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A simplified model of hopping conductivity in amorphous systems is considered. The nonexponential
prefactor of the conductivity is shown to be related to the size dependence of the percolation radius,
complementing the well-known picture that the infinite percolation radius determines the leading
exponential factor. This leads to an extrapolation formula for the infinite-system percolation radius
which involves the power of the nonexponential dependence. Computations on large numbers of small
systems are used to determine the radius and the power.

I. INTRODUCTION

In a previous work! (hereafter to be referred to
as I) a somewhat simplified preliminary model was
discussed in pursuit of the temperature dependence
of the Mott hopping-conductivity model.? It was the
aim of that investigation to verify through computer
simulation that the leading behavior of the conduc-
tivity is related to a percolation problem.3 In this
paper the discussion is expanded to include the
nonexponential prefactor of that model. One is
thus led to a slightly unusual way of looking at the
percolation problem which is ordinarily approached
by investigating the conditions for a germanely de-
fined cluster to become infinite in extent.? In this
work percolation through periodically extended
finite arrays of N random points is considered. It
is shown that the nonexponential prefactor of the
simplified hopping-conductivity model is deter-
mined by the weak N dependence® of the average
critical radius for percolation 7.y, the distance
up to which points must be pairwise connected to
make a continuous path across the array. A most
natural extrapolation formula for v,y as a function
of large N is then a consequence of the nonexponen-
tial prefactor of the electrical conductivity. This
formula can be used to get the infinite-system
critical radius 7, starting with large numbers of
systems of several finite sizes. The power of
the nonexponential prefactor, which is a parameter
of the extrapolation formula, is determined as a
side product. This program has been carried out
in the work reported here.

More specifically, the model considered in I
consists of an infinite system of random points in
space, pairwise connected with conductances of the
form

gij=8oe M, (1. 1)

where 7;; is the distance between the points i and
j. In this paper the nonexponential prefactor of
the asymptotic conductivity3 o of such a system at
large values of a is shown to be related to the

<]

N dependence of the finite-system percolation
radius as follows. Taking®

o (1/7 ) e, (1.2)
then

Ven=Vo+ ANV, (1.3)

The derivation in Sec. II works equally well in the
other direction; Eq. (1.3) implies Eq. (1.2). It
may be considered a matter of taste which one
should be viewed as a priori better founded. For
Sec. II, the case for Eq. (1.2) is discussed. On
the other hand, Eq. (1.3) agrees with the idea that
a finite system contains a limited amount of in-
formation on the critical point, with an error which
is smaller the larger the system considered.® In
any case, Eq. (1.3) is an extrapolation formula
for the infinite system 7, and it is used here start-
ing with Monte Carlo averages of v,y over typically
150 arrays of N particles for N=32, 64, 108, 256,
1000, and 2000. In this way the exponent v of Eq.
(1. 2) is determined with the result v=0.6+0. 25
and the density-independent criterion for percola-
tion p.=4mp(37,)°, where p is the densitv of points,
is estimated to lie between p.=0. 337 and p.= 0. 358
with the most probable value p.= 0. 347. There
have been previous estimates of this latter quan-
tity”"!*! and the somewhat conflicting results will
be discussed in Sec. III. The outline of the rest of
the present paper is as follows. In Sec. II the re-
lationship between the nonexponential prefactor and
the N dependence of ¥y is discussed. Section III
addresses itself to the numerical work for the “en-
semble averages” of 7., and the above-mentioned
comparison of results. Finally, Sec. IV includes
conclusions and an Appendix follows on the prefac-
tor of the full four-dimensional Mott model.

II. PREFACTOR AND N DEPENDENCE OF r_p

Assume a finite system of N points randomly
distributed in space and every pair of points con-
nected with conductances g;; as given in Eq. (1.1).
Then, when « tends to infinity, the electrical cur-
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rent Iy across such a system subjected to a voltage
V variec as

Iy = Vgge ~TeN (2.1)

This is intuitively clear as discussed in I, since
the whole voltage finally concentrates on a single
conductance, the one implied by the longest 7;; the
current has to face to get through the system. All
other conductances become exponentially better
when «a tends to infinity. If V and g, are taken to
be unit voltage and conductance, respectively, the
plot of the logarithm of Eq. (2. 1),

Infy=~ ar.y, (2.2)

crosses the a=0 axes at In/y=0. For finite q,

the current approaches this asymptote from above.
This is so irrespective of the size of the system as
long as a unit voltage is imposed across it. To

get the conductivity one has to divide the linear
size of the system by a length which is proportional
to N/2 at constant density. Therefore, the loga-
rithm of the conductivity in the asymptotic region
is

Inoy = ln(N"1/3) - ar,y, (2.3)

i.e., the asymptote now cuts the a=0 axes at
points that lie lower for larger N. For each N,
the finite a conductivity approaches the asymptote
from above.

To complete the picture it is necessary to have
an idea of how 7., will behave as a function of N.
It is intuitively suggestive, and confirmed by ac-
tual computation, that percolation is slightly eas-
ier in a large system than in a small system of a
given shape, as the distance to go grows slower
than the area over which one may try; in other
words, more and more complicated paths become
possible. It should be noted that one must take
Iy and 7, in Egs. (2.1)-(2.3) as ensemble aver-
ages over all systems of a given number of points.

Assume now that a finite system adequately de-
scribes the conductivity of the infinite system as
long as « is small enough not to force the conduc-
tivity closer to the asymptote [Eq. (2. 3)] than say

a factor of 10. Then the picture of Fig. 1 emerges.

For small a the conductivity curves of all sizes of
system coincide. One by one, in the order of
growing N, the conductivity curves of the finite
systems fall below!? the mainstream which repre-
sents the infinite-system conductivity as a function
of «. The logarithm of the infinite system conduc-
tivity then has no asymptote but a continuous cur-
vature. Equation (1.2) has this feature justifying
the choice of the particular functional form.

It is now a simple matter to derive Eq. (1. 3).
Unless the infinite-limit conductivity and the sup-
port curve formed by the successive asymptotes
[Eq. (2.3)] drift apart, the two curves will have
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the same curvature at large «. Let x=x(N) denote
the coordinate of the point at which the asymptote
belonging to systems of N points cuts the a=0 axis
in Fig. 2 and call the slope of the asymptote %
=k(N)=k(N(x)). Take another asymptote, lower by
Ax on the =0 axis. If « is now the point where
the two asymptotes intersect

Ax = Aka = dk Axa
dx

or (2.4)

dk _ 1
T a

dx

’

i.e., the intersection point has a finite limit when
Ax—~0. On the other hand, from Eq. (1.2),

Ino= LI
do? @

(2.5)
and this curvature is equal to dk/da. Consequent-

ly,
de dkdx ldx v

(2.6)

Thus, the following differential equation has been
established:

% ==, (2.7)
whose solution is

a=Ce*’ (2.8)
and from Eq. (2.4)

k=-W/Ce™” +C, . (2.9)

To get Eq. (1.3) from this, one just has to observe
that -, is the slope of the asymptote and x = x,

FIG. 1. Infinite-limit conductivity plotted against o
with successive asymptotes of the conductivities of grow-
ing finite systems. Each finite system would correctly
describe the infinite system up to some value of @ and
then depart downward toward its asymptote. Four such
finite-system curves are depicted in the figure.
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a a

FIG. 2. Two asymptotes for two nearly equal sizes
of system. The intersection point of the asymptotes is
marked as . This a tends to a finite limit when Ax ap-
proaches zero as described by Eq. (2. 8).

+In(N'/%), Finally, the slope at N= is equal to
-7,, which fixes the constant C,, and Eq. (1.3)
follows with A=+pe™0/"/C,.

The key assumption in this derivation is that the
support curve and the infinite-system conductivity
curve have the same asymptotic curvature. The
physical assumption that each size of system cor-
rectly describes the infinite limit conductivity to a
fixed distance from its asymptote is sufficient to
ensure this. Actually, the numerical study gives
the value 0. 6 for the quantity v suggesting that the
intersection point of the asymptotes, « in Eq.

(2. 8), moves out faster than the point at which one
would expect each size system to settle on its as-
ymptote. Thelatter one guessestogoas N'/%does,
since N'/3 is roughly proportional to the number
of links in the critical path and therefore its in-
verse is proportional to the difference between the
worst and the second-worst links in the best chain.
To resolve such a difference, « has to grow ac-
cordingly. Therefore a value v <1 increases ones
confidence in the above derivation as the support
curve and the infinite-limit conductivity merge at
large «.

Because the above construction is independent of
exactly how the finite system is subjected to the
electrical voltage, i.e., the exact boundary con-
ditions used, the derivation should hold as long as
percolation in the finite system is so defined that
it tends to the correct limit when N- . All
boundary conditions properly defined in this sense
should lead to the same value of v. What is meant
by different boundary conditions is periodic or non-
periodic.

1IIl. NUMERICAL STUDIES

An extensive computer study of percolation in
random arrays was carried out to determine the

quantity » as a function of N. Here two methods
were used, the second vastly more efficient than
the first. The first method was directly inspired
by the previous work in I. The idea was to locate
the most-power-dissipating conductor in the sys-
tem with periodic boundary conditions and a volt-
age imposed accordingly, namely so that a point
and its forward periodic image were separated by
unit voltage. The network equations were iterated
for the potentials of the points and the process was
stopped if the most-power-dissipating resistor no
more changed when a was increased. In spite of
rather elaborate tricks to improve its conver-
gence, this method remains costly and somewhat
untrustworthy, since the most-power-dissipating
resistor for finite @ may not be the same as for
a=«, Therefore, an algorithm was adopted that
just locates the first continuous path across the
system when the linking radius was stepwise in-
creased. The same periodic boundary conditions
were used as in the first method, now in the sense
that percolation was considered taking place when
any point and its periodic image in the z-direction
got linked with each other. Where both approaches
were applied, perfectly accordant percolation
radii were obtained. ®

The results of the computation are shown in
Fig. 3. Typically 150 arrays were run for each
value of N, only 50 however for N=2000. The op-
timum values of the parameters in Eq. (1.3) were
determined by minimizing ¥ with the result
p.=0.347, y=0.6, and A=0.047. To see how un-
certain this prediction may be, two constrained
minimizations were also performed. In one case
the points N=32 and N=2000 were left out, as the
rest of the points superficially seem to imply a
higher p,. The result is shown as the lowest curve
in Fig. 3, p.=0.358, »=0.333, and A=0.24. This
looks like a fairly firm upper limit for p, since the
exponent v is just at the value 3 which is its lower
bound.! For a lower limit v =0.833 was taken.
Then the result is p,=0.337, A=0.028. The val-
ue of x? in this case was 6.3 for five degrees of
freedom, whereas it was 4.5 for four degrees of
freedom in the best fit giving p.=0.347. Thus,
this lower limit is not nearly as firm as the upper
limit for p.. The number v =0.833 was chosen for
no better reason than the fact that it makes the
plot of In(», —7,) in Fig. 3 parallel with the best
straight-line fit for the logarithm of the width wy
(the symbol ¢ is used for conductivity) of the dis-
tribution of 7.y in different arrays of N points.
The fact that the optimum slope of In(ry —7,) is
larger than the latter seems to imply that the width
of the uncertainty in 7,y decreases slower than its
mean value moves to the infinite limit 7.

Up until I, the history of the number p_, to the
knowledge of the author, is as follows: Roberts
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FIG. 3. Topmost and the two bottommost curves de-
pict three different straight-line fits to the quantity
In(r,y —7,). The second line from the bottom is the best
fit with standard deviations marked on the computed
points. The lowest and highest curves are the upper-
and lower-bound estimations for 7, and hence p, . [Al-
though the highest curve looks like a good fit, one must
keep in mind that the standard deviations on the logarith-
mic scale are smaller when (r,y —7,) is larger. Also
the point N=2000 does not have the same weight as the
others.] The second line from the top, marked with
triangles, shows the logarithm of the width of the distri-
bution of 7,y for arrays of N points with two typical un-
certainties. The scales and the », marked in the figure
refer to a density of 1000 points in a unit cube, the high-
er scale is for the topmost curve and the lower for the
rest. The unit of length is the edge of the bhox.

and Storey,” p,=0.37+0.015; Holcomb and Rehr, ?
$.=0.29+0.03; Holcomb, Iwasawa, and Roberts,®
$.=0.29; Pike and Seager,!® p,=0.34, with un-
specified confidence limits; Dalton, Domb, and
Sykes or Domb and Dalton, ' p.=0.34, by extrapo-
lating to long-range interaction from series ex-
pansions on ordered lattice as opposed to the
Monte -Carlo-like computer methods used in the
other references. Only the last two of these are in

fair agreement with the present estimate p,=0. 347.

As far as the work reported in I is concerned,
p.=0.30+0.015, the probably-too-low result,
arises from the difficult convergence of the itera-
tion process. It seems to be a property of the
scheme used in that study that the badly converged
currents were always too high, thus warping the
result. Further iterations not only improved the
convergence but also pulled down the currents. It
should be stressed that in spite of this numerical
error, all the conclusions reached in that work
remain correct. Holcomb and Rehr® have recent-
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ly considered some nonlinear extrapolation pro-
cedures that indicate that p, may in fact be higher
than their previous estimate, based upon a linear
extrapolation. It may be worth pointing out that
any error in 7, is magnified in the dimensionally
invariant number p, and it is usually 7, which is
determined by computation. Also one should keep
in mind that p, probably, at least if determined by
the procedure used here, is inordinately sensitive
to the quality of the random numbers used as dis-
cussed in Appendix D of I. In the present investi-
gation the extra correlation removing device de-
scribed in I was used with both the IBM generator
RANDU and the CDC generator RANF,

IV. CONCLUSION

In this work the nonexponential prefactor of the
electrical conductivity in an array of random points
linked with conductances varying exponentially with
separation distance has been considered. The pre-
factor has been shown related to the size depen-
dence of the percolation threshold in random ar-
rays. Exploiting the thus established extrapolation
formula for the infinite system percolation thresh-
old, the nonexponential prefactor exponent v [Eq.
(1. 2)], and the dimensional invariant p,for percola-
tion have been determined. The results for p, are
higher than most previously published, probably
larger than 0. 337, and fairly certainly smaller
than 0.358. For v the value 0.6 is found with an
estimated uncertainty +0.25. The temperature-
dependent prefactor of the four-dimensional Mott
random -hopping model is discussed in the Appen-
dix.
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APPENDIX
The result
o x(1/r,a)l8e2rc (A1)
can be used to sharpen the bound suggested for the
prefactor of the full four-dimensional Mott model
in Appendix C of I. In the percolation construction

the quantity E_,, varies as 7°/* changing the effec-
tive density of traps in the same fashion. Hence

3
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there is a purely geometrical factor T'/* in front
of the main exponential dependence of the conduc-
tivity. In Appendix C of I it is suggested that an
additional factor T"/* should follow from (A1) since
the prefactor depends on p*/, or on T as T*/*.
The resulting nonexponential factor would be
T8 /4= 70.4  However, the fourth dimension
has been neglected in this analysis. The tempera-
ture-dependent contribution should not affect the

| o

prefactor were it not that E_,, decreases slower
than linearly with the temperature. The rate at
which tolerable upward deviations from E_,, de-
crease is linearly with 7 (since the exponent de-
pends on E/kT). Therefore, the lowering of the
temperature leads to a stricter limit E_,, and a
more constrained situation and therefore presum-
ably a smaller current. Hence one expects the
exponent (1 +v) to be a lower bound.
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