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The elastic constants of RbMnF,; were calculated using a Born model, which consists of electrostatic
and Born-Mayer repulsive interactions. This model has two adjustable parameters; these were
determined from the equilibrium volume and one of the three second-order elastic constants. Calculated
third-order elastic constants agreed reasonably well with experiment. Also calculated were the
electrostatic contributions to the first-, second-, and third-order elastic constants of the cubic perovskite
structure for several values of ionic charge. Relationships of these constants to those of the NaCl- and

CsCl-type structures are given.

1. INTRODUCTION

Crystals having perovskite structures have been
studied extensively because of their phase transi-
tions —electric, magnetic, and structural. Such
transitions are often characterized elastically be-
cause (i) elastic constants, which are readily mea-
surable, usually behave anomalously at or near
phase transitions, and (ii) interatomic forces and
potentials can be deduced from elastic constants.

Electrostatic forces affect both the energy of a
crystal and, often, its elastic constants. Differ-
entiation of the electrostatic (Madelung) energy
with respect to appropriate strains yields the elec-
trostatic contributions to the elastic constants, but
such results have been given previously only for
crystal structures simpler than perovskites. For
perovskites, electrostatic interactions have been
considered previously only for determining the
electrostatic energy. '

Short-range forces, such as ion-ion repulsive
interactions, may contribute little to the energy
but dominantly to higher-order elastic constants,
that is, to higher spatial derivatives of the energy.
Conversely, because of their long-range nature,
electrostatic forces contribute progressively less
to higher derivatives of the energy.

Inthis paper the elastic properties of RobMnF,
are described by a Born model, which contains
electrostatic and ion-ion repulsive interactions.
RbMnT; is a cubic perovskite whose second- and
third-order elastic constants were measured pre-
viously.*® Also reported here are the electrostatic
contributions to Brugger-type elastic constants of
cubic perovskites; a general method developed re-
cently by Fuller and Naimon® was used. Results
for first-, second-, and third-order electrostatic
constants are given for several values of ionic
charge.

1. ELECTROSTATIC CONTRIBUTIONS

The cubic perovskite-type crystal structure has
a Pm3m= Oi space group and five atoms per unit

cell. The structural unit ABX; can be visualized
as a simple cube with A ions at the corners, a B
ion at the body center, and X ions at the face cen-
ters. Unlike the case of simpler ionic crystal
structures, such as NaCl and CsCl, Madelung con-
stants of perovskites vary with ionic charges. To
distinguish structures with different ionic charges,
the notation of 'I‘emplet:on1 is used here. When the
ionic charges are +1, +2, and -1 for A, B, and X,
respectively, the structure is denoted as 1-2 type;
when the ionic charges are +2, +1, and -1, re-
spectively, the designation is 2-1 type. Similarly,
the types 1-5, 5-1, and 3-3 can be defined when X
has charge —~2. The Madelung constants of these
perovskite types were determined by Templeton, !
but his procedure cannot be extended to differen-
tiation of the electrostatic energy with respect to
strains to obtain elastic constants.

The method used here is an extension of a pro-
cedure developed recently by Fuller and Naimon. ®
In this approach both the Madelung energy and the
electrostatic contributions to the Brugger-type’
elastic constants through third order can be calcu-
lated. This procedure is briefly as follows. The
Ewald-Fuchs®® method is used to determine the
electrostatic energy, per unit initial volume, of a
homogeneously deformed lattice of ions. The re-
sulting energy expression contains the atomic vol-
ume, the ionic charges, and summations over both
the real and reciprocal lattices. The method of
homogeneous deformation is then used to obtain de-
rivatives of the electrostatic energy with respect
to Lagrangian strains, the results being the elec-
trostatic contributions to the Brugger-type elastic
constants. The method is general and is valid for
both jonic and metallic structures. Effects on the
elastic constants due to internal strains, which
occur in nonprimitive lattices when ions are not at
centers of symmetry, were also treated by Fuller
and Naimon. It is emphasized that the ions of a
cubic perovskite are at centers of symmetry.
Thus, internal strains and their contributions to
elastic constants are irrelevant to the present work.
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TABLE I.
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Madelung energy and electrostatic Brugger-type elastic constants for various

types of perovskites. Entries are in units of e%/a®, where e is the electronic charge and a

is the lattice parameter.

Type: 1-2 2-1 3-3 1-5 5-1
U -12,377 468 -10.917700 —-44,554975 -~ 58.535492 —46,857 351
cy 4,125823 3.639233 14,851 658 19.511831 15,.619117
cyy ~16.495904 - 8.093 657 -51,304251 ~76.412721 -9.194747
cyy 2.059218 -1,412 022 3.374638 8.938 614 -18,831302
Ciyy 84.989721 27.705378 241,617 144 405,846737 - 52,428 008
Ciy2 -1.255101 6.381 454 7.452 056 -11,891567 49,200872
Cia3 -7.785887 -5.702800 -31.777303 —-20.909936 —-4,245235
Present results for the Madelung energy U and U(1-5)=4U(1-2) + U(CsC1) + 3U(NaCl), (11)
the electrostatic contributions to the first-,
second-, and third-order elastic constants are and
given in Table I. Since electrostatic forces are U(5-1)=4U(1-2) +9U(CsCl) — $U(NaCl). (12)

central forces, the Cauchy relations cyp=cyy,
C112=C155 and Cyz3 = C144 = €456 hold. The Madelung
energies agree to six significant figures with those
determined by Templeton. ! Also, the following
calculational checks® were obtained among the elec-
trostatic elastic constants:

c1= - 30, (1)

cu+2cy3=0, (2)
and

C131 +6C112+2C195= = 5U. 3)

Relationships among the electrostatic elastic
constants of the different perovskite types and those
of the NaCl- and CsCl-type structures can be easily
developed. Templeton1 showed that the following
identities hold among the Madelung constants a,

a(2-1)= a(1-2) + a(CsCl) - a(NaCl), (4)

a(3-3)=4a(1-2) + a(CsCl) - 2a(NaCl), (5)

a(1-5)=4a(1-2) + a(CsCl) + 2¢(NaCl), (6)
and

a(5-1)=4a(1-2) + 9a(CsCl) - 6a(NaCl). (7)

In these equations every Madelung constant must
have the same scaling factor, taken here to be the
unit-cell dimension a. The electrostatic energy
per molecule is then ae?/a, and the electrostatic
energy per unit volume is

U= ae?/aV,, (8)

where V,, is the molecular volume and e the elec-
tronic charge. For cubic perovskites and CsCl-
type structures, V,,,=a3; for NaCl-type structures,
V,.=4d’. Thus, when the electrostatic energy den-
sity U is in units of e?/a*, it follows that

U(2-1)=U(1-2)+ U(CsCl) - sU(NaCl),
U(3-3)=4U(1-2) + U(CsCl) - 3U(NaCl),

(9)
(10)

Equations (9)-(12) are also valid when the struc-
tures involved are subjected to the same homoge-
neous deformation; both sides of Egqs. (9)-(12)
have the same strain dependence. Thus, Egs. (9)-
(12) are true not only for the energy density U, but
also for electrostatic elastic constants of all or-
ders. Numerical checks, using the cubic perov-
skite data of Table I and the NaCl and CsCl tabula-
tions of Fuller and Naimon, ® verified these rela-
tionships for both the energy density and the elastic
constants (first, second, and third order).

III. BORN MODEL FOR RbMnF,

In this section the electrostatic interactions will
be combined with ion-ion repulsive interactions to
determine the elastic constants of RobMnF;, a
perovskite for which both second-order? and third-
order constants® have been measured. This type
of Born model has proven useful in describing the
alkali halides, 1° for example. Because only the
static lattice is considered here, the appropriate
experimental elastic constants for comparison
with theory are obtained by linearly extrapolating
the high-temperature constants to 0 K. Thus, for
RbMnF, the “athermal” values of the lattice param-
eter and of the second-order elastic constants, both
determined by Melcher and Bolef, * will be used.
Third-order elastic constants of RbMnF,; are known
only at room temperatures; not knowing their tem-
perature dependence prevents determination of
“athermal” values. For alkali halides, calcula-
tions predict a typical change of 10—-20% for third-
order constants between room temperature and
0K.1

In RbMnF, the “athermal” lattice parameter a
is 4.209 A.* The closest sets of ions are the Mn-F
pairs separated by 3a=2.1045 A; the next closest
sets are the Rb-F and F-F pairs with spacings of
1V2a=2.976 A. The Goldschmidt-ionic radii of
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Rb*, F~, and Mn™ are 1.49, 1.33, and 0.91 A, re-
spectively. ™ By adding appropriate radii, it is
seen that the dominant ionic overlap occurs be-
tween Mn and F ions. The Rb-F and F-F overlaps
have approximately the same size, but both are
considerably smaller than the Mn-F overlap. The
ion-ion overlap results in a repulsive potential,
assumed here to have the well-known Born-Mayer?
form

p(r)=Ae?, (13)

where 7 is the interionic distance, and A and b are
adjustable parameters. Because this potential is
short range, only nearest-neighbor interactions
were considered for the various ion pairs.
Attention is focused first on the Rb-F and F-F
interactions. Following Ghate, '° to minimize the
number of parameters, no distinction is made be-
tween these interactions. The Rb and F ions then
comprise an fcc lattice. The nearest-neighbor
distance is 7,=3a V2, and the ionic volume is
V= 14®. For this lattice the ion-ion repulsive in-
teractions contribute to the energy and elastic con-
stants as follows™ :

U=(6/Vle))yury (14)

c1= 278/ VD@ (1) yary (15)

enn=2c12= (rg/ VD 0 ()]yuy, (16)

c111= 2c112= (75/2V)[DPp(7) ]’“o’ 17)
and

c13=0, (18)

where D= (1/7)d/dv. Because of the central-force
nature of the assumed potential ¢(r), the Cauchy

TABLE II. Contributions to the energy and elastic constants of RbMnFj.

units of 10" N/m?.

relations hold. Using Ghate’s RbF values of
b=0.333 A and A=0.1138x 10" J [Ghate, Eq.
(20)], Egs. (14)-(17) were evaluated for RbMnF;.
These results are listed in the second column of
Table II. The first column of Table II lists the
electrostatic contributions to the energy and elastic
constants of RbMnF;, obtained from Table I with
e?/a*=0.073503x 10" N/m?.

The most important ion-ion repulsions, due to
Mn-F interactions, can be treated analogously.
For these pairs the nearest-neighbor arrangement
is the same as for NaCl. Elastic constant contri-
butions from ¢(») are thus nonzero only for ¢, ¢y,

and ¢yy;. 1" It can be easily shown that
U= (3/ Vi )[gp(/r)]r:ro ’ (19)
1= (’V g/l Vi )[D(p(/r”rsro ’ (20)
Cc11= (7'(4)/ Vi )[Da(p(r)lnro ’ (21)
and
Cinn = (7’2/ Vi )[Datp('r)],,,.o ) (22)

where V;=1a® and 7,=a. Here the parameters

A and b of the potential ¢(7) are adjusted to the ex-
perimental value of ¢,;; and to the equilibrium con-
dition that the total calculated value of ¢, be zero.
The Mn-F repulsive-potential parameters are then
A=0,4469x10"% J and »=0.2033 A, with
7o/b=10.350. The contributions to the energy and
the elastic constants of RbMnF; from the Mn-F
repulsive interactions are given in the third column
of Table II. The total calculated constants and
their experimental values are given in the fourth
and fifth columns.

Entries are in

Electrostatic Rb-F, F=F Mn-F Total Expt.
U -0.910 0.049 0.046 -0.815
cy 0.303 —-0.144 -0.159 0 0
ciy -1.213 0.717 1.802 1.307 1.307%
cr 0.151 0.359 0 0.510 0.423
Caa 0.151 0.359 0 0.510 0.328
cin 6.247 -3.955 —22.418 —-20.13 —18.4:0.4°
C112 -0.092 -1,977 0 -2,07 —-2.4:0.2
Cis5 -0.092 -1.977 0 -2,07 -1.810.1
ca3 -0.572 0 0 —-0.57 ~0.4:0.5
S —0.572 0 0 —-0.57 -0.6+0.3
Cysg -0.572 0 0 -0.57 ~0.520.1

2Reference 4.

PReference 5.
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IV. DISCUSSION

The model used here to describe the elastic con-
stants of RbMnF; neglects both van der Waals
forces and many-body forces. Also, thermal-vi-
bration contributions were omitted in comparing
the calculated third-order elastic constants with
room-temperature data. Despite these omissions,
satisfactory agreement between theory and experi-
ment was found.

As in the alkali halides, the ion-ion repulsion
contributes progressively more as higher-order
elastic constants are considered. In fact, the
third-order constants ¢y3; and c55 are determined
almost entirely by Rb-F and F-F repulsive inter-
actions, while ¢;;; is dominated by the Mn-F re-
pulsive interaction. Of special interest is the ob-
servation that nearest-neighbor repulsive forces
contribute nothing to cypg, €144, and cyge. Thus,
electrostatic contributions to these constants
should, and do, compare favorably with experi-
ment.

As mentioned above, Ghate’s™ values for the
Born-Mayer parameters were used to describe
Rb-F and F-F repulsive interactions. However,
choosing a smaller preexponential factor A would
improve the agreement of ¢y, and ¢, with experi-
ment and would not substantially alter agreement
of the other constants. This approach would re-
quire readjustment of the Mn-F parameters. The
observed failure of the Cauchy condition cy5=cyy
cannot be explained by the present model, since it
contains only central interatomic forces. A pos-
sible explanation is provided by many-body -type
forces. ¥*

Concerning third-order elastic constants of
RbMnFj, the pattern is clear. To a first approxi-
mation cy;;#0, and all other ¢;,,=0; as shown in
Table II this can be understood by considering the
Mn-F repulsive interactions. The constants cyy,
and cy55 are described by Rb-F and F-F repulsive

’ 10

interactions, and, finally, the constants c¢ys, cCy44,
and ¢456 are determined solely by electrostatic in-
teractions. One expects this pattern to hold also
for other cubic perovskite materiels. Third-order
elastic constants are known for SrTiO;. ! If a
scaling factor is chosen such that ¢;; is the same
for both RbMnF; and SrTiO;, then all other elastic
constants with the exception of ¢, and ¢y, are the
same within experimental errors. This suggests
that the dominant forces should be between the Ti
and O ions. Indeed, Cowley®® indicated that the
largest force constants for SrTiO; are those for
the Ti-O interaction. While a calculation for
SrTiO; was not attempted here, it was observed
that the electrostatic value of ¢y = c456 agreed with
the experimental value of ¢j,3 within its errors and
was only slightly more negative than the experi-
mental value of c,s6.

Comparison of calculated and experimental elas-
tic constants provides a test of an interatomic po-
tential; the elastic constants describe changes of
the energy density with respect to both volume de-
formations and various shear deformations. That
the present model predicts satisfactorily the elas-
tic properties of RbMnF; gives plausibility to the
deduced interatomic potential. This potential pro-
vides a possible basis for other calculations, such
as thermal vibrations, defect properties, and rel-
ative phase stabilities. Addition of vibrational
effects might allow the model to describe struc-
tural phase transitions, such as those occurring
in SrTiO;.
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