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Elastic constants of the perovskite RbMnF, using a Born model
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The elastic constants of RbMnF, were calculated using a Born model, which consists of electrostatic
and Born-Mayer repulsive interactions. This model has two adjustable parameters; these were
determined from the equilibrium volume and one of the three second-order elastic constants. Calculated
third-order elastic constants agreed reasonably well with experiment. Also calculated were the
electrostatic contributions to the first-, second-, and third-order elastic constants of the cubic perovskite
structure for several values of ionic charge. Relationships of these constants to those of the NaCl- and
CsCl-type structures are given.

I. INTRODUCTION

Crystals having perovskite structures have been
studied extensively because of their phase transi-
tions —electric, magnetic, and structural. Such
transitions are often characterized elastically be-
cause (i) elastic constants, which are readily mea-
surable, usually behave anomalously at or near
phase transitions, and (ii) interatomic forces and

potentials can be deduced from elastic constants.
Electrostatic forces affect both the energy of a

crystal and, often, its elastic constants. Differ-
entiation of the electrostatic (Madelung) energy
with respect to appropriate strains yields the elec-
trostatic contributions to the elastic constants, but
such results have been given previously only for
crystal structures simpler than perovskites. For
perovskites, electrostatic interactions have been
considered previously only for determining the
electrostatic energy. ~

Short-range forces, such as ion-ion repulsive
interactions, may contribute little to the energy
but dominantly to higher-order elastic consta. nts,
that is, to higher spatial derivatives of the energy.
Conversely, because of their long-range nature,
electrostatic forces contribute progressively less
to higher derivatives of the energy.

Inthis paper the elastic properties of RbMnF3
are described by a Born model, which contains
electrostatic and ion-ion repulsive interactions.
RbMn73 is a cubic perovskite whose second- and
third-order elastic constants were measured pre-
viously. ' Also reported here are the electrostatic
contributions to Brugger-type elastic constants of
cubic perovskites; a general method developed re-
cently by Fuller and Naimon was used. Results
for first-, second-, and third-order electrostatic
constants are given for several values of ionic
charge.

II. ELECTROSTATIC CONTRIBUTIONS

The cubic perovskite-type crystal structure has
a, &m3m = O~ space group and five atoms per unit

cell. The structural unit ABX~ can be visualized
as a simple cube with A ions at the corners, a 9
ion at the body center, and p ions at the face cen-
ters. Unlike the case of simpler ionic crystal
structures, such as NaCl and CsCl, Madelung con-
stants of perovskites vary with ionic charges. To
distinguish structures with different ionic charges,
the notation of Templeton is used here. %hen the
ionic charges are +1, +2, and —1 for A, 8, and X,
respectively, the structure is denoted as 1-2 type;
when the ionic charges are + 2, + 1, end —1, re-
spectively, the designation is 2-1 type. Similarly,
the types 1-5, 5-1, and 3-3 can be defined when X
has charge —2. The Madelung constants of these
perovskite types were determined by Templeton,
but his procedure cannot be extended to differen-
tiation of the electrostatic energy with respect to
strains to obtain elastic constants.

The method used here is an extension of a pro-
cedure developed recently by Puller and Naimon.
In this approach both the Madelung energy and the
electrostatic contributions to the Brugger -type
elastic constants through third order can be calcu-
lated. This procedure is briefly as follows. The
Ewald-Fuchs ' method is used to determine the
electrostatic energy, per unit initial volume, of a
homogeneously deformed lattice of ions. The re-
sulting energy expression contains the atomic vol-
ume, the ionic charges, and summations over both
the real and reciprocal lattices. The method of
homogeneous deformation is then used to obtain de-
rivatives of the electrostatic energy with respect
to Lagrangian strains, the results being the elec-
trostatic contributions to the Brugger-type elastic
constants. The method is general and is valid for
both ionic and metallic structures. Effects on the
elastic constants due to internal strains, which
occur in nonprimitive lattices when ions a.re not at
centers of symmetry, were also treated by Fuller
and Naimon. It is emphasized that the ions of a
cubic perovskite are at centers of symmetry.
Thus, internal strains and their contributions to
elastic constants are irrelevant to the present work.
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TABLE I. Madelung energy and electrostatic Brugger-type elastic constants for various

types of perovskites. Entries are in units of e //a, where e is the electronic charge and a
is the lattice parameter.

&pe:

C~

~11j

—12.377 468
4.125 823

—16.495 904
2, 059 218

84. 989 721
—l.255 101
—7.785 887

2-1

—10.917 700
3.639 233

—8.093 657
—l.412 022
27. 705 378
6.381 454

—5.702 800

3-3

—44. 554 975
14.851 658

—51.304 251
3.374 638

241.617 144
V. 452 056

—31.777 303

1-5
—58. 535 492

19.511831
—76.412 721

8.938 614
405. 846 737

—11.891 567
—20. 909 936

—46. 857 351
15.619117

—9.194747
—18.831 302
—52.428 008

49.200 872
—4.245 235

Present results for the Madelung energy U and

the electrostatic contributions to the first-,
second-, and third-order elastic constants a.re
given in Table I. Since electrostatic forces are
central forces, the Cauchy relations czz=c~4,
cg$g —c$5$ and cf+ c$44 c456 hold. The Madelung

energies agree to six significant figures with those
determined by Templeton. Also, the following
calculational checks were obtained among the elec-
trostatic elastic constants:

lcg= —3U,

ca+ 2c& = U;

(1)

(2)

c111+6C112+ 2c123 5U' (3)

and

n(2-1) = a(1-2) + a(CsCl) —a(NaCl),

a(3-3) =4n(1-2)+ a(CsCl) —2n(NaCl),

a(1-5) = 4n(1-2) + n(CsCl) + 2a (NaCl),

(4)

(5)

(6)

n(5-1) = 4a(1-2) + 9a(CsCl) —6n(NaC1). (7)

In these equations every Madelung constant must

have the same scaling factor, taken here to be the
unit-cell dimension g. The electrostatic energy
per molecule is then ae /a, and the electrostatic
energy per unit volume is

U= ne /aV, (8)

where V is the molecular volume and e the elec-
tronic charge. For cubic perovskites and CsCl-
type structures, V = g3; for NaCl-type structures,
V = ,'cP. Thus, when the—electrostatic energy den-
sity U is in units of e /a, it follows that

U(2-1) = U(1-2) + U(CsC1) ——,
' U(NaCl),

U(3-3) = 4 U(1-2) + U(CsCl) —2 U(NaCl),

(9)

(10)

Relationships among the electrostatic elastic
constants of the different perovskite types and those
of the NaCl- and CsCl-type structures can be easily
developed. Templeton' showed that the following
identities hold a.mong the Madelung constants a,

U(l-5) = 4U(l-2) + U(CsCl) + 2U(NaCl),

U(5-1) = 4 U(1-2) + 9U(CsC1) ——,'U(NaC1). (12}

Equations (9)-(12) are also valid when the struc-
tures involved are subjected to the same homoge-
neous deformation; both sides of Eqs. (9)-(12)
have the same strain dependence. Thus, Eqs. (9}-
(12) are true not only for the energy density U, but

also for electrostatic elastic constants of all or-
ders. Numerical checks, using the cubic perov-
skite data of Table I and the NaC1 and CsCl tabula-
tions of Fuller and Naimon, verified these rela, —

tionships for both the energy density and the elastic
constants (first, second, and third order).

III. BORN MODEL FOR RbMnF3

In this section the electrostatic interactions will
be combined with ion-ion repulsive interactions to
determine the elastic constants of RbMnF3, a
perovskite for which both second-order and third-
order constants' have been measured. This type
of Born model has proven useful in describing the
alkali halides, for example. Because only the
static lattice is considered here, the appropriate
experimental elastic constants for comparison
with theory are obtained by linearly extrapolating
the high-temperature constants to 0 K. Thus, for
RbMnF3 the "athermal" values of the lattice param-
eter and of the second-order elastic constants, both
determined by Melcher and Bolef, will be used.
Third-order elastic constants of RbMnF3 are known

only at room temperature
&

not knowing their tem-
perature dependence prevents determination of
"athermal" values. For alkali halides, calcula-
tions predict a typical change of 10-20% for third-
order constants between room temperature and

0K io

In RbMnF3 the "athermal*' lattice parameter a
is 4. 209 A. The closest sets of ions are the Mn-F
pairs separated by —,'a = 2. 1045 A; the next closest
sets are the Rb-F and F-F pairs with spacings of

&~2a = 2. 976 A. The Goldschmidt-ionic radii of
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F, and Mn" are 1.49, 1.33, and 0. 91 A, re-
spectively. " By adding appropriate radii, it is
seen that the dominant ionic overlap occurs be-
tween Mn and F ions. The Rb-F and F-F overlaps
have approximately the same size, but both are
considerably smaller than the Mn-F overlap. The
ion-ion overlap results in a repulsive potential,
assumed here to have the weLL-known Born-Mayer 12

form

(p(r)=Ae ' ', (13)

where r is the interionic distance, and A and 5 are
adjustable parameters. Because this potential is
short range, only nearest-neighbor interactions
were considered for the various ion pairs.

Attention is focused first on the Rb-F and F-F
interactions. Following Qhate, to minimize the
number of parameters, no distinction is made be-
tween these interactions. The Rb and F ions then

comprise an fcc lattice. The nearest-neighbor
distance is so= —,'g v 2, and the ionic volume is
V, = —,'a . For this lattice the ion-ion repulsive in-
teractions contribute to the energy and elastic con-
stants as follows

U = (8/V, )[q (r)],.„
ci = (2~/ V )[Dy(r)],-„,
cii = 2cia= (r,'/ V, )[D' y(r)], „0,

c ii = 2cii2 (ro/2V&)[D g(r)]..., ,

(14)

(15)

em=0

where D = (1/r)d/dr. Because of the central-force
nature of the assumed potential p(r), the Cauchy

relations hold. Using Ghate's RbF values of
5=-0. 333 A and A=O. 1138x10 ' J [Qhate, Eq.
(20)], Eels. (14)-(lV) were evaluated for RbMnFS.
These results are listed in the second column of
Table II. The first column of Table II lists the
electrostatic contributions to the energy and elastic
constants of RbMnF3, obtained from Table I with
e /e = 0. OV3 503 x 10 N/m .

The most important ion-ion repulsions, due to
Mn-F interactions, can be treated analogously.
For these pairs the nearest-neighbor arrangement
is the same as for NaCl. Elastic constant contri-
butions from p(r) are thus nonzero only for ci, cii,
and c~». ' ' It can be easily shown that

(20)

c„,= (r,'/ V)[ D'q(r)]„.„, (22)

where V, =-,'a and ~o= &a. Here the parameters
A and b of the potential y(r) are adjusted to the ex-
perimental value of c» and to the equilibrium con-
dition that the total calculated value of c& be zero.
The Mn-F repulsive-potential parameters are then
A = 0.4469x 10 J and g =0. 2033 A, with

r, /b = 10.350. The contributions to the energy and
the elastic constants of RbMnF3 from the Mn-F
repulsive interactions are given in the third column
of Table II. The total calculated constants and
their experimental values are given in the fourth
and fifth columns.

TABLE 1I. Contributions to the energy and elastic constants of RbMnF3. Entries are in
units of 10" N/m .

~&44

~4b6

Electrostatic
—0. 910

0.303

1 g 2 13

0.151
0. 151

6.247

—0.092
—0.092

—0.572
—0.572
—0.572

Rb-F, F-F

0.049

—0.144

0 ~ 717

0.359
0, 359

—1.977
—l.977

Mn-F

0.046

—0.159

1.802

—22. 418

Total

1.307

0.510
0.510

—2. 07
—2. 07

—0.57
—0.57
—0.57

Expt.

1 307

0.423
0.328

—2.4=0.2
—1.8 ~. 0.1

--0. 4
—0.6
—0.5

~0.5
=0.3
~. 0.1

-18.4=0.4'

Reference 4. Reference 5.
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IU. DISCUSSION

The model used here to describe the elastic con-
stants of RbMnF3 neglects both van der Waals
forces and many-body forces. Also, thermal-vi-
bration contributions were omitted in comparing
the calculated third-order elastic constants with
room-temperature data. Despite these omissions,
satisfactory agreement between theory and experi-
ment was found.

As in the alkali halides, the ion-ion repulsion
contributes progr essively more as higher-order
elastic constants are considered. In fact, the
third-order constants czqz and c&5& are determined
almost entire1y by Rb-F and F-F repulsive inter-
actions, while c&z& is dominated by the Mn-F re-
pulsive interaction. Of special interest is the ob-
servation that nearest-neighbor repulsive forces
contribute nothing to c~, cq«, and c~~6. Thus,
electrostatic contributions to these constants
should, and do, compare favorably with experi-
ment.

As mentioned above, Ghate's' values for the
Born-Mayer parameters were used to describe
Rb-F and F-F repulsive interactions. However,
choosing a smaller preexponential factor A would
improve the agreement of c&z and c44 with experi-
ment and would not substantially alter agreement
of the other constants. This approach mould re-
quire readjustment of the Mn-F parameters. The
observed failure of the Cauchy condition cfog c44
cannot be explained by the present model, since it
contains only central interatomic forces. A pos-
sible explanation is provided by many-body-type
forces. '

Concerning third-order elastic constants of
BbMnF3, the pattern is clear. To a first approxi-
mation cqqqWO, and all other c;»=0; as shown in
Table II this can be understood by considering the
Mn-F repulsive interactions. The constants c&~z
and cq» are described by Rb-F and F-F repulsive

interactions, and, finally, the constants c~, c&4~,
and c~,e are determined solely by electrostatic in-
teractions, One expects this pattern to hold also
for other cubic perovskite materia ls. Third-order
elastic constants are known for SrTiO, . 6' 7 If a
scaling factor is chosen such that cq& is the same
for both RbMnF3 and SrTiO3, then all other elastic
constants with the exception of c~4 and c&«are the
same within experimental errors. This suggests
that the dominant forces should be between the Ti
and O ions. Indeed, Cowley indicated that the
largest force constants for SrTi03 are those for
the Ti-O interaction. While a calculation for
SrTiO3 was not attempted here, it was observed
that the electrostatic value of c~ = c4&6 agreed with
the experimental value of cq+ within its errors and
was only slightly more negative than the experi-
mental value of c4~6.

Comparison of calculated and experimental elas-
tic constants provides a test of an interatomic po-
tential; the elastic constants describe changes of
the energy density with respect to both volume de-
formations and various shear deformations. That
the present model predicts satisfactorily the elas-
tic properties of RbMnFS gives plausibility to the
deduced interatomic potential. This potential pro-
vides a possible basis for other calculations, such
as thermal vibrations, defect properties, and rel-
ative phase stabilities. Addition of vibrational
effects might allow the model to describe struc-
tural phase transitions, such as those occurring
i.n SrTiO3.
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