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TransmittfnIce, luminescence, and yhotocurrent in CdS under two-yhoton excitation
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{Received 25 September 1973)

Two-photon transitions in CdS have been investigated at a single wavelength by measuring the
nonlinear transmittance, photocurrent, and luminescence. The exciting source was the beam of a
Q-switched ruby laser {fee= 1.78 eV). The nonlinear cross section y, for two-photon transitions has
been measured and compared with the predictions of existing theories. The lumineictmce shows, at
room temperature, stimulation effects at a pumping level I, & 4 X 10" photons/cm'sec. On the other
hand, the photocurrent increases quadratically at low excitation levels and shows saturation effects near
the threshold of stimulated emission. This saturation can be correlated to the light-emission stimulation.

INTRODUCTION

In this work we report the results of a study of
two-photon optical transitions in cadmium sulphide.
The two-photon process has been detected using
three different techniques: nonlinear transmit-
tance (NLT), nonlinear photoconductivity (NLP),
and nonlinear luminescence (NI I ). By combining
these techniques, the following results have been
achieved: (a) direct determination of the non-
linear cross section y2 for a two photon process;
(b) measurement of ps product of majority car-
riers in the bulk of the semiconductor; (c) spon-
taneous and stimulated excitonic emission at room
temperature (HT). A photocurrent-saturation
effect which may be correlated to the onset of
stimulated emission has been also observed. It
is worth noting that the whole results of this study
show that two-photon experiments may be very
useful to give the values of optoelectronic param-
eters in the bulk of the sample, thus avoiding the
influence of the surfaces on accuracy of the mea-
surement.

last measurements have been previously de-
scribed. ' The total charge Q induced by two-pho-
ton transitions can be written

where Vo is the collecting voltage, I. is the thick-
ness of the sample along the laser beam, p. is
the mobility of free carriers, v is their free life-
time, N is the concentration of active atoms, y2

is the two-photon nonlinear cross section, and TJ
is the laser-pulse duration.

The luminescence, collected in a direction per-
pendicular to the exciting beam, was analyzed
using a grating monochromator with a photomul-
tiplier followed by a storage oscilloscope. Alter-
natively, the light emission was recorded photo-
graphically with a spectrograph and a 3000 ASA
Polaroid film. Two laser shots gave an observ-
able spectrum with a slit width of 20 p, m.

The transmittance measurements were performed
as it is shown in Fig. 1. The measuring set-up

EXPERIMENTAL PROCEDURE

Figure 1 shows the experimental set-up used
for the simultaneous measurement of transmit-
tance, photocurrent, and luminescence under two-
photon excitation. The incident beam of intensity
Io(photons/cm sec) was obtained from a Q-
switched ruby laser (k~ = 1.78 eV} with 200-MV
peak power and 20-nsec pulse duration. The
beam cross section was about 1.. 5 cm . The en-
ergy of every pulse was monitored with a bearn-
splitter and an SGD 10QA photodiode. Measure-
ments were carried out on a highly photosensitive
monocrystal of Cds (E, = 2. 4 eV), cut in the shape
of a rectangular prism with a pair of carefully
treated parallel faces which formed a plane-par-
allel resonator. The cavity length was about
5 mm. Indium contacts vacuum deposited on two

opposite faces were used for photocurrent rnea-
surements. The experimental details of these
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FIG. 1. Experimental set-up for simultaneous mea-
surement of NLT, NLL, and NLP.
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was tested for linearity and calibrated with a ther-
mocouple calorimeter. %hen there is an one-pho-
ton contribution to absorption, the two-photon
transmittance formula becomes

Of I
1+2NyaIOL [(1—e )/nL] (2)

RESULTS AND DISCUSS1ON

where I~ is the transmitted intensity and n is the
one-photon absorption coefficient. A plot of Io/Ir
vs Io gives a straight line whose intercept on the
ordinate axis is e . For eI «1 assuming
y, =10 ' cm sec, L=1 cm, and %=10 cm ' Ir/I,
becomes about 0. 5 for Io- 5x 10 ' photons/cm sec,
which corresponds to about 15 MW/cm of ruby-
laser light, i.e. , to an optical pumping well below
the damage threshold of CdS (= 100 MW/cm~).

beam technique, give, for 5&+@(d~=3.56 ey and
I„=10'8photons/cm sec, o =1 cm ', correspond-
ing to y2 = 5 x 10 ' cm' sec.

The comparison of the y~ experimental value may
be done using the calculations reported in the Ap-
pendix. From the formula for allowed-allowed (a-a)
transitions [Eq. (Al)] and our experimental result,
it is possible to evaluate the product of the square
of the momentum matrix elements ( P,„l 3) P„,l ':

/

I .„f'[P„„f'=2ex10-" «g'g'

Assuming P,„=P„„this result is consistent with the
usual order of magnitude of matrix element for
allowed transitions. e On the other hand, Eqs.
(A2) and {AS), which are valid for allowed-forbid-
den (a-f) transitions give the following values for
the momentum matrix element of the allowed tran-
sition ~P)

The plot of Io/Ir vs Io is shown in Fig. 2 for a
nominally undoped Cds sample. The linear de-
pendence is in good agreement with Eq. (2). The
straight line has an ordinate-axis intercept which
differs from unity and this is an evidence of the
contribution of the one-photon process. The fol-
lowing values are obtained for o and yz using
I. = 0. 5 cm and %= 2& 10 atoms/cm':

a =0. 33 cm ~,

y~ = 2. 5 & 10 cm' sec

The low value of e may be due to an impurity ab-
sorption, and the order of magnitude of y2 is con-
sistent with previous indirect experimental deter-
minations. ' Qn the other hand, two-photon spec-
troscopy measurements, made by using the two-
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FIG. 2. Attenuation ratio 10/I~ vs Io for two-photon
processes in CdS.

6&&10 "ergg from Eq. (A2),
l. 7&&10 ~5 ergg from Eq. (A3).

It is clear then that our experimental value is not
consistent with (a-f) transitions.

It is worth noting that the two models give re-
sults very different from another. Particularly,
the Basov equation gives too high a transition rate
for the two-photon process using a matrix element
with the correct order of magnitude. %e wish also
to note that a more conclusive answer may be
only obtained from the frequency dependence of v&

[—,
' for (a-a) and 2 for (a-f) transitions]. Such re-

sult may be achieved using the NLT technique with
a tunable dye laser as exciting source.

The results of the two other measurements (NLL
and NLP) are strongly interdependent. ln Fig. 2

it is shown the emission spectrum at room temper-
ature of CdS at a pumping intensity of 8. 8&10~'
photons/cm sec. The emission peak is centered
at 5290 A and shows a long-wavelength tail; its
half-width is = 20 meV. This luminescent emis-
sion has been observed in cathodoluminescence
experiments by various authors, ' who also re-
port stimulation at this wavelength at room tem-
perature. The nature of such transition has been
ascribed to an exciton-exciton collision process.
The peak luminescence intensity and the photo-
induced charge Q are plotted versus Io in Fig. 4.
At relatively low intensities both dependences are
quadratic and this demonstrates that the two effects
are due to a two photon excitation. By increasing
Ia, for Io~ I~ =4&&10 ' photon/cmasec the two de-
pendences change dramatically. In fact, while the
luminescence grows superquadratically ( I"), the-
photocurrent saturates.

This behavior may be understood assuming that
there is competition between charge collection to
electrodes and radiative recombination via exci-
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The nonlinear cross section y~ for a two-photon

process is defined by

n) =Ay t2

where u is the unit volume transition rate, N the
density of active atoms, and 0 the photon flux at
the considered point. y~ is measured consequently
in cm'sec. y~ has been calculated for band-band
transitions and using a parabolic-band model by
various authors. ' '

The calculation of Ref. 10 has been extended by
Hassan" for allowed-allowed (a-a) transitions, to
take into account crystal anisotropy.

The resulting equation, when the approximation
x «1 is dropped, becomes

4~v 2e~
I P,„1 2I P„„1 1 1

c m ~ n N(Ku) M(BM) ~ n, + o, „
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FIG. 3. I urninescence spectrum of CdS at room tern-
perature with two-photon excitation. & = (P.+ P.) — " "

(P, + P.)
01 +Q„

tonic states. Below I, the luminescence is essen-
tially spontaneous and both processes follow the
excitation rate. Above I„ the luminescence emis-
sion begins to be stimulated; this shortens the free
lifetime of carriers and gives the photocurrent sat-
uration. A similar effect has been observed by
electron-beam pumping in Cdse.

By combining the results of NLT and NLP and
using Eq. (1) it is possible to get a value of prfor,
CdS, which in our case is 6. 2&&10 ' cm'/V. This
technique is particular interesting because gives
a p, v value which essentially reflects the bulk prop-
erties of the medium, owing to the uniform excita-
tion. %e wish to note that by measuring the photo-
current decay time, one gets an independent value
of r and then it is possible to measure the bulk mo-
bility. In our measurements the photocurrent de-
cay shows two components, one fast, about 0. 2

p, sec and the other slower, i.e. , 5 p. sec. This
last component may be due to trapping effects. At
this stage of investigation it is not possible to give
a satisfying explanation of this behavior. A de-
tailed analysis of the decay mechanism will be the
subject of a next experiment with three-photon ex-
citation using a Nd laser.
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(Al)

a; and I3, are the inverse effective masses perpen-
dicular arid parallel to the c axis, respectively, and

P„are the momentum matrix elements between
states i and j, v is the valence band, c is the con-
duction band, and n is intermediate band. hE is
the energy difference between the top of valence
band and the bottom of intermediate band. 'Zhe

other symbols have the usual meaning. Assuming
the effective-mass values of Ref. 12 and 4E = 9.4
eV, Eq. (Al) gives for CdS

y, = (6. 42 && 10")
~

P
~

'
~
P„„[' cm' sec

The anisotropy effect (84 0) is not very important
in this case and the results obtained with 8 =0 dif-
fer by less than a few percent. In addition to (a-a)
transitions, two other types of transitions are to be
considered: allowed-forbidden (a-f) and forbidden-
forbidden (f-f). These last ones gives a very small
transition rate and may be discarded. The (a-f)

transitions have been calculated with different as-
sumptions by Basov and by Braunstein. The re-

respectjvely,

, 2""~e'iP,„~'(2m~-Z )"'
n' m N(S )'{n + n )"

16v 2 we m'~ [P„„l 1
3c'n'(mr)' N(h(u)' (a„+a,)"'

(28(u —Eg)" '
(dE —m+ [(a„+a„)/(a, + a„)j(2&~ —E,)p'

where m~ is an effective mass for the forbidden
transition. The main difference between (A2) and

(A3) is that in Eq. (A2) the intermediate states are
valence and conduction states, while in (AS) a third
band n is used as intermediate state. For CdS we
obtain

Y2'=1. 59X10-14 P„„2
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