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A model is presented which relates the dynamics of energy migration in crystals to the mechanism by
which thermal equilibrium between delocalized band states and localized trap states is achieved. Central to
this model is the requirement that coherent energy migration must be the dominant mode of migration at

low temperatures in order to achieve Boltzmann equilibrium between band and trap states within tlie
lifetime of the excited electronic state. Second, a stochastic model for detrapping is developed which is based
on an irreversible radiationless relaxation process of a phonon-trap intermediate into the density of
delocalized band states. Explicit account is taken of phonon-trap interactions in the formation of the excited
trap intermediate. Further„ the relation between detrapping and the ability of a crystal to achieve thermal
equilibrium within the excited-state lifetime is developed and applied to one-dimensional crystals.
Experimental results on molecular crystals representing examples of one-dimensional exciton bands are also
presented. Specifically, the temperature dependence of phosphorescence from excited triplet trap states is

interpreted in terms of the above considerations. From these experiments one can obtain both the sign of the
intermolecular interaction and the dispersion of the first excited triplet band in addition to an estimate of
the coherence length associated with exciton migration in the Frenkel limit. Finally, some new and unique
methods for studying energy migration are presented which utilize optically detected magnetic-resonance
techniques in zero field. They include experiments based on the measurement of electron-spin coherence in

the rotating frame and the relationship of the spin coherence to the various rate processes important in

trap-exciton interactions,

I. INTRODUCTION

In this paper, the relation between energy migra-
tion in solids and the populations of localized and

delocalized states will be discussed in terms of a
model which includes explicit features of the ex-
citon band, the sign of the intermolecular interac-
tion in the nearest-neighbor approximation, the
number of wave-vector states comprising the band,
and a mechanism for Frenkel' exciton migration in

solids including the effects of coherent and incoher-
ent propagation. Although the theoretical and ex-
perimental details which will be presented here
pertain to the triplet state of molecular solids,
identical considerations are also applicable to
singlet states and transport phenomena in nonmo-
lecular solids. The model will be applied specifi-
cally to the temperature dependence of the intensity
of trap emission in molecular crystals although
the approach is applicable to a wide variety of re-
lated problems.

The necessity of considering the above features
of exciton migration in solids in a model which at-
tempts to explain some streightforw ard observa-
tions on the temperature dependence of the intensity
of the trap states can readily be seen by the para-
doxes which are created if exciton dynamics are
not treated properly. For illustration consider the
simplest case, where it is tacitly assumed that the
excited states of the host are degenerate and that

the different types of traps which may be due either
to impurities or crystal lattice defects may be re-
garded as independent but describable by Boltzmann
statistics. The problems created by this oversim-
plified treatment can readily be seen. In the ab-
sence of intermolecular interactions between an
excited host molecule and its unexcited neighbors,
an excitation is an isolated molecular state as op-
posed to a mobile crystal state, and hence it can-
not migrate to a trap. The difficulty of this model
is»ot so much in the trivial assumption that the
host states are degenerate (i. e. , no intermolecular
interactions) but in failing to provide a mechanism
cehereby thermal equilibrium betueen the host and

trap states can be achieved which permits the use
of Boltzmann statistics This latter. consideration
requires that a distinction be made between coher-
ent and incoherent migration insofar as the dy-
namics of achieving trap-exciton equilibration de-
termine whether or not Boltzmann statistics are a
valid assumption. Intermole cular inte ractions
break the degeneracy of the host excited states and

produce a band of mobile exciton states with width

4P, where P is the intermolecular interaction ma-
trix element. These mobile excitons can migrate
between traps, in one limit (the low-temperature
limit), as a coherent wave packet whose properties
are determined by the wave vectors of the crystals
or, in another limit (high-temperature limit), as a
random-walk diffusional process characterized by
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a hopping frequency proportional to the intermo-
lecular interaction. If the migration is rapid,
equilibration of the excited-state populations can
be established among the exciton and trap states
within the lifetime of the excited electronic state.
The populations of the various energy levels can
then be determined using a Boltzmann statistical
model. The width of the exciton band and the sign
of the intermolecular interaction, the location of
the exciton energy levels relative to the trap depth,
and the mode of exciton migration all determine
whether or not the equilibrium condition can be
established within the lifetime of the state, and

hence determine the functional form of the tem-
perature dependence of the trap emission. Indeed,
we shall demonstrate that the measurement of trap
phosphorescence, which reflects the triplet-trap
population, provides a tool capable of investigating
the mode of migration in triplet Frenkel excitons
in addition to the magnitude and sign of the inter-
molecular interaction P.

Specifically in the following, the temperature
dependence of trap phosphorescence will be dis-
cussed using a model which primarily treats the
exciton band as one-dimensional, although multi-
dimensional bands are considered briefly. A

method for determining the exciton bandwidth and

the sign of P from the trap-emission temperature
dependence is presented. Systems composed of
both single and multiple traps in equilibrium with

an exciton band will be considered where the effect
of coherent versus random-walk exciton migration
on the temperature dependence of the trap-emis-
sion intensity is central to the model. Next we will
discuss isotopically mixed crystals where the ef-
fects of trapping result in both a Boltzmann equili-
bration and non-Boltzmann equilibration in differ-
ent temperature regions. Solutions to the non-
Boltzmann steady state between trap and band
states also allow a measure of the coherence to
be estimated. In addition, a model for the decay
of localized states into delocalized band states
based on radiationless relaxation is developed.
Finally, experimental results on "one-dimension-
al" molecular crystals will be presented and inter-
preted in terms of the above considerations. These
include optically detected magnetic-resonance ex-
periments on trap states in which the electron-
spin coherence in the rotating frame is used to
measure absolute detrapping rates.

II. THERMAL EQUILIBRIA BETWEEN EXCITON STATES
AND SINGLE TRAPS

The formal features of one-dimensional Frenkel
excitons in the absence of phonon-exciton coupling
are well understood. 4 A finite linear array of n

independent molecules in which one molecule of the

chain is in an excited electronic state mill have an

energy F. corresponding to the "isolated" mo-

lecular excited-state energy. The system, how-

ever, is n-fold degenerate, since the excitation
roay be on any one of the n molecules in the linear
array. If the molecules are allowed to interact
through a nearest-neighbor interaction P, the de-
generacy is destroyed and a band of energies is
formed. In the nearest-neighbor approximation
the energy dependence of the exciton band on the

quantum number k, which labels the levels, is
given by

E(k) = Eo+ 2P coska, (2. l)

where a is the distance between translationally
equivalent molecules along the axis of delocaliza-
tion. The quantum number k can take on n values
from 0 to s «/a in the first Brillouin zone, giving a
bandwidth of 4P.

The temperature dependence of the intensity of
trap emission in the temperature region where
Boltzmann statistics is applicable can be under-
stood in terms of the partition function z for the

systems consisting of one excitation found either
in the trap energy level or in one of the levels of
the exciton band. We adopt as a model for "real"
one-dimensional crystals a crystal composed of a
set of independent exciton chains, each chain being
separated by one or more impurities or trap sites.
The Gaussian distribution of chain lengths in a
crystal is sharply peaked, and therefore the aver-
age length is employed. This is a valid assump-
tion for most bands provided the number of mole-
cules in a chain exceeds -100. Each chain may be
labeled by a set of molecular indices which specify
its location in the crystal and thus make it distin-
guishable from the other chains in the crystal.
This, in addition to the fact that there are many
energy levels available to each excitation in the
crystal, allows Boltzmann statistics to be employed
in writing the partition function provided the t aP
and band states are in thermal equilibrium. Such
a partition function has the form

(n-1) (r/an)
z l+e-&fir+ Q 2e-E4-&8&&-m~a)3fl&r (2 2)

k=r jan

The zero of energy is taken at the energy of the

trap, while the trap depth ~ is taken to be the dif-
ference in energy between the trap level and the
k= 0 level of the exciton band in the approximation
that the wave vector of the radiation field has zero
momentum. ' This is the depth which can be mea-
sured spectroscopically from absorption or emis-
sion experiments at low temperatures. The first
term in z is simply the Boltzmann factor for the
trap level, while the second term is associated
with the nondegenerate k = 0 level of the band.
Apart from k=0, k can take on values greater than

0 to x «/a, and thus, all non -(k = 0) states in the
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band are doubly degenerate. If there are (2N)
states in the band plus the k= 0 state, correspond-
ing to (2N+1) molecules in a linear chain, then
the final term in the partition function is a summa-
tion over N doubly degenerate states, where k
takes on values v/aN, 2v/aN, 3v/aN, . . . , Nv/aN
= v/a. The energy dependence of the band on quan-
tum number k is given by Eq. (2. 1), and thepartition
function has been written so that the 0 = 0 level has
energy 4.

In terms of the partition function z the probability
that an excitation of the system is in the trap is
simply

Negative P
Exciton Band

k =+~/a

k=0

Trap Depth

Positive P
Inverted Band

Exclton Band
k=0

OP
k =+sr/a

Trap Depth

Ptr 1 8 ~

The intensity of emission, I, from the trap is

It ay =Kt..y&t.~

(2 3)

(2 4)
Trap Level Trap Level

tray tray @tot ~ (2 5)

where K"„ is the radiative rate constant and X„„
is the number of trap states populated. If the total
number of states excited in the system is N„„ then

FIG. 1. Trap and exciton energy levels for both nega-
tive and positive signs of the intermolecular interaction
P. For negative J9, the exciton band extends 4P to higher
energy than the trap depth 6, and for positive P the band
is inverted and extends 4P to lo~ver energy than D.

Itray = K tray NtotPtray = K tray/tot ~ (2. 6)

Since K"„~is essentially temperature independent
and the K„t is usually constant, the temperature
dependence of the trap intensity is determined by
the temperature dependence of the normalized
trap probability P~ = z, which includes explicit
features of band states.

By varying P and the number of states in the band
while keeping the trap depth 4 constant, the rela-
tionship between the "real" partition function and
a partition function using the degenerate approxi-
mation for calculating the trap probability can be
seen. Two cases arise, depending upon the sign
of P, as illustrated in Fig. 1. If P is negative the
exciton band spans an energy range from ~, the
k = 0 energy, to & + 4P, the k = + v/a energy. On

the other hand, if P is positive, the band is inverted
and it spans an energy range from & to 4 —4P.
The approximation that all the states in the band
are given the energy of the 0= 0 state corresponds
to the limiting case of a band with zero bandwidth.
In cases where P is finite, however, most states
accumulate at the top and bottom of the band, where
the density-of-states function for one-dimensional
systems' is sharply peaked. One might expect a
significant effect on the trap emission owing to the
dispersion of the band, particularly when the band-
width-to-trap-depth ratio 4i3/6 takes on reasonable
values. Such is indeed the case.

Recently 1, 2, 4, 5-tetrachlorobenzene (TCB)
and 1, 4-dibromonapthalene have been shown to
exhibit the properties of one-dimensional excitons.
Francis and Harris measured the bandwidth of

TCB by an optically detected magnetic-resonance
experiment and found it to be 1.25 cm '. Hoch-
strasser and Whiteman' in an isotopically-mixed-
crystal experiment measured the 1, 4-dibromo-
napthalene bandwidth to be 29. 6 cm '. These two
values will be used as examples of narrow and
broad triplet exciton bands, respectively, although
it should be kept in mind that singlet bands can be
one or more orders of magnitude greater in width.
In Figs. 2(a}-2(e}the trap probability P,„„versus
temperature is plotted for several different nega-
tive values of 4P using the experimental value of
& (21.3 cm ') determined for one of the intrinsic
traps, hereafter referred to as the X trap in the
proto-isotopic crystal h2-1, 2, 4, 5 tetrachloroben-
zene (Q-TCB)." In each figure, curves resulting
from severaldifferent ratios of the number of s'.ates
in a band to the number of traps are plotted. Figure
2(a) is the degenerate case. Figure 2(b) uses the
small value of P taken to be the narrow-band exam-
ple. Figures 2(c) and 2(d) are calculated using in-
termediate values, and Fig. 2(e) uses a value as-
sociated with a broader band. In Fig. 3, one line
from each of the Fig. 2 drawings is shown so that
the differences can be more clearly seen. The
number of k states (i. e. , the number of molecules
in the chain) has been kept constant in Fig. 3.
Figures 4(a)-4(e) are similar plots; however, a
positive sign of p is considered. As illustrated in
Fig. 1, as P becomes more negativate the energy
differences between the trap and all the states in
the band, except the k= 0 state, become greater.
For a given number of states the temperature de-
pendence of the trap probability, and therefore the
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change in emission, is more gradual. As P takes
on larger Positive values, the energy differences
between the states in the band and the trap become
smaller. This causes the trap probability (and
the trap intensity) to have a steeper temperature
dependence. Figure 4(e) is an example where 4tI,

FIG. 2. Calculated trap probabilities, which are pro-
portional to trap intensities, are shown as a function of
temperature for various negative values of P. The num-
bers to the right of each set of curves give the number
of exciton k states (number of molecules per chain) per
trap state used to calculate the curve. The trap depth
6 used is the tetrachlorobenzene trap depth, 21.3 cm
(a) illustrates the limiting case of a band with zero width,
4P = 0. (b) uses the bandwidth previously reported for
tetrachlorobenzene (c) and (d) are for intermediate
bandwidths, and (e) is calculated using the reported 1,
4-dibromonapthalene bandwidth. As the bandwidth be-
comes more negative, the energy differences between
the trap and states in the band become greater and the
temperature dependence of the trap probability becomes
more gradual.
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FIG, 3. One curve from each of the five sets of curves
of Fig. 2 is displayed so that the temperature dependence
of the trap probability as a function of P can be more
clearly seen. The curves are for 6400 exciton k states
per trap using the negative values of 4P from Fig. 2.

the bandwidth, is greater than 4, and hence the
bottom of the band extends below the trap. %hen
the trap and exciton states become degenerate it is
necessary to consider additional perturbations. In

particular, a realistic treatment should include the
localization of band states by the trap impurity and

the delocalization and energy shift of the trap state
via interactions with &and states. ' ~" Further-
more, when the number of impurity states becomes
significant relative to the number of band states,
amalgamation must be considered in detail. . ' 'b'

This would cause a deviation from the zeroth-order
temperature dependence illustrated in Fig. 4(e).
In Fig. 5 one curve from each of the Fig. 4 draw-
ings is plotted so that the change in the tempera-
ture dependence with P can be seen more clearly.
One notes that the temperature dependence of trap
emission, in addition to being dependent on the trap
depth and trap concentration, is significantly gov-
erned by the detailed structure of the exciton band.
In the case of degenerate trap and band states in
the absence of trap-band interactions, for example,
a reversal in the temperature dependence results
[cf. Fig. 4(e)]. In other cases, each value of the
chain length and bandwidth generates a unique tem-
perature dependence in the trap phosphorescence.
Indeed, this interrelationship between the band-
width, exciton chain length, and trap depth can be
exploited to give an experimental measure of these
parameters in crystals representative of one-di-
mensional systems. The temperature dependence
of trap emission can also be used to determine
(via inference) whether or not the band and trap
states are in Boltzmann equilibrium. An example
of this is illustrated in Fig. 6, where the experi-
mental temperature dependence of the intensity of
the intrinsic h2- TCB X trap is plotted as a function
of temperature. The best calculated fit to the ex-
perimental data is also shown along with values of
the parameters which are well outside of the limits
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on the accuracy of the results. Since the trap is
intrinsic, the trap concentration was unknown;
consequently, both P and the trap concentration
were varied in order to obtain the calculated curve.
The best values are 3.5+2 cm ' for the bandwidth
4P, with P positive and a trap concentration of one
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FIG. 5. One curve from each of the sets of curves in
Fig. 4(a)-4(d} is displayed so that the temperature de-
pendence of the trap probability as a function of P can be
more clearly seen. The curves are for 6400 exciton k
states per trap using the positive values of 4P from Fig.
4.

part in 90000. If the trap concentration is known
from an independent measurement, the uncertainty
in the bandwidth measured in this type of experi-
ment can be greatly reduced. Although the @2-TCB
bandwidth measured by this method is somewhat
larger than that reported (l. 25 cm ') from an in-
dependent method, the essential features of these
results are in agreement with the interpretation
of the earlier results. It is important to note that
the earlier experiments' and the above experiment
can only be fully understood and interpreted in
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FIG. 4. Calculated trap probabilities, which are pro-
portional to trap intensities, are shown as a function of
temperature for various positive values of P. The num-
ber next to each curve gives the number of exciton states
per trap state. The 21.3-cm ' tetrachlorobenzene trap
depth 6 is used. The bandwidth, 4P, used to calculate
the curves is given in each section of the drawing. It
should be noted that the scale changes in (d) and (e). As
the bandwidth 4P becomes increasingly more positive the
energy differences between the trap and the levels of the
band become smaller, resulting in a steeper temperature
dependence of trap probability. (e) is an example of the
amalgamation limit, where the bottom of the band ex-
tends below the trap depth.
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FIG. 6. Solid circles are the experimentally deter-
mined intensity-versus-temperature data for the 21.3-
cm trap in 1, 2, 4, 5-tetrachlorobenzene. The center
solid line is the theoretically determined best fit of the
data to the bandwidth 4P and the number of exciton k states
which corresponds to the number of molecules in the
average exciton chain. The two additional curves, labeled
1.25 and 6. 0 cm, correspond to values well outside the
standard deviation of the data and are illustrated to dem-
onstrate the uniqueness of the data in the variables 4P
and the number of k states. The best value of the band-
v idth is 3. 5 & 2 cm, with P positive.
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terms of a model which is dependent upon coherent
migration being the principal mode of exciton trans-
port in the TCB crystal at low temperatures. The
importance of coherent migration in the above re-
sults is discussed in detail in Sec. ID. The
discussion in this and following sections is primari-
ly concerned with excited triplet states; however,
it should be kept in mind that identical considera-
tions also apply to singlets and transport proper-
ties in general.

III. EXCITON GROUP VELOCITIES AND THERMAL
EQUILIBRIUM

In the Frenkel limit once a molecule is excited
it cannot transfer its excitation to another molecule
without an intermolecular interaction which de-
stroys the degeneracy of the states. In a finite
band, the velocity with which an excitation propa-
gates in the crystal with a particular momentum
in a coherent model is the group velocity V,(k),
which is given by the slope of the energy dispersion
of the band

l sE(k)
V'k)=k sk (3 l)

I(k) = Vz(k)7(k) (3 2)

and is thus equivalent to a mean free path.
At intermediate temperatures, where the princi-

and is proportional to the change in exciton energy
with k. For a nondegenerate band at nonzero tem-
peratures, the group velocity mill be finite be-
cause of the population of non-(k=0) or non-(+ v/a)
wave-vector states and the excitationwill be able to
migrate. The average velocity of this migration,
and certain details of phonon-exciton scattering,
determines whether or not the system can reach
thermal equilibrium. If during the lifetime of the
excited state the excitations do not travel far
enough to reach traps, the trap probability cannot
be described by Boltzmann statistics. On the other
hand, if the excitations during their lifetime can
travel, on the average, manytimes farther than the
average distance between traps, then all the exci-
tations will be able to "sample" traps, the system
will be able to reach thermal equilibrium, and the
trap probability will be determined by the partition
function of Sec. II. The importance of phonon-ex-
citon scattering in the equilibration process cannot
be underestimated, for it is what ultimately limits
the mean free path of coherent propagation. ''4 If
we assume that there is no memory between pho-
non-exciton scattering events and restrict the scat-
tering to stochastic first-order Markoffian process-
es' one ean assign a coherence time 7'(k) to the
wave packets propagating at velocities V (k). The
distance l(k) a coherent state propagates between
'"random" scattering events is then given by

pal limitation on 7(k) is phonon-exciton scattering,
Frenkel excitons initially in a state k (or a linear
combination of k states) scatter to other k' states
in a time short compared to the radiative or radia-
tionless lifetime, but in a time long compared to
the intermolecular interaction time (P '). As a
result, the coherence time r(k) is shortened, the

mean free path is reduced, and the ability to equi-
librate trap and exeiton states is attenuated. %e
mill shorn in a later publication that scattering is
principally to adjacent k states and hence the aver-
age group velocity is relatively unaffected until one

approaches the high-temperature limit. Diffusion
or random walk is simply the limit mhere the
change in k occurs on a time scale short com-
pared to P . These features will be dealt with in

far greater detail in a subsequent paper, ' where
a method for observing the dynamics of individual
k states mill be presented. In the present case,
however, only manifestations of the average ve-
locities [and/or r(k)'s] are easily measurable and

therefore we restrict the discussion to these fea-
tures Th.e importance of (V,(T)) is easily seen by
comparing coherent and incoherent migration.

Treating the exciton band as one dimensional,
the average group velocity at a given temperature,
(VB(T)&, is given by the normalized sum over the
velocities of the k states in the band, with each
velocity weighted by the probability of finding the
system in that k state at a particular temperature
T, i.e. „

sE(k) 2Pn g sm(ks)e (2Bco k-a/Bra)

(V.(T)&=Ã BK
=

k 'Z - - ~r &a~
(3.3a)

We will restrict the summation in (3.3a) to positive
wave-vector states only so that (V~(T)& is physically
related to a scalar velocity in one direction. In
the limit that the number of k states becomes
large, the summations in Eq. (3.3a) converge to
an integral form which can be evaluated using
modified Bessel functions. The resulting expres-
sion for the average group velocity is given by

(V,(T)& = (2Pul&)(2kT/BP)'"(I / (z)/Io(z)], (3. 3b)

where z = (2P/kT) and IB(z) and I,/B(z) are given by

IB(z) =(1/w) J e""'dH (3.3c)

I»B(z) = (Bz/r)»B f e""' sin8d//, (3.3d)

where 6 = ka.
In Table I, group velocities, calculated using

Eq. (3.3a), for a narrow, intermediate, and broad
triplet band are listed as a function of temperature.
The average group velocity is not very sensitive to
the number of states in the band when the number
of states in the band is greater than 100. It ean be



754 M. D. FAYER AND C. B. HARRIS

seen from Table I that even for the narrow band-
width of 1.25 cm ' which Francis and Harriss have
reported for TCB, at 1 K an excitation traveling
completely coherently will be able to sample 10'
lattice sites in 10 msec, which is the order of the
lifetime of the TCB triplet state. ' (The exciton
will of course travel even further given the 3. 5-
cm ' band reported here. ) This is sufficient to
enable a system with trap concentrations as low as
1 part per 10 to come to thermal equilibrium.
For the larger bandwidths, systems with even
smaller trap concentrations will be able to equili-
brate. Only very pure samples with nearly degen-
erate bands will be unable to come to thermal'
equilibrium when the excitons migrate coherently.

Attenuation of this long-range migration occurs
when phonon-exciton scattering limits the coher-
ence time and hence the coherence length. When
this length becomes less than the average trap-to-
trap separation, thermal equilibrium becomes
progressively more difficult to achieve. In the
high-temperature limit, phonons destroy the trans-
lational symmetry of the lattice and tend to scatter
an excitation at each lattice site, and hence the
group velocity is replaced by a diffusion rate as
the excitation executes a random walk at every
lattice site. In one-dimensional diffusion, the ex-
citon can move with equal probability to either of
the two molecules adjacent to it. The average
time T it takes an exciton undergoing a random-
walk migration to take one step is on the order of'

(3 4)

Hence, the median distance traveled (in cm) is
given by

(3.5)

where N is the number of hops taken per unit time
and a is the distance traveled in one hop, one lat-
tice translation (in cm). In Table D the median ran-
dom-walk distances are listed for the three band-
widths used in Table I for a variety of times. The
value of a is 3. 76 A, which is the translational
spacing of molecules along the a direction in TCB.'
Table III also gives the ratio of the distances trav-

TABLE II. Median distance traveled {cm) in a. random-
walk process.

Time
(msec)

1
10

100
1000

1.25 cm-'

7. 6 x 10
«. 4x 10~

x ].0~
2.4x 10-

Bandwidth
15 cm

2. 7x 10+
8. 4x 10+
2 7x 10-
8.4x10 3

29.6 cm '

3.7x 10+
1.2x10 3

3.7x 10
1.2x10'

IV. EFFECTS OF MULTIPLE BANDS

A. Zero-field splitting of the exciton band and trap states

To this point, the triplet exciton band and trap
have each been considered as consisting of a single

cled by an exciton moving in the coherent limit
versus random-walk migration for the three band-
widths at 2. 8'K.

It is seen that random-walk migration is a factor
of 10 to 106 slower than coherent migration. While
a, h2-TCB exciton traveling completely coherently
could sample approximately 10 lattice sites during
its lifetime (10 msec), an exciton undergoing ran-
dom-walk migration on the average will only sample

lattice sites. The number of excitons
able to migrate larger distance falls off very rapid-
ly because one-dimensional random-walk process-
es are describable by a, Gaussian distribution of
distances around some initial starting point. ' In
the case of Q-TCB only 3 excitons out of 1000
traveling completely by random-walk migration
would be able to cover a distance of 5&&10 lattice
sites, which is half the average distance between
traps in these crystals. The obvious conclusion
to be drawn is that the observation that the tem-
perature dependence of the Az- TCB trap intensity
obeys Boltzmann statistics provides strong evidence
for coherent migration as the principal mode of
exciton transport at liquid-helium temperatures.
Indeed the coherence time must be at least several
orders of magnitude longer than the intermolecular
exchange time in order for the system to achieve
thermal equilibrium within the excited-state life-
time.

TABLE I. Average group velocities (cmjsec) for a
band of 25000 k states as a function of temperature.

TABLE III. Ratio of the coherent migration distance
to the random-walk distance at 2. 8 K.

1.0
1.6
2. 2
2. 8
3.4
4. 0

1.25 cm

2 652
2 750
2 782
2 797
2 804
2 809

Bandwidth
15 cm

12 747
15 996
18 592
20 762
22 601
24 161

29.6 cm

1S 075
22 781
26 611
29 902
32 814
35 436

Time
(msec)

10
100

1000

1.25 cm

3.7x 10
1.1x 10
3.7x 10
1.1x 10

Bandwid th
15 cm '~

7 Sx10
2. 5x 10
7. 8x 10
2. 5x 10

29. 6 cm '~

7 Sx10
2 5x10
7. 8x10
2. 5x 10'

~Differences between the 15 and 29. 6 cm ratios are
less than 1% because of insufficient population in A states
at the center of the band at this low temperature.
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"a trot+a tot /Za (4 3)

In the absence of spin-orbit; coupling the dispersion
of each of the three triplet bands will be identical
when the zero-field spin dipole interaction is much
smaller than the band dispersion. Thus, the three
spin sublevel partition functions, z„, z, , and z„
are essentially the same and the trap intensity is
given by

Itrao (Kr trooper tot+ r tray r tot

+K". tr~&. tot) /z ~ (4. 4)

The net result is that the temperature dependence,
as in the single-spin-sublevel case, is determined
only by the change in z with temperature.

In general, however, spin-orbit coupling must
occur in order to give allowed transition character
from the triplet excited state to the ground-singlet
manifold. ' In most cases the spin eigenfunctions
have different symmetry properties resulting in
admixture of different singlet states into three
individual spin sublevels. The dispersion of the
three triplet-spin-sublevel bands can differ in such
cases, giving each sublevel a slightly different
partition function and, therefore, in principle, a
different intensity temperature dependence. How-
ever, the changes in the dispersions of the bands
owing to spin-orbit coupling a.re, in almost all
cases, so small that the temperature dependence

magnetic sublevel. This is an accurate descrip-
tion for singlet states, but both the triplet exciton
band and trap are split into three energy sublevels
by the zero-field spin dipolar interaction of the un-
paired triplet-electron spins. The intensity of
trap emission I„~for the three-level system is
given by

=K"tray x trap+a txap++y txap+y trap

(4. 1)

where K"; ~„is the radiative rate constant for the
ith sublevel and X, ~~ is the population of the ith
sublevel. In the absence of spin-lattice relaxa-
tion processes in the band states, the trap states,
and between trap and band states, the population of
a triplet sublevel is independent of the populations
of the other sublevels, and hence the total popula-
tion of a. particular magnetic spin component is the
sum of the populations in the particular spin sub-
level of the exciton band and the trap. Thus, the
trap population of the ith sublevel can be given by

(4. 2)

where z~ is the partition function for the ith-spin
sublevel. Under these conditions the total trap in-
tensity can be written as

Ir,„=K"„~ X„„t/z, +K", t„N „,/z,

of the intensity of trap phosphorescence is unaf-
fected by these small energy differences. In
h~-TCB spin-orbit coupling produces only one part
in 10 difference in the dispersion of the three spin-
sublevel bands. '

A more serious consideration for molecular
systems in some temperature regions is the effect
of spin-lattice relaxation on the temperature de-
pendence of trap emission. In the above discus-
sions the steady-state population in the band and

trap, N„„ in a particular magnetic sublevel was
assumed to be independent of temperature and in-
dependent of the populations of the other two sub-
levels. However, spin-lattice relaxation couples
the sublevels, allowing population to be transferred
from one to another. Since this is, in general,
highly temperature dependent, ' the total steady-
state population of a particular magnetic sublevel
can change significantly with temperature. To
account for these variations is in principle straight-
forward. The population of a trap, and therefore
its intensity, at any one temperature is determined
by the partition function, as before, but as the
temperature changes, the change (via T,) in the
total sublevel population as well as the change in
the partition function must be determined. The
change in the total sublevel populations can be de-
termined by measuring the change in the lifetimes
of the three sublevels as a function of temperature,
and thereby assessing the amount of spin-lattice
relaxation. 4 The trap probability is determined,
as before, using the partition function, but now it
must be multiplied by the relative sublevel popula-
tion for each temperature, i ~ e. ,

(4. 5)

Although the effects of spin-lattice relaxation be-
tween the magnetic sublevels of the triplet band in
one-dimensional bands can complicate the evalua-
tion of the trap phosphorescence intensity, in most
crystals this does not present any real difficulty.
It is only when there is a significant temperature
dependence of the effective spin-lattice relaxation
process over the temperature range of interest
that difficulty arises. Usually, small two-dimen-
sional exchange interactions between translationally
inequivalent molecules in the unit cell result in an
effective averaging of the spin-sublevel populations
in band states in a time short compared to the life-
time of the state. Thus, the exciton dynamics
keep the indA~idual spin suwevels close to
Boltzmann equilibria, and hence the temperature
dependence of spin-lattice relaxation is ineffective
in causing large deviations in the individual spin-
sublevel populations over the range of temperature
of interest. This is the case, at least, for h&-TCB
and d~-T{ B, between 1-4 'K.
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B. Two- and three-dimensional bands

ExCi ton
Band

t'b= p&a
l

Pb=o

Trap Level

FIG. 7. Trap and exciton energy-level diagrams for a
one-dimensional exciton. bandwidth P& = 0 and a two-di-
mensional band with P&= g, . The spectroscopically de-
terminable trap depth is the difference in energy between
the trap level and the k, =0, k&= 0 level of the two-dimen-
sional exciton band. The trap depth can have one of the
four possible values 4& to ~4 shown in the figure, de-
pending upon the signs of P, and P&. If both P~ ard P& are
negative, 4~ will be observed. If P & 0 and P& & 0, 62 will
be observed. If P, & 0 and P& & 0, 6& will be observed, and

if P~ and P& are both positive, A4 will be the spectroscopi-
cally measured value of the trap depth.

The above considerations can be readily extended
to systems in which a trap interacts with a multi-
dimensional exciton band. For one molecule per
unit cell the most general form is given by the
three-dimensional partition function z:

ff/a r~c r/a
a = 1+ Q ~)' Q G(k) expj-[4 —2P,(1 —cosk~)

~,=0 Xy=O ac=o

—2P~(1 —cosk~b ') —2P,(l —cosk, c )] jkT),
(4 6)

where k„k„and k, are the wave vectors associated
with the crystallographic translation directions a,

b, and c, and P„g, and P, are the nearest-neigh-
bor intermolecular interaction matrix elements
along these three axes. G(k) is a degeneracy factor
which takes on the value 1 when the value of all
three k wave vectors are zero, 2 when any two k
wave vectors are zero, 4 when only one k wave
vector is zero and, finally, 8 when all three k wave
vectors are greater than zero. The partition func-
tion for the case in which the exciton band is two
dimensional is obtained by setting P, equal to zero,
and the one-dimensional partition function given in

Eq. (2. 2) follows naturally from Eq. (4. 6) by set-
ting P, and P~ equal to zero.

To simplify the discussion, only the two-dimen-
sional case will be explicitly considered. For il-
lustration P is set equal to 2 of P, and the two-di-
mensional exciton band is limited to 400 states
corresponding to a square array of 400 molecules.
An energy-level diagram for the trap and exciton
system is given in Fig. 7. As in the one-dimen-
sional case, the 0-0 absorption must obey the
selection rule 4k=0; thus, the 0-0 transition is as-
sociated with the k, = 0, k, = 0 level. Depending
upon the signs of P, and P, the k, =0, k, =0 exciton
level can occur at four different energies relative
to the trap energy. As indicated in Fig. 7, if P,
and P, are both negative, ~, will be the observed
trap depth. If P, is negative and P~ is positive, 52
will be the trap depth. If P, is positive and J3, is
negative, &, will be the trap depth. If both P, and

I3, are positive, ~4 will be the spectroscopically
measured trap depth.

For a given trap concentration, the average
number of states in the exciton band is known, the
trap depth & can be measured, and the tempera, —

ture dependence of the trap intensity can be fit by
varying the signs and magnitudes of P, and P, in
the multidimensional partition function [Eq. (4. 6)].
For systems in which the number of states in the
band is large, i. e. , low trap concentration, the
density of states in the band becomes so large that
the partition function is not sensitive to P, and P,
separately but depends only upon the total band-
width, 4t P, l+4I P, I; thus, a measure of the band-
width can be experimentally determined, even in
multidimensional crystals, but details of the band
along specific crystallographic axes are lost. The
above discussion has been restricted to systems
containing trap levels of only one energy. Systems
with two or more traps of different energies present
a different problem but provide additional and
unique information on the exciton dynamics and
will be considered in detail below.

V. BOLTZMANN EQUILIBRIA BETWEEN EXCITON STATES
AND MULTIPLE TRAPS

The extension of the above treatment to systems
in which there are two or more types of traps
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FIG. 8. Energy-level diagram for a system containing
an exciton band and traps of two different energies. 7~

labels the shallow traps, and 7& labels the deep traps.
4~ is the energy difference between 7~ and v&, and b2 is
the energy difference between 7& and the k = 0 level of the
exciton band. The dashed arrows indicate the possible
paths an excitation can travel in the system.

having different energies would be straightforward
if it were not for the fact that the excitons and

traps have finite lifetimes. If the excited-state
lifetimes were long enough, the system would
come to thermal equilibrium at any temperature
and a statistical treatment would always be proper
for any temperature or trap depth. However,
given the finite lifetimes of the states involved, a.

statistical approach is only possible above a cer-
tain characteristic temperature, hereafter termed
T„which is determined by the trap depths, the
trap concentration, and the exciton bandwidth.

The inability of the system to achieve thermal
equilibrium below the characteristic temperature
is due in part to the spacial separation of the traps
of different energies and in part to different trap-
phonon interactions at the different trap sites in
the lattice. This can be seen more cle3rly by con-
sidering the energy-level diagram in Fig. 8 for a
system consisting of an exciton band, a shallow
trap ~„and a deep trap ~~. The dashed arrows
indicate the possible paths electronic excitations
can travel in the system in the absence of direct
long-range energy exchange between traps. Basi-
cally, an excitation cannot be transferred to another
trap site without first being thermally promoted to
the exciton band in which it can migrate to another
trap site and again be trapped. Equilibrium is only
established through a continuous process of detrap-
ping, migration, and retrapping. If the process
continues long enough, the system reaches its
equilibrium population distribution in spite of the
fact that the shallow and deep traps exchange their
population with the band states at different rates.
Because the exciton and trap states have a finite
lifetime, however, the rate of detrapping and re-

trapping for both traps must be large enough to
compete with radiative and radiationless processes.
This can only occur above some characteristic
temperature T„where phonon-trap interactions are
frequent enough to keep the system in thermal
equilibrium.

In the equilibrium temperature region, the tem-
perature dependence of the trap intensities can be
determined from the probabili. ties P,„and P, that
an excitation will. be in deep trap ~~ or shallow
trap ~„respectively. Taking the exciton band to
be one-dimensional in the nearest-neighbor ap-
proximation, the partition function z for the system
is given by

e- 5y/k T + Q e- hp /k T
1 2

&n-1) r/na
e-(62-21(1-coska) 3/k r

2
k =r /na

The zero of energy is taken as the energy of the
deep trap. As shown in Fig. 8, ~, is the energy
difference between the deep and shallow traps, and

~~ is the energy difference between the deep trap
and the k = 0 level of the exciton band. The k = 0
level may be at the top or bottom of the band (as
discussed previously) depending upon the sign of P.
The concentration of the traps and excitons are
normalized to a unit concentration of the deep trap.
The first term in z is due to the deep trap. The
second term is the Boltzmann factor for the shallow
trap multiplied by G„ the number of shallow traps
relative to a single deep trap. The third term is
the Boltzmann factor for the nondegenerate k = 0
level of the exciton band times G~, the number of
exciton chains relative to a single deep trap. The
final summation is over the remainder of the ex-
citon k states, which are doubly degenerate, giving
rise to the factor of 2. The total number of host
molecules relative to one deep trap is Gq(2n),
where there are 2n states per exciton and G~

exciton chains per deep trap. The trap proba-
bilities P, and P, (which are proportional to the
trap intensities) are

p, ,(y') = i/~(T) (5. 2)

p (y') = G&e ""'/~(T)
~

respectively. Calculated plots of P, and P, ver-
sus temperature for systems which contain 99.2%
host-exciton states, -0.8% shallow traps, and 1.6
&&10 9g deep traps are illustrated in Fig. 9. The
trap depths 4, and h2 are 10 and 20 cm ', respec-
tively. These values are typical of singly and

doubly protonated traps in deutero crystals. The
curves are for a range of bandwidths, 4P, between
+8 and —8 cm '. Several features of the trap
phosphorescence intensity in multiple-trap sys-
tems are particularly noteworthy. First, as 4P
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becomes more positive the energy levels in the
band become closer to the trap levels. This re-
sults in a loss of trap probability and therefore a
loss of trap intensity. Although both traps are af-
fected, the changes in the deep- and shallow-trap
probabilities are entirely different. The decrease
in the deep trap phosphorescence with increasing
temperature results from the partitioning of the
excitation into the higher-energy shallow trap and

exciton states. When the number of molecules in

an exciton chain (the number of k states in the

band) greatly exceeds the number of shallow traps,
the form of the deep-trap temperature dependence
becomes indistinguishable from the single-trap
problem considered earlier. The temperature de-
pendence of the shallow trap is not so simple.
Physically, as the temperature increases from a
value where only the deep trap is emitting (&, = 1.0,Td

&,,=0.0), the initial loss in r~ results in the onset
of ~, emission. How rapidly ~, increases with in-
creasing temperature, however, is determined by
the partitioning of energy from the shAlom trap
into the band states. If many exciton states are
near in energy to the shallow trap, the shallow
trap will never acquire a significant intensity be-
cause of the ability of the exciton states to partition
the energy, i.e. , large value of the band partition
function. This occurs when the shallow -trap depth
(42 —&, in Fig. 8) is small and/or the exciton band
has a large number of k states at energies near the
shallow trap (positive P). On the other hand, when
the shallow-trap depth becomes larger and/or the

exciton band has a smaller positive dispersion or
negative dispersion, the shallow-trap emission
will continue to increase in intensity at the expense
of the deep-trap probability until a point when the
Boltzmann factor starts to significantly populate
the exciton state. At this point the shallow trap
will lose intensity with increasing temperature be-
cause of partitioning to the band. An important
point of the temperature variation of both the deep
and shallow traps is that for every curve associated
with the deep trap there is a unique shallow-trap
curve for a specific value of the band dispersion,
number of k states, and number of shallow traps.
Moreover, the detailed shape of the temperature-
dependence curve for the shallow traps is deter-
mined by the partition function. A variation in &d

and ~, trap emission as a function of concentration
is illustrated in Fig. 10. The value of the band
dispersion and trap depth have been fixed at 4P= 4
cm ', 6, =10 cm ', and 4, =20 cm '. As is ex-
pected, when the shallow-trap concentration in-
creases relative to the band states the intensity
peaks at higher temperatures. The values plotted
in Fig. 10 are representative of mixed crystals,
where the band states are the pure deutero (dz)
isotope (2 deuteriums/molecule), the sha. liow

trap is the hd isotope, and the deep trap is the

h2 molecule. The concentration values listed for
cases A through D correspond to statistical mix-
tures of the various species based upon the total
deuterium concentration of the crystals.

The practical use of such an approach to obtain
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I"IG. 9. Trap probabilities, which are proportional to phosphorescence intensities, as a function of temperature are
plotted for an exciton and a two-trap-type system. v and vd are 10 and 20 cm below the k=0 level of the band, re-
spectively. Each pair of lines, one for vd and one for 7'~, is calculated using the indicated exciton bandwidth, 4p. The

percent of each of the species is given at the top of the figure.
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FIG. 10. Trap probabilities as a function of temperature for different percent compositions of the three species in
the crystal indicated at the top of the figure. The two traps have 10- and 20-cm ' trap depths and the exciton bandwidth
is 4 cm for all curves.

information about the band is straightforward and
self-evident. If a sample is prepared with two
traps of known concentration, where 5, and 4~ can
be measured spectroscopically, then the band dis-
persion and the sign of P can be determined from
the temperature dependence of the two trap inten-
sities. Figure 11 illustrates this for deutero-proto
mixed crystals of TCB. Figure 11(a) is the tem-
perature dependence of Q- TCB(&,) and hd-TCB(r, )
trap phosphorescence in a d&-TCB crystal in the
temperature range 1.3 to 3.8 'K. Details of the
preparation and characterization of the traps are
given in Sec. VIII. The data illustrate two distinct
temperature regions, one below and one above a
characteristic temperature T, . These are labeled
I and II, respectively, and correspond to regions
where Boltzmann statistics are appropriate (II) be-
cause the trap and band state are in thermal equi-
libria, and where Boltzmann statistics are inap-
propriate (I) because the finite lifetime of the ex-
cited states are short relative to the time neces-
sary to equilibrate both the deep and shallow traps
with the exciton band states.

Using the experimental values for 6„43,
and &~, an excellent fit for 60th the deep- and shal-
low-trap temperature dependence in region II is
simultaneously obtained for the lowest triplet band
in d2 -TCB. A total bandwidth of 12+2 cm ' and a
positive intermolecular exchange interaction for
d, -TCB from these experiments (cf. Fig. 11) is to

be compared to a total bandwidth of 3. 5 cm ' and a
positive intermolecular exchange interaction for
the same band in ha- TCB (cf. Fig. 6). The rela-
tionships between isotope effect, the Born-Oppen-
heimer approximation, and the band dispersion in
these crystals will be discussed in a later publica-
tion. '

In the remainder of this paper we will discuss the
non-Boltzmann region (I) and formulate a general
approach to exciton dynamics in this region which
is amenable to experimentation. This region is
characterized by insufficient phonon-trap interac-
tion to provide thermal equilibrium between trap
and band states. %e will defer detailed interpre-
tation of TCB in this region until later, but we will
demonstrate proof that TCB in this region is not in
thermal equilibrium but characterized by con-
siderations of Sec. VI.

VI. NON-BOLTZMANN DISTRIBUTIONS BETWEEN
EXCITON AND TRAP STATES

Below a characteristic temperature, the system
does not come to thermal equilibrium within the
lifetimes of the states because the phonon interac-
tion with the trap states does not equilibrate the
trap and band states at a fast enough rate. The
problem must therefore be treated in terms of a
set of coupled rate equations for the processes
which are occurring. Differential equations de-
scribing the time variation of the states illustrated
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FIG. 11. I,a) displays the intensity-versus-temperature
experimental data. The deep trap 7~ is h2-TCB, the shal-
low trap vs is A,d-TCB, and the host molecules which
comprise the exciton chains are d2-TCB. The shallow-
and deep-trap depths are, respectively, 12. 8 and 23. 5
cm . Region I is the non-Boltzmann temperature region,
and region II is the temperature region in which the sys-
tem is in thermal equilibrium. The shaded section indi-
cates the transition region. (b) shows the experimental
data in addition to curves calculated for various exciton
bandwidths, 4P, using the experimental trap depths and

trap concentrations. It can be seen that in the Boltzmann
equilibrium region II, both the shallow-trap data and the
deep-trap data fall on the 12-cm" shallow- and deep-trap
calculated curves.

AK~;(K, +K~)
(K„+K~,)(K, +K„—CK„) —BK~((K, + K„)'

where
(6. 6)

stant. K~, K~, and K, are the total rate constants
for relaxation to the ground state from the exciton
bands, deep traps, and shallow traps, respective-
ly; they include radiative and radiationless pro-
cesses. K„and K«are the trapping rate constants
for excitons entering the shallow and deep traps,
respectively, and K„and K~, are the detrapping
rate constants of the shallow and deep traps into
the exciton bands. Implicit in the kinetic equations
is the assumption that the excited-state concentra-
tions are low enough to ensure that bimolecular
annihilation and other nonlinear effects may be
neglected. The ground-state concentration [S ] is
taken as a constant. If the lifetimes of the excited
states are short, then [S ] will be the concentration
of host molecules in the crystal. If the lifetimes
of the exciton and trap states are long but are ap-
proximately the same, [S ] will remain constant
with changing temperature since transferring popu-
lation between excited states of the same lifetime
will not result in changing [S ]. However, if the
lifetimes are long and differ greatly, then [S ] can
change with temperature but will still be constant
at any one temperature. Hence, Eqs. (6. 1)-(6.4)
can be solved for [r,] and [r„]by assuming
steady state. The results are

AK, ( (K~ +Ks,)
(K~+Ks,)(K, +K„-CK,q) —BK~,(K, +K „)

in Fig. 12 are given in Eqs. (6. 1)-(6.4):

= K"'[S']+K„[r,]+K„[r,]

—K„[Z]—K„.[Z] —K,[E], (6. 1)

PK' [S ]
(K, +K'sc)(K, +„K+K) '

K~,
(Ks+K~, +K„}'

80

(Ks + K~; +K,&)
'

A. Non-Boltzmann low-temperature limit

(6. 7)

(6 6)

(6.2}

' =K„[E] K,.[r,] -K,-[r,], (6. 3)

g&l' =P[S'] -K i[S'] —K"'[S']
dt

[E] is the exciton population; [S'] is the population
of the first excited singlet band, and [S ] is the
ground-state concentration; [r~] and [v', ] are the
deep- and shallow-trap populations; P is the rate
constant for the production of excited singlet ex-
citons and K y is the rate constant for the relaxa-
tion of singlets to the ground-state manifold 8,
while K' is the intersystem crossing rate con-

[r,] =~K„K-,',
[r,] =XK„K

(6. 10a)

(6. 10b)

where the constants K~' and K, ' are the deep- and
shallow-trap lifetimes. K«and K„, the rate con-
stants for exct tons flowing in'to the traps, can be
identified in the coherent model with the aerage

At some temperature well below the characteris-
tic temperature T„K„and K„,will become in-
significant because of the lack of phonons to equi-
librate the trap and band states at a rate comparable
to the lifetime. Setting these two constants equal
to zero in Eqs. (6. 5) and (6.6) yields a low-tem-
perature limit for ~„and 7, given by
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P K t

KIO,KI;
Y~ Kdo Kcti

It
Td

(6. lib)] and a kinetic description of energy migra-
tion in these limits would be given by substituting
the appropriate velocity in the following equations.
The trapping rate constants K«and K„are the in-
verse of the average time it takes an exciton to
reach a trap, and hence, in the temperature region
under consideration, the rate of finding the trap is
inversely proportional to the number of trapping
sites available. The concentration of populated
deep and shallow traps is then simply given by

K~ KE Kg
[T,] = A(V~&K, 'd, ',
[r,] =A(V, &K-„'d

(6. 12a)

(6. 12b)

SO
[r,] =A(V, &K-, 'iV„

[r,] =A(V, &K,'tt„,

(6. 13a)

(6. 13b)

FIG. 12. Energy-level diagram for an exciton and two-
trap system showing rate constants used in the non-Boltz-
mann temperature region. E~, K@, Jt'», and X~1 are the
total rate constants for relaxation to the ground state 80

for the shallow trap r„ the exciton band E, the deep trap
7», and the first excited singlet state S', respectively.
P is the rate constant for the production of excited singlet
states and E~sc is the intersystem crossing rate constant.
K,&

and E&& are the rate constants for excitatlons flowing
into the shallow and deep traps, respectively, and E~ and

E~ are the rate constants for excitations flowing out of the
shallow and deep traps, respectively.

where N» and N, are the deep- and shallow-trap-
site concentrations. When the rate of trapping is
large relative to the decay of the exciton through
other channels (K~, +K„»Kz), the steady-state
trap concentrations become independent of the av-
erage group velocity associated with exciton migra-
tion and hence independent of temperature:

(6. 14a)

group t!etocity of the excitons, (V ), weighted by

the distance between traps, i.e. ,

K„=(V,) d

K„=(V )d, '.
(6. 1la)

(6. 11b)

«, &-«&I . (6. 11c}

Furthermore, the attenuated velocities in the in-
termediate- and high-temperature limits could be
substituted into the above equations [(6.lla) and

The average exciton group velocity at a particular
temperature is given by Eq. (3.3a), and d, and d,
are the average distances between the deep- and
shallow-trap sites, respectively. It should be
noted, however, that the relationship between K«,
K„, and (V ) need not be restricted solely to
coherent migration. The effects of phonon-exciton
or impurity-exciton scattering on the average group
velocities could be incorporated into K«and K„ in
cases intermediate between pure coherent migra-
tion and random-walk migration when the explicit
k dependence of these processes are delineated.
In the limit that all coherence is lost via these in-
teractions, the average group velocity approaches
a temperature-independent velocity given by the
random-walk parameters r and (d) of Eqs. (3.4)
and (3.5), respectively, i.e. ,

(6. 14b)

and the ratio of the steady-state concentrations is
simply proportional to their respective total con-
centrations:

[r,] K tIt,

[r~] K~ N~
' (6. 15)

f K'"[S ]["]=
(K +K»c)K

tel
+ g

(6. 16a)

f K"'[S,]
$(K +K 'K

The ratio of concentrations, however, still remains
velocity and therefore temperature independent and
is also given by Eq. (6. 15}.

Since the intensity of emission from the traps is
proportional to number of trap sites, the invariance
of the ratio over a finite temperature range pro-
vides an experimental test of this limit. In addi-

On the other hand, when the exciton decay competes
with or is greater than the rate of trapping (Kz
»K„+K«), the steady-state trap concentrations
are proportional to the temperature-dependent
average group velocity of exciton wave packets and
are given by
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tion, since the temperature dependences of [7,] and

[r~] result from a change in the average group
velocity, the trap emission provides a tool capable
of investigating the average velocity distribution
in the exciton band and hence the coherence even at
the very lowest temperatures.

K„[r,]=XK„. K, + 1-- ' K„E+ «+ (6. 17a)

-1],] are„]r'. R,]lac=, z. s - " rc,
E+ «+ sf

(6. 17b)
The dependence of these equations on (V, ) can be
seen by substituting (6. lla) and (6. lib) for K„and
K„. In this region the temperature dependence of

and T~ results from both the temperature depen-
dence of (V, } and the shallow detrapping rate con-
stant K„. Specifically, when the radiative and
radiationless decgy of the exciton states to the
ground state is slow relative to trapping, KE«K«
+K„, the group-velocity dependence contained in

K~, and K„vanishes and i, and T'~ are given by

x K+ g
' — K„

x K+ j. - ' K„ (6. 18b)

respectively. Hence, the only temperature de-
pendence of 7, and T„ is contained in K„. In the
other limit, when trapping is slow relative to the
radiative and radiationless decay of the exciton
states, KE»K«+K„., the shallow-trap population
reflects the average group velocity of the excitons
via its trapping rate from the band (K„); i.e. ,

8. Non-Boltzmann intermediate temperatures

As the temperature is increased toward T„ the
rate constants for energy transferring from traps
to exciton bands are expected to increase. How-

ever, if the depths of the traps T, and ~~ below the
bottom of the band are significantly different rela-
tive to f:T, then excitations will be able to thermal-
ize from the shallow trap v, into the band at tem-
peratures too low for excitations to thermalize
from &„. The net result is that K„will become
significant at temperatures where K„, is still neg-
ligible. Setting K„equal to zero in Eqs. (6. 5) and

(6. 6), the concentration of traps is given by

PK"'[S,] K„.
(6. 19a)

The increase in the concentration of ~, via the in-
crease in the exciton (V ) may be offset by the in-
creased detrapping rate K„with temperature. By
contrast, the deep-trap concentration is given by

PK "'[S,] K„.
(K -].K" )(K ) K (6. 19b)

and its temperature dependence results only from
the increase in the group velocity of the exciton
states with temperature. Finally, the temperature
dependence of the ratio of the trap populations is
only functionally related to K„. This can be seen
by combining Eqs. (6. 18a) and (6. 18b) in one case
and (6. 19a} and (6. 19b} in another. In both cases,
the ratio is

[r] X K,
],'] =

x, z..'rc, ) (6. 20)

(C. Other considerations

To this point, the effects of possible differences
in exciton and trap radiative and radiationless life-
times on the temperature dependence of trap emis-
sion in the equilibrium temperature region have

This is valid for both conditions, K~ «K«+K„and
K~ »K~;+K„.. The important point of the above
equations is that the steady-state concentration of
the sha/lou~ and deep traps and this the emission
intensity depends implicitly upon both the group
velocities in the hand and the rate of detraPPtng of
the shallos~. -txaP K„. Both of these quantities are
measurab1e and provide„ in principle, detailed in-
formation on the dynamics of trap-exciton interac-
tions.

Qualitatively, the above processes can be physi-
cally viewed as follows. At very low temperatures
both K„and K~, are zero, and the populations [T,]
and [&,] (except for changes caused by variations
in (V )) remain constant with increasing tempera-
ture. Since the shallow trap is closer in energy to
the band than the deep trap, as the temperature is
increased K„becomes nonzero before K„„and
some of the shallow trap's population is thermalized
into the exciton band. This additional exciton popu-
lation migrates in the band at an average group
velocity determined by the temperature and band
dispersion, and is retrapped in deep traps. Con-
trary to what would have been expected for a ther-
mal equilibrium, the deep trap gains population
and intensity at the expense of the shallow trap.
The importance of the deep-trap concentration in
relation to the magnitude of K„cannot be under-
estimated if a phenomenological understanding of
the complexities and variations of impurity effects
in crystals are to be properly understood.
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not been discussed. If N„, is the total triplet ex-
cited-state population, then I, ~N„, /z(T), where
N„, is assumed to be temperature independent. If
the total lifetime of the exciton and trap states are
equal then the transfer of population between the
band and trap does not alter the value of N„,. How-
ver, if they are not equal, N„, will be tempera-

ture dependent, and I, ~N„,(T)/z(T). Hence, both

N~„and z are functions of temperature.
N„,(T) can be determined from a system of dif-

ferential equations assuming steady state. In
terms of the parameters in Fig. 12, assuming the
ground-state concentration [So] remains constant,

) ~[30) ff [g1] A Iac[31] 0
dt

(6. 21)

(6. 22)
X is the percentage of population found in the trap.
y = 1/z(T), and (1 —X) is the percentage of popula-
tion found in the band at a given temperature. At
steady state Nt„(T) is found to be

A xSC~[go)

[Zx+Z (1-)t)] Z, +Z"' (6. 23)

where the only temperature-dependent parameter
on the right side of the equation is X. The ratio of
the values of N„,(T) at two temperatures is

N...(T,) (f~,X(T,).A;[1 -x(T,)l)
N„,(T,) (Ky(T,)+Ks[l -X(Tp)])'

Equation (6.24) can be used to obtain N„„(T2) rela-
tive to the value of N„,(T,), which may be used to
normalize the total population for all other tem-
peratures. Thus, it is not necessary to know the
actual value of N„,(T). A similar procedure can
be used in the case of more than one trap or for
corrections in N„, owing to spin-lattice relaxation
effects discussed above.

Another point which needs to be mentioned is
that it has been tacitly assumed that intersystern
crossing takes place from the singlet exciton band
to the triplet exciton band and that exciton migra-
tion and trapping takes place from the triplet band.
However, in some cases after exciting initially into
the singlet exciton band, migration and trapping
take place before intersystem crossing occurs,
producing triplet traps. If the triplet traps are in
equilibrium with the band, the trap intensity as a
function of temperature mill reflect the parameters
of the triplet system. However, if the time for a
trap to transfer its excitation to the band is long
compared to its lifetime for decay to the ground
state, the triplet trap's population will be deter-
mined by the singlet trap's population. In this
case, the problem must be considered in terms of
the bandwidth and trap depth of the singlet exciton

and trap system, giving careful consideration to
the question of equilibrium. In studying triplet
systems, if these complications arise, they can be
eliminated to a large extent by suitably filtering the
excitation light so that only the first triplet excited
state is produced.

D. Qualitative features of TCB in the non-Boltzrnann region

The intensity-vs-temperature data for the tmo

traps in deuterated d2-TCB crystals in the tem-
perature region before Boltzmann equilibration (1)
are illustrated in Fig. 11(a). The predicted be-
havior for a system of this type is indeed observed.
The shallow-trap intensity decreases and the deep-
trap intensity increases as the temperature in-
creases. The shallow-trap gd-TCB and the deep-
trap hz-TCB are 12. 6 and 23. 6 cm ' below the
d2-TCB triplet band (k = 0), respectively. Because
the Boltzmann factor is small in the temperature
region of interest, there is a significant difference
in the detrapping rates K„and K~,. Apart from
the phenomenological observation that the tempera-
ture dependences of the two traps qualitatively be-
have in the proper fashion in region I, several in-
dependent experimental observations conclusively
demonstrate that K„»K„,for this system. In
Fig. 13 the zero-field optically detected magnetic-
resonance (ODMR) spectra' for the two traps
found in deuterated TCB are illustrated. These
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FEG. 13. Optically detected magnetic-resonance spec-
tra for the deep trap (upper spectrum) and the shallow
trap (lower spectrum) found in deuterated tetrachloroben-
zene in the non-Boltzmann temperature region I. The A.

peaks are electron-spin-only transitions. The 8 and 8' peaks
are Cl and Cl electron-spin-plus-nuclear-quadrupole-
spin transitions, respectively. The C peaks are electron-
spin-plus-Cl —and Cl~v-double-nuclear-quadrupole-
spin transitions. The large peaks in the deep-trap spec-
trum have been truncated to facilitate display. In the
deep-trap spectrum between peaks B ' and C on the low-
frequency side is a peak going in the opposite direction
from the rest of the deep-trap spectrum, and in the same
direction and at the same frequency as the shallow-trap
elec tron-spin-only transitions.
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spectra. are obtained by monitoring the optical
emission to the electronic origin from the two

traps separately as a microwave field is swept in

frequency. ' The upper spectrum is the optically
detected electron zero-field D- I E t transition of
the deep trap, h2-TCB. The peak labeled A cor-
responds to electron-spin-only transitions while
the peaks labeled 8 and 8' are the simultaneous
electron-spin-plus-' CI- and Cl-nuclear-quad-
rupole transitions, respectively. ' The 8 and
8' peaks are separated from the center line by the
characteristic Cl and Cl excited-state nuclear
quadrupole frequencies. The C peaks correspond
to simultaneous electron-spin-plus — Cl — and Cl-
double -nuclear -quadrupole transitions. These
transitions are split from the electron-spin-only
transition A peak by the difference in the Cl and

Cl quadrupole frequencies. On the low-frequency
side of the deep-trap spectrum between peaks 8"
and C is a peak going in the opposite direction from
the rest of the spectrum at exactly the frequency
associated with the shallow trap D-tEl transition.
This will be referred to as the T peak. The major
peaks A and 8 of the deep-trap spectrum have been
truncated to facilitate display. The lower spectrum
in Fig. 13 is the D-I El transition of the shallow
trap, hd-TCB. Only one peak is observed even at
moderately high microwave powers at tempera-
tures above 1.3 K. This peak corresponds to the
fully allowed electron -spin -only transition. The
change in the light intensity in the shallow-trap
spectrum is opposite the direction of the change in
the light in the deep-trap spectrum except for the
T peak. These results can be understood as
follows.

The spin alignment of the shallow trap is changed

by the application of the microwave fieM at the
transition frequency, 3.5600 6Hz. This change in

spin alignment is at least partially carried into the

exciton band by shallow-trap detrapping processes.
The net result is that the exciton band acquires an

altered spin alignment which is carried into the

deep traps by the trapping process K«. This re-
sults in a change in the deep-trap light intensity in

the same direction and at the same microwave fre-
quency as the shallow-trap transition. This is the
observed T peak in the deep-trap spectrum. Simi-
lar effects are observed in Q-TCB crystals when

the exciton-band spin alignment is altered by a
microwave field and the trap emission is moni-
tored. ~0 The significant point here is that there
is no corresponding T peak in the shallow-trap
spectrum even though the deep-trap transition is
more than an order of magnitude stronger. This
implies that the shallow-trap excitations are de-
trapping, migrating, and retrapping in deep-trap
sites, but that deep-trap excitations are not trans-
ferring population to the shallow-trap sites to any

s ignif icant extent.
A second important observation can be made

from the ODMR spectra. Because the electron-
spin and the nuclear-quadrupole eigenstates are
coupled by the electron-nuclear hyperfine interac-
tion, only the pure electron transition will be ob-
served in the absence of the hyperfine interaction.
If the lifetime of a state is short compared to the
inverse frequency associated with the hyperfine in-
teraction, then the triplet state electrons will not
be influenced by hyperfine interaction and the cou-
pling of the electron eigenstates to the nuclear
eigenstates will vanish, and the quadrupole peaks
[8( Cl) and B'( Cl)] will be absent from the
ODMR. In TCB and similar compounds the hyper-
fine interaction is on the order of 1 MHz. ' The
fact that quadrupole transitions are not observed
in the shallow-trap ODMR spectrum sets an upper
limit of less than 1 p. sec for the time an excitation
remains trapped in the shallow trap at 1.3 'K. On

the other hand, the fact that strong quadrupole
peaks are observed in the deep-trap ODMR spec-
trum implies that excitations remain in the deep
traps for times much longer than 1 p.sec. When
the temperature is lowered to about 1„2'K to de-
crease K„, weak quadrupole satellites on the shal-
low-trap spectra appear at high microwave power,
indicating that the detrapping rate constant K„ is
in fact becoming smaller. Thus, the ODMR data,
in addition to the temperature dependence of the
trap emission data, establish that in the tempera-
ture region I immedietaly before Boltzmann equili-
bration occurs the shallow trap is detrapping
rapidly while the deep trap is detrapping slowly
relative to their lifetimes, i.e. , K„»K~,.

Finally„we would like to outline a method for
measuring the absolute detrapping rate constants
K„and K~, by an optically detected magnetic-
resonance experiment, in which the population en-
tering the trap via K» and K« is completely re-
moved from consideration. Specifically, it has
been shown by Harris et al. 3 that any state of the
electron-spin coherence associated with the excited
state and the full correlation function for dephasing
of the electron-spin ensemble can be observed by
the optical detection ' of electron-spin echoes
or spin locking. By viewing the excited triplet
state in an interaction representation which re-
moves the electron-spin zero-field splitting it can
be shown that the population of one of the two spin
sublevels being coupled by the time-dependent mi-
crowave field can be represented as a pseudomag-
netization along the positive z axis of the interac-
tion representation. Population in the other spin
sublevel in the laboratory frame is related to a
pseudomagnetization along the negative z axis of
the interaction representation. When the time-
dependent density matrix describing the dynamics
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FIG. 14. (a) Relationship of the phosphorescence in-
tensity to the pulse sequence used to spin lock. E~ re-
fers to the total decay rate of the triplet-spin sublevel
responsible for phosphorescence. (b) Micro@rave pulse
sequence for spin locking. (c) Relaxation in the rotating
frame, T&p, for the ~7(* state of d2-TCB in dg4-durene at
2. O'K.

of the electron-spin ensemble is displayed through
the electric dipole transition moment responsible
for phosphorescence intensity, usually only z com-
ponents of the interaction representation are ob-
servable' in the emission. In the present problem,
the electron-spin coherence can be used to mea-
sure kinetic phenomena, such as the detrapping
process, in a unique way. By applying a v/2 mi-
crowave pulse to one of the three zero-field tran-
sitions of a particular trap state, say the deep
trap, the spin-sublevel populations become satu-
rated in the laboratory frame but are still coherent-
ly coupled. The corresponding pseudomagnetiza-
tion in the interaction representation is simply
tilted 90'. Spin locking ~ the population in the ro-
tating frame by phase shifting the applied micro-
wave field 90' immediately after the v/2 pulse
prevents the spin coherence prepared by the initial
7T/2 pulse from being lost for a time corresponding
to TI p TI p can be measured by restoring the
pseudomagnetization back to the z axis by an addi-

tional v/2 pulse with the same phase as the initial
v/2 pulse and measuring the resulting change in

phosphorescence, nJ (cf. Fig. 14), as a function
of the spin-locked time &. The uniqueness of spin
locking to the measurement of kinetic phenomena
is that once the electron spins have been locked in
the rotating frame any population entering the trap
at later times via K„. or K~; enters along the plus
or minus z axis in the rotating frame. The elec-
tron-spin coherence of this additional population
is, however, lost very rapidly via rotary preces-
sion' in the plane perpendicular to the applied field
in a time corresponding to the inhomogeneous re-
laxation time T2*. In short, in the rotating frame,
this additional population never gets spin locked.
The net effect in the laboratory frame is that any
population entering the trap state after the initial v/2
pulse gets incoherently and equally distributed into
both spin sublevels, hence, when the final v/2
pulse is applied to restore the spin-lock popula-
tion, there will be no change in phosphorescence
AI (cf. Fig. 14) due to the incoherent non-spin-
locked population. Thus, T» is identically equal
to K„' or K~,' ~hen other conA ibutions to relaxatio~
are small compared to detrapping.

The ability to measure the absolute value for the
detrapping rate constant or just a lower limit de-
pends upon the magnitude of these other contribu-
tions. It has been already demonstr ated ' that de-
phasing of a spin-locked ensemble due to fluctuating
local fields (principally I'ields due to the nuclear
spine) can be eliminated by the application of a
locking field, @AC& large enough to ensure that the
resonance condition in the rotating frame, @AC„ is
larger than nuclear-electron dipole or hyperfine
coupling. In effect, a large yX, eliminates con-
tributions to the electron TIp from nuclear-spin
diffusion. The only other serious limitation on

TI p apart from the t rap lif ctime, is ele ctron
spin-lattice relaxation T, . In the non-Boltzmann
temperature region in the TCB system this is not
a limitation on K„. T, is on the order of the life-
time of the triplet state, while detrapping rates
are three to four orders of magnitude faster. For
deep traps, however, K~,' can approach the radia-
tive and radiationless lifetime. This is illustrated
in Fig. 14 for d~-TCB doped in d«-tetramethyl-
benzene (a 1450 cm '). A T„of 43 msec' at
2. 0 'K was found, a value representative of the
lifetime of the triplet state. In the Y trap (n, = 53
cm ') in Q-TCB, however, the value for the loss
of electron-spin coherence of -600 p, sec was
found by a technique similar to spin locking. The
details of these experiments will be reported later.
Even at this initial stage of development, it is
clear that experiments based on the measurement
of electron-spin coherence in the rotating frame
offer another new and unique method for studying
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In view of the central role the detrapping rate
plays in achieving Boltzmann equilibrium, a con-
crete model for the detrapping process whose de-
tails can be verified and tested experimentally is
desirable. In this context we develop a model in
this section that describes detrapping to band
states in a general way but includes in a well-de-
fined and specific manner important considerations
such as the phonon dispersions and populations, the
exciton dispersion, and phonon-trap interactions.
We will only consider single-phonon-single-trap
interactions where the decay of the trap into the
band conserves the total momentum and energy of
the over-all process. Further we shall assume
that the initial interaction of a phonon and trap re-
sults in an intermediate state that is degenerate
with some A state in the band. The decay of the
intermediate localized state into the delocalized
band states is taken to be a radiationless relaxa-
tion process and is displayed in the form of a
Golden-Rule rate. 0 The assumptions implicit in
this model are that the creation of the intermediate
state is a stochastic process ' and that the decay of
the intermediate trap state into the band states is
irreversible in the sense that recurrence is neg-
ligible because of the high density of exciton states
in the band and the finite lifetime of A states in the
band into which the intermediate has evolved. This
is schematically illustrated in Fig. 15.

In this model the probability per unit time of a
trap (r I interacting with a phonon P(e) of energy e

and detrapping into a specific band state (0 I having
momentum hk via an intermediate state 7,. is given
by

P

ik

4p

E:xcitari
Band

E,

I"IG. 15. Schematic representation of the detrapping
process. P(&) is a phonon of energy & interacting with
a trapped excitation 7 to produce an excited trap state 7'&

equienergetic with the ith exciton band state, The exci-
tation then decays into the ith band state. E& is the energy
difference between the trap v and the band state. The
energy of the phonon P(&) must obey & E;.

the dynamics of energy migration and, in this case,
the absolute detrapping rates.

VII. RADIATIONLESS RELAXATION IN TRAP-EXCITON
DECAY: A MODEL FOR DETRAPPING TO BAND STATES

P.„=(2 v/h)(n( e)) r,'(TP(e) ~l'Cr„ tr, P(e —F, )) ~'

~ ((r, P(e. -Z, ) IX„,'kP(e F,.)) ~'p(Z, . ) .
(7. &}

(n(e) ) is the number of phonon states with energy
e; I (vP(e') I err I r, P(& —E,.)) I is the probability of
creating an intermediate &; which can be identified
with I r, P(e —E,)). Both direct and Raman' trap-
phonon interactions are included by & = E; and
e &I:;, respectively. Obviously the initial phonons
P{e}must have energies greater than or equal to
E,. unless multiphonon processes are included. The
radiationless decay of the intermediate 7,. into the
exciton manifold whose A statesare atenergies E;
above the trap is given by I (r,(P(e —8, ) I Krs I kP(e
—E;)) I p(E;), where p(E, ) is the exciton density-of-
states function evaluated at E, . We will assume
that the final phonon P(e —E,)is not .bound to or does
not interact with the final exciton A state. With this
assumption the intermediate trap-exciton coupling
Hamiltonian KTE does not depend upon coordinates
of the phonon wave vectors, and hence only coordi-
nates of the trap and band state need be considered.
Although there are many mechanisms (i.e. , many
forms of 7Crs) which could describe the coupling of
the intermediate trap to the band, in the absence of
experimental data it is not clear at this poi, nt what
the most appropriate choice would be. The coupling
matrix elements must certainly, however, reflect
the exchange between the trap and band of both elec-
tronic energy and the local distortion that is adia-
batically propagated with the excited state in the
Frenkel limit.

The average number of phonons at energy e at
temPerature T, (n(e))r, is given by the Planck
distribution function,

1
(n(e)) r =

in which the phonon energies e are given explicitly
by the phonon dispersion of the crystal. The total
detrapping probability per unit time, which is the
detrapping rate constant K„or K„, is found by
summing over all phonons of energy e~ E; and then
summing over all intermediate states 7, which
have energies E; greater than or equal to the energy
difference between the bottom of the band and the
trap, i. e. ,

fC„=Z 5 P.„. (7.3}
e&E&

When considering the temperature region in
which K„ is just becoming nonzero, E; ~& AT, the
Planck distribution function can be approximated
by

1 -e/k T
e~r

Further, since the one-dimensional exciton den-
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sity-of-states function p(E;) is sharply peaked at
k = 0 and k = + v/a, we anticipate that intermediate
states ~, with energies equal to the energies of the
top and bottom of the band might be expected to
play the dominant role in the transition probability.
If detrapping occurs selectively' to one k state, say
k= 0, ' then the bandwidth-to-temperature ratio
would be relatively unimportant. On the other
hand, in the absenee46 of the k-dependent trap-
exciton coupling, if the bandwidth is significant
relative to kT, the populations of phonons with en-
ergies capable of producing intermediate states at
the top of the band will be small compared to the
number of phonons available to produce intermedi-
ate states at the bottom of the band. In this limit,
the expression for K„can be approximated by con-
sidering only one intermediate state at the bottom
of the band (which will be k = 0 or k = a w/a depend-
ing upon the sign of P). In either of these limits,
the expression for K„becomes

K„~C Z p(e)e '+ =Cp(E;) e (7. 5)

VIII. EXPERIMENTAL

1, 2, 4, 5-tetrachlorobenzene (TCB) was pur-
chased from Aldrich Chemical Co. , recrystallized
from ethanol and vacuum sublimed to remove resid-
ual solvent. The recrystallized TCB was vacuum
sublimed into a zone-refining tube, repeatedly out-
gassed, and sealed under vacuum in a 10-mm-diam

where E; is the energy of the intermediate state r;
which coincides with the maximum density of states
of the band in one case, or to the particular k state
(k=0) in the band in the other. All the non-tem-
perature-dependent terms except the density-of-
states function have been collected into the constant
C, with the assumption that the phonon-trap inter-
action is constant over a range of phonon energies
& close to E,.

In either of the above two limits the temperature
dependence of the detrapping rate would appear as
an activated process with an Arrhenius-like activa-
tion energy E;. In reality, however, there is no
activation, and E; simply reflects the phonon dis-
tribution. Moreover, when the densities of k states
at the energy of the intermediate trap state differ,
as would be the case in mixed crystals with exciton
chains of varying lengths, the absolute value of the
detrapping rate K„or K„would change via p(E;)
[Eq. (7. 5)]; however, the apparent activation ener-
gy F, would stay constant except for small changes
resulting from differences in the band dispersions
for different finite chain lengths. An experimental
investigation into the validity of this model is being
pursued using some of the optically detected mag-
netic-resonance techniques described in Sec. VI.

tube. The sample was then zone refined for 6QQ

passes at a rate of 1 cm/h. Only the center third
of the zone-refined material was used.

Deuterated TCB was prepared as follows. "
DzO and SO, were reacted to form DzSO4. D2SO4
and h2-TCB were then heated for 12 h in a sealed
tube at 150'C. The cold reaction mixture was
poured onto cracked ice and the exchange product
was filtered off, washed with water, and used as
the starting material for the next exchange. Five
successive exchanges were performed in this man-
ner. The final product was washed thoroughly
with water, recrystallized from ethanol, vacuum
sublimed, and zone refined for 300 passes. Two
separate batches were prepared in this manner.

The percentage of deuterium in each sample was
determined in the following manner. An accurately
weighed sample from each batch of the deuterated
TCB was dissolved in a known amount of CSz.
Known amounts of dioxane, C4H,O~, were added
until the concentration of protons from the two
species in the CS~ solution were approximately
equal. Proton NMR spectra were then taken and
integrated using a Varian model T60 NMR spec-
trometer. The spectra were also integrated mechn-
ically by taking the area under the spectral peaks.
Comparison of these areas allowed the computation
of the percent of deuteration of the TCB. As a
check on this procedure a second standard was
used. A weighed sample of deuterated TCB was
dissolved in a known volume of deuterated benzene
95. 5/(,-D. The deuterated benzene served as an
internal standard in the analysis of the proton NMR
spectra. Both of these procedures were repeated
6 times and gave the same result, although the
standard deviation was smaller when using the
dioxane standard. The deuterated TCB samples
contained 97. 5 + 0. 1% deuterium.

Since the deuteration procedure is limited by the
percent deuteration of the D~SO4, the deuterated
TCB consisted of 3 species, A, -TCB, hd-TCB,
and d, -TCB, Assuming that the substitution reac-
tion proceeds with the same probability for ex-
change of either a hydrogen or deuterium atom
with the ring, the percentage of the three species
found in the sample can be determined by their
statistical probabilities. A sample which contains
97. 5% deuterium is composed of 95. Q6% d2-TCB.
4.88%%uq kd-TCB, and 0. 08%%uo h2-TCB.

Quantities of both TCB and deuterated TCB were
vacuum sublimed into individual crystal-growing
tubes and outgassed. Single crystals were then
grown using the Bridgman technique. The large
single crystals were cleaved, and small transparent
pieces were used as experimental samples. The
samples were placed in a liquid-helium Dewar
which was cooled slowly to 77 oK over a period of
30 min, after which liquid He was added. The tem-
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perature was monitored by an NRC Equipment
Corp. Alphatron vacuum gauge„ type 530. The
temperature can be read to 0. 01'K; however, a
small systematic error in temperature measure-
ment may occur if the crystal is not in complete
thermal equilibrium with the liquid-helium bath.
The temperature was varied between 4. 2 and
1.35 "K by changing the rate of pumping on the
liquid helium.

The samples were illuminated by a 100-W PEK
0

high-pressure mercury arc lamp through a 2800-A
interference filter. Excitation takes place into the
singlet manifold and after intersystem crossing the
first excited triplet state is populated. Phospho-
rescent emission from the triplet state is detected
at right angles to the exciting light using a +-m
Jarrell Ash Czerny- Turner scanning spectrometer
with a cooled EMI 6256 photomultiplier tube. The
spectrometer is also fitted with a camera which
was used for absorption spectra to determine the
exciton origin and trap depths. The phosphorescent
emission spectrum of the g-TCB samples consists
of two electronic and vibronic origins, one from the
exciton band, 3748. 2 A, and the other from a trap,
21.3 cm ' lower in energy. A detailed analysis of
the phosphorescence spectrum has already been
reported. "~ Although the exact nature of this
trap is unknown, doping of impurities into TCB
crystals does not enhance the intensity of this trap,
but rather produces another trap of lower energy.
The trap is thought to be associated with a crystal-
lattice defect. At 4. 2'K, the dz-TCB spectrum
consists of three phosphorescence origins, one
from each of the three species found in the deuter-
ated TCB crystal. The d2-TCB triplet-exciton-
emission origi. n is at 3V45 A. The mono deuterated
trap, hd-TCB, is 12.8 cm ' lower in energy, and
the diproto trap, h -TCB is 23. 5 cm ' lower in
energy than the exciton origin.

Optically detected magnetic resonance (ODMR)
spectra of the trap in the TCB crystals and of the
traps in the deuterated TCB crystals gave charac-
teristic tetrachlorobenzene spectra. The details
of the TCB trap's ODMR spectra and of the experi-
mental setup are reported elsewhere. "

The results of the trap-intensity-vs-tempera-
ture measurement are shown in Fig. 6 for the
Aa-TCB and in Fig. 11 for the dz-TCB traps. The
figures are typical of several sets of data taken on
separately prepared TCB single crystals and on
single crystals prepared from each of the two
batches of deuterated TCB.

Finally, all computer calculations illustrated in
the figures and tables were performed on a CDC 7600.

IX. SUMMARY

(i) We have attempted to explain in a general way
the mechanism by which thermal equilibrium be-

tween localized trap states and delocalized band
states in solids is achieved. The essential fea-
ture of the statistical model which satisfactorily
accounts for many experimental observations is
that at low temperatures, exciton migration must
propagate coherently as a wave packet rather than
by a random-walk process in order to thermally
equilibrate the exciton and trap states within the
lifetime of the excited electronic state. A proper
description of the process or processes related to
the equilibrium populations of trap and band states
must include the density of k states, the number of
A states comprising the band relative to the number
of localized trap states, the detrapping rates which
are dependent upon phonon dispersions, the trap
depth, the sign and magnitude of the intermolecular
interaction which gives rise to the band dispersion,
and phonon-exciton scattering.

(ii) The application of this model to crystals
representative of one-dimensional bands allows
one to extract from the temperature-dependent trap
emission the magnitude of the band dispersion, the
sign of the intermolecular interaction matrix ele-
ment, and an estimate of the coherence length and
average group velocity of the exciton wave pack-
ets.

(iii) ln a crystal characterized by two or more
trap states at different energies„below a certain
temperature, a "bottleneck" in the Boltzmann dis-
tributions between band and trap states results be-
cause of the inability of the phonons to detrap the
deeper traps at a sufficient rate relative to the
radiative and radiationless lifetimes of the state.
We have solved the coupled differential equations
and interpreted the various rate processes in
terms of the coherent model.

(iv) We have derived a general theory for de-
trapping which treats the detrapping rate constant
as a stochastic radiationless relaxation process in
which the trap state once thermally activated de-
cays irreversibly into the density of exciton
states.

(v) Finally, we have presented a series of ex-
periments on one-dimensional molecular crystals
designed to test the model. Specifically„we have
shown how electron-spin coherence and optically
detected magnetic resonance in localized states
can be used to obtain specific information regard-
ing the dynamics of detrapping and the relationship
of detrapping to Boltzmann equilibration between
trap and band states.
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