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We have considered the problem of residual absorption in the transparent regime of a solid. In
particular, the frequency dependence of absorption coefficient due to higher-order multiphonon processes
in alkali halides has been treated. Joint phonon density of states up to sixthwrder processes have been

obtained using a breathing-shell model of lattice dynamics, Calculated values of absorption coefficient of
NaC1 and KC1 agree with the observation of exponential frequency dependence in the transparent

regime.

I. INTRODUCTION

The phenomenon of infrared absorption in solids
has attracted renewed interest since the advent of
high-power infrared lasers such as the CO~ laser.
Materials suitable for optical components in such
devices, particularly as windows, are the imme-
diate objects of interest. Materials with small
percentage absorption are suitable for low-power
devices. For high-power lasers it is just not
enough to have small percentage absorption, in-
stead it is the total-power absorption which should
be small. For large total-power absorption, com-
ponents of such devices will experience excessive
heating with possible deterioration of their per-
formance. The absorption processes that limit the
transparency of a solid are either due to lattice
vibrations, as in ionic solids, or due to electronic
processes. For most materials a sufficiently wide

spectral window exists between these two limits,
where the material is transparent. However, this
transparent regime displays residual absorption.
This absorption may be either due to multiphonon
processes or due to various defects and impurities
in the material. Because of the anharmonic na-
ture of the crystal potential, the incident photon

may interact with more than one phonon giving rise
to the multiphonon absorption. This process is
operative both for ionic and homopolar solids, even
though there is no intrinsic one-phonon absorption
in the latter case.

To continue with the example of a CQ3 laser
which primarily emits in the region of 10.6 p, m

(943 cm ), alkali halide crystals seem to be rea-
sonably suitable as window materials. The re-
sidual absorption in this transparent regime for
the alkali halides is caused mainly by impurity ef-
fects and multiphonon processes. Impurity-in-
duced absorption has been investigated in detail by
several workers' and will not be treated here.
Multiphonon processes have been studied in rela-
tively simple solids like inert-gas solids, alkali
halides, diamond, etc. In these investigations

the main emphasis has been on the study of life-
time and self-energy shifts of the lattice modes.
Also the treatments have generally been restricted
to two- and three-phonon processes. The two-
and three-phonon processes usually produce a
structure in the absorption, particularly in the
high-frequency side of the one-phonon absorption
band (reststrahlen region) of ionic solids, ' and the
absorption coefficient is still so substantial that
the crystal can hardly be considered transparent.

An operational definition of the range of trans-
parency may be the frequency region in which the
absorption coefficient is roughly between 10' to
10 em '. This is the region in which approxi-
mately four- to eight-phonon processes are oper-
ative. For example, the frequency of the photon
emitted by a CO2 laser (943 cm ') is about four to
eight times the long-wavelength longitudinal-optic
phonon frequency (the frequency maximum of the
one-phonon density of states) of most of the alkali
halides, making them suitable candidates for win-
dows for this particular laser. In this paper we
consider the problem of absorption due to higher-
order multiphonon processes in alkali halides.

Recently infrared absorption in ionic solids has
been measured by several workers. ' It has been
observedthatthe absorption coefficientinthe trans-
parent regime varies exponentially with frequency.
Several attempts have been made to explain this
exponential behavior. ' Our treatment differs
from these in that we start from the definition of
the absorption coefficient and relate it to higher-
order phonon density of states through first-prin-
ciples calculations.

In what follows, we present a treatment based on
a, phenomenological approach to understand this
exponential dependence of absorption coefficient on
frequency. In Sec. II we establish a relation con-
necting the absorption coefficient with the higher-
order -phonon density-of -states functions. In Sec.
III a method is presented to calculate these density-
of-states functions. To do this, we take into ac-
count only the summation processes, i.e. , the

815



816 K. V. NAM JGSHI AND S. S. MITRA

In ionic crystals, the long-wavelength trans-
vers e-opti c-phonon (To) mode has a finite polariza-
tion associated with it, i.e. , when the dipole moment
due to the displacement of all particles in the crys-
tal is added together, it yields a finite value. For
all the other modes, such a sum vanishes. Con-
sequently, only the TO mode interacts with the in-
frared photon of suitable frequency in these crystals
giving rise to the reststrahlen phenomenon. For a
crystal such as diamond or silicon, no such dis-
persion exists. In a harmonic crystal, there is
no coupling between different modes of the crystal,
therefore such a crystal shows absorption only at
the TO-mode frequency. In a real crystal, how-
ever, due to anharmonicity, different crystal
modes can couple together and interact with an in-
frared photon at a frequency other than the TO-
mode frequency, provided the wave vector and the
energy are conserved.

Absorption of radiation is specified by the ab-
sorption coefficient n. Amplitude of a wave at a
particular point in the medium is related to the
amplitude at another point separated by a distance
x in the medium by the relation

A(x) =Aoe ~*~

In the above relation Ao is the amplitude of the
wave at the former point. Intensity of radiation,
which is related to the square of the amplitude, is
given by

f{x)=f~- "

The quantity n is related to the real and the im-
aginary parts, & and &" of the dielectric constant
& by the expression

where, ~ is the photon frequency and c is the ve-
locity of light. For the case where &'» &", i.e. ,
in the transparent region, this expression reduces
to

Q = E o)/CK (3'3

For an ionic crystal, a' and E" are given by the
phenomenological expressions"

processes in which all phonons participating in the
absorption process are created. Processes in
which some phonons are created and some phonons
are annihilated inthe interaction are not considered.
Section IV deals with the calculation of the oscil-
lator strengths for different processes. Finally,
the results of the calculations of the absorption co-
efficient for NaC1 and KC1 are presented along with
the experimental results in Sec. V.

II. ABSORPTION COEFFICIENT

(&o o )[l (o)/o)o) ]
[ l (—~/~o)']'+ (ro&/~'o )'

- (eo —e.)(Vo~/~o)
[l —(~/~o)']'+ (~o~/~o)'

In the above expression, +0 is the long-wavelength
TO mode frequency, yo is the damping constant,
and e„and &0 are the high- and low-frequency di-
electric constants.

In the phenomenological expression, the absorp-
tion of radiation is explained in terms of damping.
The fundamental phonon absorbs energy from the
infrared photon because of the polarization present
at the frequency of the transverse-optic mode.
Subsequently, this energy decays to other modes of
the solid. The damping constant yo depends upon
the rate of decay of the fundamental mode energy
to the different combinations of the normal modes.

In general, a frequency dependent, yo, can ex-
plain the absorption of infrared energy in ionic
crystals in the vicinity of the reststrahlen region.
In addition to this one-phonon process considered
above, there will be contributions to the dispersion
due to multiphonon processes. Because of the
anharmonicity in the crystal, the polarization P is
no more a linear function of particle displacements,
but it also contains higher-order terms. Thus,

P —ex+~2' Xlx2+ "4 ' X&X2XS+' ''

where k, 's are the suitable constants and X,'s are
the particle displacements. Hence, the polariza-
tion is present, not only at the TO-mode frequency
but at other frequencies as well (which are com-
binations of different mode frequencies of the crys-
tal). For example, if two modes, with the same
wave vector but belonging to the different branches
with frequencies &u(k, jq) and o)(k, jo), combine, they
will give rise to a polarization which has a zero
wave vector and frequency o)(k, j,)+o)(f, jo). Such
a polarization can interact with electromagnetic
waves with suitable frequency (and which have a
very small wave vector). This gives rise to addi-
tional sources of absorption. At the frequencies
which are combinations of those frequencies where
the phonon density of states is very high (i.e. , at
the critical points), one observes singular rise in
the absorption. The positions of such peaks can
be located from the joint density of states for two-
or three-phonon process.

Now that the polarization is present at more than
one frequency, the dielectric constant can be ex-
pressed as the following function:

Ao
[l —(o)/o)o) ] + i(&oo)/o)o)
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A;

, [1 —((d/(d;)'] +i(y((d/(d'()

In the above expression, the subscript 0 stands for
the fundamental oscillator and the subscript i
stands for the various subsidiary oscillators. %'hen

expressed in terms of the joint density of states
pq((d), we get

0" [1-(~/~o)']+ f(yo~/~o)

&&(~()p&(~()
[1—((d/(d;)'] + iy~((d()(d/(d(

The first term in the above expression is the high-
frequency dielectric constant, the second term
gives the contribution due to the fundamental pro-
cess and the following terms give the contribution
due to the higher-order processes. p~((d(} denotes
the number of multiphonon oscillators with frequen-
cy e, due to a j-phonon process. This expression
for the dielectric constant will be used for the cal-
culation of its real and imaginary parts, and finally
the absorption coefficient. If we neglect the damp-
ing for the higher-order processes, the expression
for the dielectric constant reduces to a simpler
form. In the limit of damping constants y, 's going
to zero, Eq. (8) reduces to

Ao

[1 —((d/(do) ] + f yo(d/(d()

— l5(w' — ', )aP} dtd, .

The first term in the large parentheses gives the
contribution to the real part of the dielectric con-
stant. The symbol 6' denotes the principal part.
The second term gives contribution to the imagi-
nary part of the dielectric constant. Separating
the real and the imaginary parts of the dielectric
constants, we get for the imaginary part,

—&o(yo(d/(do)

[1 —((d/(do) ] +(yo(d/(do)

+f 4( )pg( -) ~( '— ) &
') ()o)

The functions 5((d' —(d() are related to the functions
&((d —(d() by the relation

~((d' —(d() = &((d —(d()/2(d( .

—& f&,t)),,()', &( —,);&,
-&o(yo~i~o)

[1 ( / )2]2 ( / 2)2 y( }Pj( }2 ~

The expression for the absorption coefficient in
terms of the imaginary part of the dielectric con-
stant is already given [Eq. (3')].

III. PHONON DENSITY OF STATES

If the phonon density-of-states functions are
known, one can estimate the absorption coefficient
of the solid. To obtain the one-phonon and higher-
order -phonon density-of -states functions, one
needs a suitable lattice dynamical model. A cri-
terion for the suitability of the lattice-dynamical
model is that it should not have too many model
parameters, determination of which would need de-
tailed data from inelastic neutron scattering ex-
periments (which are not available for many crys-
tals}. Moreover, the model should predict with a
reasonable accuracy, not only the phonon disper-
sion relation, but other physical properties as
well. The breathing-shell model of lattice dynam-
ics is a satisfactory model for this purpose. The
breathing-shell model, ' with only one ion polar-
izable, has six model parameters, namely, two
first- and one second-neighbor short-range force
constants, the effective ionic charge, the shell
charge on the anions, and the shell-core force con-
stant for the anions. These parameters can be de-
termined with the help of three elastic constants
C», C», C44, the long-wavelength transverse-optic
phonon frequency (d~o, and the high- and the low-
frequency dielectric constants &„and &0. Accurate
experimental values of these are available for most
of the alkali halides. This model accurately pre-
dicts the dispersion relations along with other phys-
ical properties such as heat capacity, thermal ex-
pansion, Debye-%aller factor, etc. By solving the
lattice dynamics for all the possible wave vectors
in the first Brillouin zone, one can obtain the one-
phonon density-of -states function. From these,
higher -order density-of -states functions are ob-
tained by the following procedure.

%hen a number of crystal modes interact to
create a combination mode, energy and momentum
have to be conserved. From the energy-conserva-
tion rule, one gets

(d'(k) = (d(K~ j~) + (d (ko jo) +.. . + (d (k„j„)

Consequently, the expression for &" reduces to

-&o(yo(d/(do)
[1 —((d/(do) 1 + (yo(d/(do)

~"«)=
I ~(«j()+~(&ojo) + "+~%,j.}I. (»)

ln Eq. (13) any combination of positive and nega-
tive signs may be used as appropriate. (d'(R) and
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v"(k) are the frequencies of two possible combi-
national modes with wave vector R. The ~(ttj;)'s
are the crystal-mode frequencies belonging to the
branch j; with wave vector k;. In the first process,
i.e. , the summation process, n crystal phonons
are annihilated (created) to create (annihilate) a
combination phonon. In the second process, i.e. ,
difference process, some crystal phonons are cre-
ated and some crystal phonons are annihilated to
create (annihilate) a combination mode. The mo-
mentum-conservation rule in both cases is given by

+kg + + ~ ~ + Kff ~

Both summation and difference processes are pres-
ent simultaneously.

In general, for a given infrared photon, the pro-
cess which involves only creation of phonons will
be of the lowest order, i. e. , will involve a smaller
number of phonons than in the processes in which
some phonons are created and some are annihilated;
the latter will be of higher order. Contribution to
the absorption goes down with the order of the
process. For example, the ratio between the con-
tributions from the (n+ m)th-order and the nth-or-
der process is approximately given by (ar/ro)
where hr is the amplitude of thermal vibration of
the particles and ro is the separation between the
nearest atoms. b, r/ro is a very small fraction
even up to the melting point. of the solid. Thus for
a given photon energy the summation processes
will predominate over the difference processes. In
the present work we thus consider only the summa-
tion processes. Moreover, by neglecting the dif-
ference processes, the calculation of density-of-
states functions simplifies to a very large extent.
Gf these combination modes, only the mode with
wave vector It 0, interact with the infrared pho-
tons, because the infrared photons have a. very
small wave vector. Accordingly, for the multi-
phonon absorption, only the combination modes
with the zero wave vector are of interest to us.
Consequently the wave-vector conservation rule
reduces to

~1+ka+' ' ' +kn 0

and belonging to the same branch can combine to
create or annihilate a combination mode in a crys-
tal having inversion symmetry) and calculating the
corresponding summation frequencies. For the
fundamental density of states, a mesh of 512 wave
vectors is selected in the first Brillouin zone.
This gives a total of 3072 mode frequencies for a
diatomic crystal. The above procedure gives rise
to about 15 000 infrared-active combination mode
frequencies for 512 points in the Brillouin zone.
The two-phonon density of states thus calculated is
given for NaCl in Fig. 1 along with the one-phonon
density of states.

B. Three-phonon density of states

For the three-phonon process, the wave-vector
conservation rule specifies that

R, +K, +k, =o or 2v7,

where 7 is a reciprocal-lattice vector. The first
step in the calculation of the density-of-states
function is to obtain all possible groups of wave
vectors taken three at a time which would satisfy
the above relation. It is obvious that the number
of groups to satisfy the above relation is N, if we
have a. mesh of X wave vectors in the first Brillouin
zone. Next, one selects a group of wave vectors
at a time and obtains the different possible com-
bination modes to obtain the three-phonon density-
of -states function. For these calculations a mesh
of 64 wave vectors was selected in the first Bril-
louin zone. Such a mesh gives rise to about 900000
frequencies for the three-phonon density-of -states
function. A finer mesh, say of 512 points will give
rise to a much larger number of combination modes
and an enormous amount of computation will be
needed to obtain all the possible frequencies.

A. Two-phonon density of states

In order to obtain the two-phonon density of
states, one needs two modes belonging to the same
wave vector. (In fact we need two modes with
wave vector )t and -f. Since mode frequencies
are even functions of wave vector, K and -f have
the same frequencies. ) The two-phonon density-
of-states function is obtained by selecting a wave
vector in the Brillouin zone and obtaining possible
combinations of all the modes belonging to it, tak-
ing two at a time (keeping in mind selection rules,
such as no two modes having the same wave vector

I

8 i2

~ (10 sec ~)

l6 PO

FIG. 1. One-phonon {O, two-phonon (II) and five-pho-
non {V) density-of-states functions for NaC1.
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C. Four-phonon and higher-order density-of-states functions

It is clear that as the order (n) increases it be-
comes increasingly difficult to obtain the corre-
sponding density-of-states function obeying all the
selection rules. At the same time the wave-vector
selection rule itself becomes less and less restric-
tive. If, for example, we select a mesh of 512
points in the first Brillouin zone, we will get (512)'
possible groups of wave vectors which satisfy the
wave-vector conservation rule for the fourth-or-
der process. Each such group will give rise to
about 1300 combination modes which amounts to a
total of about 17& 10 modes for the four-phonon
density-of-states function. This involves an enor-
mous amount of computation. At the same time
as n increases, the combined density-of-states
function, thus obtained, resembles more and more
a normal distribution function. Therefore, higher-
order density-of -states functions do not show any
structure. And hence, a much simpler and ap-
proximate procedure is followed. From three-
phonon onwards the density-of-states function is
calculated simply from the follow ing relation:

] ~tt@
+ 4 ~ 0 + Leekr + ~ 0 ~

n! ~r"

ae 1 824
=4 +F~—hr+ —Eyer 2! 'er'

tf@ gr rt

+ ~o + ~ ~ ~ ~

n&
' er" ro (18)

2!ro p 934

3 f Qr3

2 I ro 9 4' 8 4

The first term in the above expression is inconse-
quential. Under the equilibrium condition the sec-
ond term vanishes. The third term is the harmon-
ic term. This expression can further be simpli-
fied to

2 t re 2 gPt@

x p(|d„&)p((g gi gz ~ g~-i)dwidgq ~ d

In the above relation p„(a) is the n-phonon density-
of-states function and p(v) is the one-phonon den-
sity-of-states function. Phonon density of states
are calculated for NBCl and KCl from one-phonon
to six-phonon processes. Results for some of
these for NaCl are presented in Fig. 1.

(19)
The first term in the large square bracket denotes
the harmonic part. Gther terms constitute the an-
harmonic part. These are usually treated as a
perturbation. Rigorous analysis shows that the
oscillator strength A;(&u) involves terms of the
type

-inc, ~& n-, 2

IV. OSCILLATOR STRENGTH

After phonon density-of-states functions for
higher-order processes are obtained, the task re-
mains to obtain the quantities A&'s. %e assume
these functions to be independent of frequency.
These depend on the corresponding derivatives of
the crystal potential energy. Crystal potential en-
ergy for NaCl type of crystals contains a Coulomb
part and a non-Coulomb part. The Coulomb part
of the potential function is a relatively slowly vary-
ing function of r as compared to the non-Coulomb
part.

At a finite temperature, the atoms in the solid
have a finite amplitude of vibration. The potential
energy of the crystal can be schematically ex-
pressed as a Taylor-series expansion in terms of
the particle displacements:

84 1 824 14 = C'0+2 —n.r+—
(
Z p hr +—

t
Z sp &r4r 2l

Usually A, 's are not only functions of v but they
are also functions of wave vectors of the modes
participating in the interaction. Accurate estima-
tion of these requires immense amount of calcula-
tion. To reduce the numerical work, we make
certain simplifying assumptions which are not in
contradiction with the rigorous theory. Firstly,
in the absence of reliable experimental data for the
higher derivatives of the potential function, we as-
sume a Born-Mayer -type potential function,

@= -A/r+Be "~',

where A, 8, and p are the constants of the poten-
tial function. In the calculation of the anharmo-
nicity the contribution due to the Coulomb part of
the potential function is neglected (see Appendix A).
Average particle displacements needed in the above
expression can be obtained by solving the secular
equation for all possible wave-vector values in the
first Brillouin zone, and calculating the Debye-
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%aller factors. Instead we follow the following ap-
proximate procedure.

The mean-square displacement (nr') of atoms in

a solid due to all possible modes, is given by

"max @co Ie 1(ar')= — g(ur)d~ „„&or +-
a) =0 e —1 2 fPl QP

(21)
where g(&o) is one-phonon density-of-states func-
tion, co is the maximum frequency, m is the
atomic mass, and N is the total number of modes.
If we assume a Debye-type frequency distribution
for g(&u), Eq. (21) is modified to

1 3N&u j k~ hv 1
(n, r'&= —, ,„„, +—,d(o .(22)

N ~' ie" —1 2 mar

For solids like alkali halides, we use an average
atomic mass. In order to simplify the calculations,
we further assume that the energy of each mode
is kT. Hence, we obtain

IQ

IQE

+ I0—
~ IO-
C3
LL

LI
Ld
D

IO-
C)

CL IO—
D
M IQ-
CQ

"4IO—
I

600 800 I000 l200
(cm-i)

(ar'& = 3kT/(o' m . (23)

We are interested in the ratio (n r )/ro' for which
we obtain

&ar'&/ro = 3kr/(o' mr oo. (24)

Again assuming Debye-type distribution, co can
be obtained by the following approximate relation
(Appendix B):

8 28y'0
o /roo p (m, +m )

' (25)

In this expression 8 is the isothermal bulk modu-
lus, and rn, and m are the masses of the alkali
and the halogen ions, respectively. After simpli-
fication we obtain

m(o my'o=&w y'0
y (2V)

where m is the average mass of the atoms as men-
tioned earlier. Substituting this relation in the ex-
pression for hr /ro we obtain

(28)

I, 8"4 by+i+1+ +0 8 4+2y yo

As mentioned earlier, A s in general are functions
of frequency. %e feel that the dependence of A, on
its order is much more significant than its depen-
dence on frequency. In the present calculation we
assume A s to be independent of frequency. These
are then assumed to be proportional to

FIG. 2. Frequency dependence of absorption coeffi-
cient for NaCl. Solid circles give the results of the cal-
culation. Crosses and empty circles are experimental
data from Befs. 8 and 14, respectively. Solid line is a
linear fit to the calculation.

V. RESULTS

Substituting for A.
&

in the imaginary part of the
dielectric constant, we obtain

Ao(ro&/&o)
[1—(~/~o)'j'+ (~oo /&0)'

(( )
U-

(( gyp )((-
(31)

In this region the real part of the dielectric con-
stant becomes a very slowly varying function of v.
%hen plotted on a semilog scale, we get a linear
dependence of n on ~. Results of the calculation
for NaCl and KC1 are presented in Figs. 2 and 3.
Also plotted in the figures are the experimentally '
observed frequency dependence of n. Agreement
with the experiment is excellent. %e wish to em-
phasize here that the object of the present calcula-
tion is not to obtain an absolute magnitude of e but
to obtain frequency dependence of a. which can give
some insight into the possible mechanisms for in-
frared absorption in this region. One may extend

(30)
In the region where &'» e", the absorption coeffi-
cient o, is already given by Eq. (3'). From this
relation, one next obtains the frequency dependence
of the absorption coefficient a in the three- and
higher-phonon region, as
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APPENDIX A

Under central-force approximation the crystal
potential can be expressed in the following form:

E
' lO—

I—

L lo—
lU
C)

-2~lO-
C3

CL

CCI

ICP—

ZaO 4OO 6OO BOO lOOO
(cm-~)

A-/r+ae (Al)

or

(A3)

Derivative of the nth order is given by

(A4)

or, after substituting for A/ro,

In the equilibrium condition, the first derivative
of the crystal potential vanishes and we obtain

84 A=~ ——e "o~'= 0
o ro p

I IG. 3. Frequency dependence of absorption coeffi-
cient for KCl. Legend same as in Fig. 2.

(A5)

the calculation, if so desired, to include contribu-
tions from higher-order density of states. In the
present calculations we stop at six-phonon pro-
cess because the experimentally available data on
NaCl and KCl are covered by the processes up to
the sixth order. For an alkali halide with heavier
ions, like RbI, one may have to go to higher-order
processes to cover the same spectral region. %e
further emphasize that this calculation, albeit ap-
proximate, is from first principles, in other
words from the definition of the absorption coef-
ficient. Density-of-states functions are calculated
from the lattice dynamics. Approximations such
as the Debye approximation or Born-Mayer poten-
tial are used only in the estimation of the oscilla-
tor strengths.
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In the Debye approximation the mode frequency
is expressed as

cu'/O' = C/p, (81)

where Ikl is the wave vector and C is some aver-
age elastic constant. p is the density of the ma-
terial. From this relation we obtain for co ~

(u' /)'o' = C/p . (82)

For NaCl-type crystals, k is of the order w/ro
For the average elastic constant we select the bulk
modulus B.

Substituting for k and C in Eq. (82) we obtain

co~ 3 82' o

(vo/ro) p (m, +m )

Since p/ro is of the order 0. 1 for the alkali halides,
the term nt(p/ro) ' becomes very small and may
consequently be neglected. '
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