+ I)/"s], (7)

e{(u—2(un) e((un —(o) 3(og(usn

to the density of states (where the truncation at
~~~ accounts for the fact that Wz is small for
small ~q3'4), making the high-temperature approx-

dg(ir)/dr = &us. Making these approximations to
determine the value of v is more reasonable than

making the same approximation in (1). The latter
gives P as a sum of 5 functions. For Nacl at 300
Kwith u&z=&uz, Eq. (7) gives ~&v=3. 4, in fortu-
itously good agreement with the experimental val-
ue of 3.2 in view of the crudeness of the approxi-
mate solution (7}. Other simple approximate solu-
tions to (6) can be obtained. For example, neglect-
ing the angle dependence of 8'~, using the trun-
cated Debye approximation

imation no+ 1~ 5&uz/ksT, and reinserting hwn/
A~T~ n„+ 1 after integration gives

ra- ~n' 1n[6D",W„(n„+ I)/&u~]

+ ~n'in(-', ~~a), (8)

which is quite similar to ('1), since the last term
in (8) is small, the value of ~nr being approxi-
mately equal to 3 for typical cases.

It is not necessary to make the approximation
~ =n&u. The sum in (4) can be written

s 1 4! 10(3!)
o &g &-g (& -g)' (& -e)'

25(2!) 15 1

(1 —g)' (1 —g)'

Each integral is evaluated by residues, which
gives (5) as the leading term, with the same value
of 7. as before, but with

@= (const) f(&u)
dg(ir)

47
(10)

n'= [(n+ 4)!—10(n+ 3)!+ 25(n+ 2)!—15(n+ 1)!

+n! ]/n!

are useful.
It was clear from our previous analysis" that

the nearly exponential dependence of P would be
valid only over a limited range of frequency. The
present results make it even simpler to study this
range of validity. Two features of the exponential
are of interest —the over-all near-exponential de-
cay, which could show local structure such as mul-
tiphonon peaks superimposed on the decay, and
the smoothness (presence or lack of multiphonon
peaks) of th P(ur) curves. The latter has been
discussed previously. ' Briefly, the smoothness
of the phonon density of states, the phonon life-
times, the broadening of any structure with each
convolution involved in going from p„ to p„„, and
the ratio of the width to the spacing of the Gauss-
ians obtained in applying the central-limit theorem
are important in determining the smoothness of
P(~)

An over-all exponential behavior is obtained when
(i) A„/n'n. is an exponential function of n, that is,

For the Einstein approximation above, the new val-
ue of g is (const) f(&u)/&us, which is quite similar
to the previous value Po= (const) f(&o)/~ &us. (If the
Einstein approximation is made in evaluating ~
also, then ~ = ~~, and the two results are identical. )

The small correction terms to (10), which vanish
in the limit of the single-frequency approximation
discussed above, can be obtained simply in terms
of cumulent moments by carrying out the straight-
forward details of the calculation outlined above.
In this calculation, the results (9) and
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FIG. 1. Values of 1jn pgr and A„/n4nr used in deter-
mining the range over which P decays exponentially with
increasing frequency. The values of A2 are for NaCl at
300 K, for which $ =0.18. The straight line is fit to the
1/n gl points at small n.

(3) is satisfied; and (ii) f(ru) is essentially indepen-
dent of ~, The second condition is satisfied for
most cases of interest. For example, ~~=208
cm ' at 300 K, and ~dz = 164 cm ' for NaCl at 300 K;
thus f(~)a 1 —e '~"~'Os~ 1 for &u =n~& with n$2.
However, for small ~ and high T, f(~) does be-
come a nonconstant function of &u. Concerning (i),

the function ln(l/n n! ) is nearly linear in n over a large
range of values for n, while 1n(A„/n'n! ) has a posi-
tive curvature as seen in Fig. 1. Over a limited
range of n, which often includes the experimental
values, A„/n n! is nearly exponential in n; conse-
quently, P is nearly exponential in co. For exam-
ple, in Fig. 1, 1n(A'„/n'n! ) is well approximated

by the straight line D" with D=0. 130 for n = 3-5,
which is the experimental range over which the
nearly exponential frequency dependence was ob-
served.

The vertex-correction factor A'„causes A'„/n'n!
to deviate above the exponential as n increases.
(The corresponding increase of P above the expo-
nential as (d is increased is not as drastic as that of
A'„/n'n! since P contains an explicit exponential
dependence in addition to the nearly exponential
term A'„/n~n!. ) Thus, larger values of t' give
greater deviation from the exponential. The over-
simplified model of Ref. 7 takes $ = 1, which great-
ly overestimates the vertex correction and gives
noticeable deviations of P from the exponential
even over the small range of experimental values
of n. Our estimate of $ =0. 1S may even be too
large. '8

The recently observed deviation of the T depen-
dence of P from the previously expected results
has been explained~ by including the T dependence
of the phonon frequencies and lattice constants in
our previous theory. The present result displays
the temperature dependence in a much simpler
form, the T dependence being contained in the two
parameters Po and 7..
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