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The problem of impurity conduction at moderate compensation has been treated using the concept of
multielectron single-phonon transitions. The problem was treated in the region of density, temperature,
and compensation where two- (or many-) electron transitions begin to be important. A compensation of
0.5 is used with a temperature range of 1 to 5 K and an average majority impurity separation of 200
to 600 A in germanium. The problem is treated by comparing the transition rates of one- and
multielectron transitions of the localized electron system where the one-electron transition defines the
critical impedance in a percolation path at low densities and high temperatures. It is found that two-
and three-electron effects may account for the lowering of the “activation energy” seen experimentally
as the density of impurities is raised. Comparison to currently available experimental data is made.

I. INTRODUCTION

This paper investigates the contribution of cor-
related many-electron excitations to the conduc-
tivity through localized states (hopping), and eval-
uates the conditions under which such a contribution
is important. We restrict ourselves here primari-
ly to the impurity conduction systems because these
systems are well characterized and have been ex-
tensively studied. Especially useful for this work
is the Fritzsche-Cuevas (FC) systematic study® of
the dc conductivity of germanium doped by irradia-
tion with thermal neutrons. The compensation in
these samples is close to 3 and this is where the
correlation effects discussed here are most im-
portant.

The importance of carrier-carrier interactions
on hopping conduction has been stressed before, 2
but the work™* has been sketchy so far, and has
been done from a less microscopic point of view
than that taken here.’®

The basic features of the problem we treat are
shown in Fig. 1. Figure 1(a) shows the initial
state, the transition to the final state, and the final
state used in one-electron treatments for a transi-
tion from site a to site b. The details are given by
Miller and Abrahams (MA).® The random energy
difference between the sites, which is responsible
for both the localization on individual sites and the
energy needed for the transition, is assumed fixed.
All other electrons are assumed frozen in space
and all electron-electron correlation effects in the
transition are thus ignored. When considering the
electron-electron interaction, one must use a pic-
ture such as in Fig. 1(b). The transition of the
charge from a to b is considered in conjunction

with the correlated movement of some neighboring
charge from c to d. The movement of the charge
from c to d alters the energy difference between
sites @ and . Under the proper conditions this
correlated motion proceeds faster than the one-
electron motion from a to b. It is found that the
charges on a and ¢ can move sequentially or simul-
taneously. In all cases the movement of charge
from a to b is considered the current-carrying
transition and the movement from ¢ to d is con-
sidered an auxiliary transition which does not carry
current but merely acts to enhance the transition
rate from a to b. These correlation effects are
found to become important as the temperature of
the system is lowered and the density of localized
states is raised.

In the following we briefly summarize the aspects
of the MA theory which are relevant to the develop-
ment of the present theory. MA began by calculat-
ing the wave functions of the two-site configuration
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FIG. 1. Schematic representation of the hopping tran-
sitions. Occupation by an electron is indicated by a hor-
izontal line. (a) One-electron transition, such as treated
by MA. A two-site, one-electron configuration is suffi-
cient to describe these processes. (b) Correlated two-
electron hopping transition which relieves some of the
Coulomb repulsion energy. A four-site two-electron sys-
tem is needed to describe these processes.
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in the tight binding approximation, assuming that
the resonance energy W, is much less than the dif-
ference A, between the random potentials E, and
E,. This assumption is also in line with Ander-
son’s™® criterion for the existence of localized

states. The result is
Viniviar = Pat (Wep/ IAabl)(ﬁb:iba, (1)
Uina1 =P, ‘(Ww/lAw})‘ba:Z/’»y (2)

where ¢, and ¢, are the wave functions of isolated
sites a and . Next, MA calculate the phonon-in-
duced transition rates between {, and ¢,, with the
result

Up=CW2 |4 4| n(qa),
:Cu’zao ' Aab[[(n(qab) + 1)]:

n(g4) 1s the phonon density for wave vector g,
where 7sq,  =A,, and C depends on the electron-
phonon coupling strength, the phonon density of
states, and the elastic properties of the material.

To illustrate the need for considering the corre-
lated many-electron transitions, it is of interest
to discuss briefly MA’s results. The theory of MA
gives activation energies which are in good agree-
ment with experimental results throughout the
compensation range. As explained in the following,
this is unexpected because the density of states
used by MA is, even approximately, only correct
for small compensations. The error which this
causes in the activation energy is compensated for
by the correlated motion of carriers.

Miller and Abrahams assumed that the density of

Agp>0
A,<O0. (3)
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FIG. 2. One-dimensional representation of the poten-
tial surfaces for carrier appropriate for hopping conduc-
tion at low compensation. The carrier here is considered
to be the majority ion, an electron in p-type, and a “hole”
in n-type material. The dashed line is the potential de-
rived from interactions with minority ions only. The
dash-dotted line is the potential derived from nearest-
neighbor minority ions only and corresponds to the MA
density of states. The solid line is the potential derived
from paired minority and majority ions.
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FIG. 3. Density of states for electrons trapped near
a minority ion (solid line), and for conduction electrons
moving among ion pairs (dashed line). The latter is only
qualitatively correct. The bars and arrows on the solid
plot indicate MA’s Fermi energies, and activation ener-
gies, respectively, for various compensations K.

states was determined by the distribution of near-
est-neighbor minority ions. the energy of a given
site being determined by the Coulomb interaction
with its nearest-neighbor minority. The potential
energy surface used by MA is shown in the middle
of Fig. 2 in a one-dimensional representation.??
Shown in Fig. 3 is the corresponding one-particle
density of states. This form can be seen to be
nearly correct for determining E ; at low tempera-
tures where each charged majority is paired with
a charged minority. Thus, each majority ion sees
a nearest-neighbor minority ion and an atmosphere
of neutral minority-majority pairs, which leads to
a density of states such as MA use. However, the
use of this density of states is not correct when
considering excitations that lead to dc conduction.
This is because the interaction between electrons
creates a gap at the Fermi energy.®® Carriers
that contribute to the dc conductivity must move in
an atmosphere of neutral minority-majority ion
pairs, so that the density of states for these con-
ducting electrons must peak at E=0. The potential
energy for such conducting carriers is shown in the
upper line of Fig. 2. The corresponding density
of states is shown in Fig. 3. Miller and Abraham’s
N(E) is peaked at E = - ¢2/Kgrp;, Where 7, is the
average nearest-neighbor minority distance. Use
of this density of states for both determinations of
E and the activation energy €; leads to a value of
€, clearly too low for a one-electron excitation.
The value of €; found by MA is seen in Fig. 3 to be
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approximately equal to the distance from their
Fermi level to the peak in their density of states.
Instead, it should be equal to the distance from E
to a point near E =0, the peak of the density of the
conducting electrons in the uncorrelated picture,
representable by the one-electron density of states
of Figs. 2 and 3. Figure 2 represents the case of
low compensation because in this situation it is
easier to visualize the various energies discussed.
The difference between the above activation ener-
gies becomes larger as the compensation increases
tc 0.5.

The fact that MA’s theory, which ignores the
need to go to the dashed curve of Fig. 3, gives good
agreement to experiment at low densities means
that the need for activation to E =0 is somehow
alleviated by a correlated motion of the carriers.
This causes the carrier-carrier repulsion, which
shifts MA’s N(E) to the neutral pair N(E) in Fig. 3,
to be partly relieved.

It is also seen experimentally! that when the den-
sity is raised, €, is even smaller than MA’s pre-
diction. Qualitatively, this can be understood as a
situation approaching the bare minority potential
distribution shown in Fig. 2. If the carrier-carrier
repulsion is completely relieved, i.e., each car-
rier behaves as though locally there are no other
carriers, then the bare minority potential is the
correct one to use.

A less detailed treatment of the electron-electron
interaction effects on intersite transitions has been
reported by Pollak and Knotek® and Pollak* who
treat the correlated motion of carriers in terms of
a dielectric response of localized electrons to a
current-carrying electron. Allen and Adkins®’
finds that a large dielectric contribution is neces-
sary to explain their results and we feel therefore
that the work of Allen and Adkins may be an
experimental confirmation of the importance of the
multielectron effect.

The connection between the microscopic elemen-
tal excitation and the macroscopic properties of the
system is made using the impedance network repre-
sentation of MA. Miller and Abrahams find the
distribution function f;(T) by solving the Boltzmann
equation for equilibrium using the intersite transi-
tion rate as a starting point. The solution is found
to be a Fermi distribution and the Fermi level is
solved for. Miller and Abrahams then find an ef-
fective impedance connecting sites ¢ and j to be
(8‘< 81)

(Zu)'1 = (ez/kT)[fi(l ‘f/) +f;(1 _.f{)]
xcw%j,Ail ’"(‘Iu)[n(‘hj) +1] (4)
= (e?/kT) f(1 -f)Uy; . (5)

Clearly Z,; includes both the phonon emission and
absorption rates.

The complete system is then reduced to an inter-
connected impedance network, each site ¢ connected
to every other site j by the impedance Z;;. Miller
and Abrahams then solve for the resistivity of the
bulk by constructing a path through the solid which
presumably carries most of the current. Miller
and Abraham’s path has been since modified by the
use of percolation theory. '~ We make use of the
results of Ref. 13. It will be seen that the “criti-~
cal impedance ” which arises naturally in this per-
colation problem is an obvious point at which to in-
clude the effects of many-electron transitions.

The results of the one-electron treatment are

poce"“'s‘ e3/bT, (6)

where p is the bulk resistivity and a =2/a, 7,
=(3/47N,)'3, with N, being the concentration of
localized states. n=~1.3,' and €;<1/7,.

The extrapolation to T=x= is seen to agree well
with experimental results. As already mentioned,
MA’s €, results are seen to agree at low densities,
both as to form and magnitude, but we feel the
agreement in magnitude is fortuitous. The form
at low densities arises naturally from the fact that
the energies involved are Coulombic and thus
should scale with 7,, like #;'. The high-density re-
sults are seen to depart from this form and it is
the purpose of this paper to argue that the depar-
ture is due to correlated motion of electrons. We
also will show qualitatively how the low value for
the low-density activation energy may arise from
another type of correlated motion, namely, the
adiabatic transitions mentioned below.

Our steps for the four-site two-electron model
follow MA’s procedure for the two-site one-elec-
tron case. (i) We calculate the two-electron wave
functions for the four-site system. We find that
we can use Hartree wave functions because the ex-
change effects are small, (ii) We then derive the
phonon -induced transition rates from any initial to
any final state; these include two-electron transi-
tions. Again, we find that exchange effects are
unimportant. (ii) We modify MA’s impedances to
include two-electron transitions. This is done as
follows: One of our two charges is a carrier and is
termed the primary charge. Its initial and final
sites are termed the primary pair. The other
charge is the assistant or auxiliary and the pair of
sites on which it moves is termed the auxiliary
pair. The motion of an electron on the auxiliary
pair, while not directly contributing to the current,
modifies the impedance of the primary pair. Such
an effect comes from simultaneous as well as se-
quential motion of the two electrons. We pay atten-
tion primarily to the simultaneous two-electron
transitions.

It is found that there is a temperature-dependent
critical density which must be exceeded before two-
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electron transitions can make a significant contri-
bution to the transport. This critical density is
given in Eqs. (91) and (92). Finally, the conduc-
tivity is calculated from a percolation theory using
the modified impedances.

Il. WAVE FUNCTIONS OF TWO-ELECTRON SYSTEM

The elemental unit of this treatment is four po-
tential wells located at random in space and situ-
ated in some random potential suitable for the sys-
tem under study. Into this system we introduce
two electrons and include their Coulomb interac-
tion into the Hamiltonian. As in MA, we will ex-
pect that the one-electron states of the system, for
suitable values of the random potential, will corre-
spond to an electron being confined to a single site
and have only minor components of its wave func-
tion on other sites. If we consider two sites occu-
pied by two electrons, we must work with a two-
electron antisymmetrized space-spin wave function.
If we assume a strictly covalent orbital, we are
neglecting the ionic terms of the wave function.
These correspond to a component of the wave func-

tion which has doubly occupied sites. Thus,
beor = (1/VZ) 9 ((1)0c(2) £ 6. (1)04(2)), (7
Dign=(1/V2)(0 (1)D4(2) £ ¢,(1)0(2)) . (8)

Coulson and Fischer®® in treating H, have shown
that if we write

b= Zpmv + Mbion (9)

and solve for X variationally, we find that X is very
small when the internuclear separation is larger
than 1.6 times the Bohr radius of a hydrogenlike
wave function. The two occupied wells we consider
are very similar to two hydrogen atoms at large
separation. Equation (7) is therefore a good zero-
order wave function for constructing two-electron
four-well wave functions. The presence of the two
added wells is treated as a perturbation.

We now consider the importance of exchange ef-
fects on the size of the minor components of the
wave function. These are the important quantities
in the transition matrix elements. First, we define
the system and establish indices and labels. We
label the wells a, b, ¢, and d and the electrons 1
and 2. We assume that in the ground state the
main amplitudes of the two electrons are on sites

a and ¢. The ground-state single-site wave func-
tion for site ¢ is ¢;. Thus, the zero-order wave
function is
WO = (1/V2) [ da(1)9c(2) £ (1) o(2)], (10)
n
by= 20 0, Fy(F)X,(F). (11)
p=1

The notation in Eq. (11) is that of MA.
We assume first-order corrections to the single-

site one-electron wave functions, i.e.,

V6™ = o + X057 ¢, +A0G57 b, (12)

U™ = o + A0V By + A0e57 b g (13)
If now

¥ = U155 (2) £ 92 (1)9,(2) (14)
then to first-order in the perturbation parameter A,

¥ =00 AP (15)
where

58 ,(106.4(2) 2 0(1)05(2)]
+0587[ ¢ 4(1)4(2) £ D(1)pa(2)]
+6589 ¢ (1) (2) £ dp(1)do(2)]

#8500 (1)04(2)  D4(1)64(2)] (16)

Some care must be exercised in the choice of
the zero- and first-order Hamiltonians. Consider
for simplicity only sites a, b, and ¢ and consider
b as a perturbation on site a. The zero-order
Hamiltonian for the ac pair consists of the effec-
tive-mass kinetic energy operator T, + T,; the po-
tential from sites a and ¢, (e?/K)[1/%1,+1/71¢
+1/7,,+1/7,.]; the electron-electron interaction
e?/K,y 7, and the random potential V(T,)+ V(T,).
The first-order correction to this is then the po-
tential from site b, (e2/K)(1/71,+1/%5). The zero-
order Hamiltonian for the cb pair is identical ex-
cept that the Coulomb potential from site a is re-
placed by that from b. The first-order correction
to the bc zero-order Hamiltonian is the Coulomb
term from site a. Thus,

2 2
HgC:TlJrTZ—Ee—(LJr —1—)

i=1 KO Via Yic
2
+ - + V(1)) + V(7,) 17)
Ko7z Y 2% (
Hyo= = (&2 /Ko)(1/71,+ 1/72,), (18)

2 2
ch=T1+Tz— Z}e_<—1’+"1">

i1 Ko\7ip 7o
+ =L + V() + V(1) (19)
Koz ! .
Hy == (% /Ko)(1/71,+1/73,), (20)
and
H=H% +MH: =H}_+\H}, if x=1 . (21)

Here we must understand that the perturbation
Hamiltonian is not small in itself, but that it has a
small effect on the wave function. This is due to
the random potential term present in the zero-
order Hamiltonian. If this were not present, the
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perturbation Hamiltonian would have a very large
effect due to the degeneracy of the single-site en-
ergies.

If we consider only the perturbation by site b on
the one-electron wave function localized on the site
a, we have ¥ =¥, ¥! where ¥ is given by Eq.
(10) and ¥! by the first term of Eq. (186).

Inserting this into

(H-E)¥=0, (22)
where
E=Eg+\E,, (23)

we get to first order in A
S5 HY | W) 837, [¥') =H, |¥°) ~E,[¥°) . (24)

The operation (¥!| on both sides of the equation
gives

(P HL W) —E(¥'¥°) _ A-B

= TS am vy CE,-c (%Y
with
A=—(b,]/Koryy|dy) - (6| /Ko7 b)Y (el dp)
(26)
B =[(p,]e®/Koriy|da) +(c|€/Korip| 00)]
x[balds)+0(da]05) M, (27)
C=8,+8.+ey.+X,., (28)
Eg=8,+8,+ep+X,e, (29)
where
8y = {0y | Ty = &/Kyryy — €2/Ko¥1a+ V(1)) | 05), (30)
ere =(Dy(1)0o(2) [ 2/Kqry | dp(1)0,(2)) . (31)
and

Xpe=+(0a(1)05(2) |2 /Koryy [ 05(1)0,(2)) .  (32)
Thus

saer _ _ (Bl €/Kor1y | 05) + (D, /K1, | 9,(D,105)
@ é,a—gb'*‘em:—ebc j:){m: q:X‘br: (33)

If we can neglect the exchange terms X, and X,
in Eq. (33), we get the same result for 5:,,"" as we
would get if we were treating the ab pair as an one-
electron problem. From Eq. (32) we see that the
exchange terms are of second order in the overlap
and can be neglected. Hence we can disregard the
antisymmetrized character of the two-electron
wave function. We will accordingly adopt the form

Uoe = (0,(1) + 8820, (1))(0,(2) + 658 04(2)),  (34)

where the 6’s have the form as in Eq. (33), e.g.,

Loy =Sgd, We (35)

8L = =
ga_‘gb+eac_ebc é,a"8b+eac"ebc ’

with L, S, and J defined by MA. In this form we

are neglecting any interaction between minor com-
ponents of the wave function. Including these inter-
actions would only add exchange terms of the order
of 6. The form of the wave function in Eq. (34) is
tailored to our needs. We are considering only the
minor components on sites to which a transition is
to be made. We are interested in the difference
between one - and two-electron transitions. Con-
sidering all possible combinations of indices sug-
gested by Eq. (34) constitutes an exhaustive treat-
ment of all possible four-site configurations.
Following the previous works on the two-site
problem, we will consider concentrations where
54 (and all like terms) of Eq. (34) are small.
This condition is more restrictive than the neglect
of exchange because the exchange energy includes
the product of two overlaps but W,, includes only a
single overlap. Thus we can safely assume here
that if 62 is small, the exchange effects can be
neglected in the derivation of the wave functions.

[1I. PHONON-INDUCED TRANSITION RATES OF TWO
ELECTRONS

To be consistent with the outline of the treatment
in the Introduction, we want to consider the transi-
tion of electron 1 from site a to site b with electron
2 either remaining in place (at ¢) or making a tran-
sition (to d). Hence we consider transitions from
\I’ac to \Pbc and \Ilbd‘

In the derivation of the form of the wave function
of the two-electron system, we have shown that the
exchange effects are unimportant. But exchange
effects still may be of importance when considering
transitions between such states. The direct and
exchange transitions will be found to be of the same
order in overlap integrals and we must discuss this
in some detail, going to an enlarged configuration.
For this purpose we use a Slater determinant to
describe a configuration with 2N sites and N elec-
trons:

YE(1) ¥g(1) .-+ ¥p(1)
¥$(2)
N .
q’ =
«=TNI|
: - (36)
W (q) (
B - e NE)

The ¥¢ are generalizations of Eqs. (12) and (13),
i.e., a major component of the wave function is on
the one site ¢ and minor components are on the
“empty ” sites j. « denotes which of the 2N sites
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have large amplitudes. Transitions in such a sys-

tem are given by the matrix elements connecting

¥, to some ¥,
M=¥,|H'|¥,), (37

where H' is the perturbation Hamiltonian. When
J
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we consider an n-electron transition, B has n in-
dices that differ from . Thus, if a one-electron
transition from i to i’ occurs then ¥, in Eq. (36) is
replaced by ¥,,. If a two-electron transition oc-
curs, 7 and j (say) are replaced by ¢’ and j'; for
three, ijk to i'j'k’, etc. In addition, all minor
components change accordingly.

We now partition the problem i.e., move the » columns that differ in the initial and final states to the
first » columns in the determinants below. We then consider

cee

() B

\I"{(n) e \y:(n)

° .

YEN) = Yy(N)

which reduces to
¥E(1) -+ ¥R(1)

Jo

¥in) - »

(n)

when only terms of order #n in overlap are kept.
This form has (n!)? terms of which n! are distinct.
Figure 4 illustrates examples of terms kept and the
n-electron matrix elements to which they corre-
spond. Figure 5 illustrates examples of terms
which are dropped when the partitioning is used.

In the remainder of this work we will concentrate
on the treatment of terms like those in Figs. 4-1
and 4-2. Figure 4-1 is the one-electron transition
considered in previous works.® We will incorporate
the two-electron transitions into the treatment as
follows: Consider a percolation path such that the
transition from ¢ to i’ comprises one step in the
path. In that context we call the transition in Fig.
4-2a the direct transition, i.e., the charge that
was on site ¢ is the charge that moves along the
percolation path. Figure 4-2b is then termed the
exchange transition.

When considering at most two-electron transi-
tions, it is easily seen that the large majority of
configurations encountered have one two-electron
transition (as defined above) that predominates.
Figures 6(a) and 6(b) show two two-electron transi-
tions that may have comparable rates, because the

HI

¥E,(1) e ‘I’f,.(l) cee

. .

WE(N) ++ V,(n) , (38)
WN) e L)
¥h(1) --+ ¥E(1)

. ) : (39)

() =+ V()

r

overlaps are similar. Figures 6(c) and 6(d) show
two transitions with much different rates to the
same final state. Since configurations like those
in Fig. 6(c) are much more numerous, we do not
include exchange effects in the transition.

We will now consider a one-electron percolation
path. This is shown as the dashed line in Fig. 6(a).
The fact that we can neglect exchange such as in
Fig. 6(b) or Fig. 6(d) justifies our previous division
of the four-site configuration into a primary and
auxiliary pair. In this treatment the electron in
the second pair serves as an assistant or auxiliary
to the “carrier.”

Using a perturbation in the form of a deformation
potential induced by acoustic phonons, ¢ we have

—l
H'(i)=E (s oV

1/ =H1)+H"(2),

12 .
) > qlﬂ(bqeii-r( - b¥ e-ii-i‘;) , (40)
a

(40a)

where the notation is that of MA.

We calculate the transition rate between states
¥, and ¥, using a generalization of MA’s form
using two-electron Hartree wave functions:
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¥, =(aa¢a(1)+ab¢a(1))(ac¢’c(2)+ad¢a(2)), (41)

Vo= (B o(1) + Btdp(1) Bobo(2) + Byal(2)) . (42)
We find
(@lsc’|B) = 3 [nl@)]/*Cq* ¥ SF)

x [(aaﬁa + aDBb eia‘ﬁ'w)(acﬁc + adﬁd)

+e'TRa(q B+ a,B,)

Using this form, we find for the transition rate

X (e B, + 0t gy €44"Fea)] (43)

where

= - -
Ryj=r;-r;,

() = (¢, | F| b,y =1+ (baq)]2,

(44)

where n(¢g) is the number of phonons of wave vec-
tor q:

n(g) = (/¥ — 1), (45)

Ung= ey n(ane) Bl [[( 8o + (@ By 1 (0B + B + [ty + By (o) + (g
tﬂ_mnqhﬂ[l__*_(g;?f]? Q4P +abBb QoPo+0gPpl” + A gP, + Oy By A Pe)” +(Qy d)

i | Rab|
+20,8,0,B L2 "0 [ B+ 4By + 20,8,y

SIdas Besl [ 5.+ a7 +2(0ubs + anfhy)

qop|Rabl Gus! Reg!
sing | R, |
X (a B + adBd)( aaﬁaacﬁc—qgﬁ—m' +0,Bu0yBy
an’RacJ
sing,z | R, + Ryl sing, | Ry, ! sing, gl Ry, +Rgyl
x2—daf “ec " "ad Ly 3@ B Z— e "¢ L4 B 22 HgB “*dc T"ved , 46
qaﬂlRac+Rcd| bBD ere qmﬂlecI bBb dBd anIRbc+Rcd! ( )

where 7(gy) = n(q,s) + 1 for emission and g, =4, /7s.

We consider now the terms (a,8,)% +(@,8,)* and
(azB,+ @) in Eq. (46). If the transition involves
a movement of charge from a to b, then a,=1,
a,=0% and B,=68,, B,=1. Here 6% is as Eq. (35)
where a =(¢j). Thus,

(00aB,) (s By = (1+ B3, + (0%, + 1)?
=082 1697, (47a)
(0aBy + @y By)? = (1+ B8, +6% « 1)2 = (85,)% + (62, )
+2-0208, . (47b)

If there is only motion from a to b, then 6% = -85,
and (47b) is equal to zero.

If the transition involves movement of charge
from ¢ to d with no major movement of charge

from a to b, then a,=1, B,=1, a,=06%, and B, =065,

Then,

(@B + (@, 8)° = 1+ (83857~ 1,
(48)
(@B + @By = (14058, 1.

Similar arguments hold for (a.8,)% +(a,B,)* and
(@B, +azB;)%. Thus, for a one-electron transition
a—b, the first and third terms of Eq. (46) reduce
to MA’s form. For c¢—d, the second and fourth
terms reduce to MA’s form. The third, fourth,
and fifth terms of Eq. (46) will be neglected here
for reasons given by MA. In addition, we neglect
terms O(8*) for the one-electron transitions. The

r

energy difference between the different states A,
is given by

Ayg=6s-6,, (49)
8s=8uyn=68;+8,+e;,, (50)
8o=8m=8i+6 ten, (51)
Bap=8m, =84 +Bp —Cip +€54, (52)
A;=8,-8;. (53)

The first two terms in Eq. (52) are due to all
fixed charges plus all electrons other than the two
treated, and the last two are the electron-electron
interaction of the two charges treated. The fact
that A;; and e;, are of the same order opens the
possibility that A ; may be made smaller by the
correlated movement of more than one electron.

In this context let us confine ourselves to a sin-
gle type of transition, i.e., the transitions that in-
volve movement of charge from sites a to 4. In the
two-electron four-site system there are four states
of the system of the form of Eq. (41) of interest to
us.

We treat the state ac as the ground state. This
simply corresponds to labeling the sites so that ac
is the lowest-lying state in energy. We assume
that the transition of charge between a and b is
necessary for transport. We treat the problem in
such a way that all excitations of interest require
the absorption of a phonon, i.e., they are all exci-
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FIG. 4. Illustration of the various direct and exchange
transitionrs, for some n-electron 2n-site configurations.

tations up in energy. Hence, for any four-site
two-electron system we will label the sites so that
(ac) is the ground state and the charge on @ moves
to b to make a step in the percolation path.!® The
remaining site is labeled d. Thus, we are in-
terested in the four transitions

(ac)—(bc), (54)
(ad)~ (bd), (55)
(ac)—~(bd), (56)
(ad)—~ (bc) . (57)

The transition (ac) = (bc) corresponds to the one-
electron transition as discussed by MA. We define
for our purposes a one-electron transition to be an
excitation!” from the ground state of the two-elec-
tron system, i.e., (ac)—(bc). By contrast, (ad)
— (bd), the movement of a single charge from an
excited state, is defined here as an adiabatic
transition.

For the moment we will consider the transitions
of the system in terms of an energy-level scheme,
only, and disregard matrix elements. This will
give us some idea how the electron-electron inter-
action can alter the one-electron picture. The
transitions considered are seen in Fig. 7.

The figure enumerates all the possible energy
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diagrams of the four-center configurations, consis-
tent with the annotation of the ground state by ac;
and the conservation of one electron on each of the
pairs ab and cd. For each of the six possibilities,
the current-carrying transitions most likely to
contribute to the conductivity are indicated. Tran-
sitions from ac to bc (annotated MA) are the one-
electron transitions, those from ac to bd (annotated
2) are the two-electron transitions, and those from
ad to bd (annotated a) are the adiabatic transitions.
In studying the figure one may be misled by the
relatively small number of diagrams in which the
two-electron transitions may be important. It
must be born in mind, that many possible “auxil-
iary ” pairs may exist around a given primary pair
ab. It is enough that one of them be in a configura-
tion in which a two-electron transition is favored
to make the two-electron transition important.

The figure also clarifies somewhat the importance
of the adiabatic transitions. Since their matrix
element is the same as for the MA transition, they
will be important irrespective of the temperature,
whenever the compensation is high enough to make
the presence of at least one auxiliary of the type
(@) or (b) around most “main” pairs very probable.

It will be noted that the two-electron transitions
in Fig. 7 always appear with an additional transi-
tion. This is because the smaller matrix element
for the two-electron transition may make the other
transition more important, even if it may involve
a larger energy.

However, as T goes to zero, the matrix elements
become unimportant and all that must be asked is
which energy level represents the lowest-lying ex-
citation of the system. In this limit, we would

Lon=1|

e e
‘ /\b
- o o <

<ikJH] ki'>
2:n=2

o -©-

k
© Q O £
| ]
= Q o <

j

a.<ijk |HIkji>
b.<ijk [HIKki|>
c.<ijk |HI ki'>
d<ijk [H] kj'>

FIG. 5. Ilustration of some transitions for configura-
tions where the number of sites is not twice the number
of electrons. The figure shows the case where the num-
ber of electrons is larger than one-half the number of
sites, if bars represent electrons, or the case where the
number of electrons is smaller than one-half the number
of sites, if bars represent electron deficiencies.
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FIG. 6. Two examples of direct and exchange two-

electron transitions in the percolation path.

have to treat many more than two electrons. This
will become clear below when a temperature-de -
pendent volume in space is defined wherein corre-
lation effects are important. This volume will be
seen to go to infinity when T goes to zero.

IV. MICROSCOPIC ADMITTANCES

We pick the (ac)—~ (bc) process as a guide. What
are the energy conditions for the other processes
to predominate over (ac)—(bc)? To discuss this

Utatr, 00 = CWosB (aay, 00y €XP(— B (aay, oay/BT)
and

U(ac), ) = CWﬁb

+(Agg +€pg - epe) '

+(Agy +pe — )

We write
W;;=C'(e?/Kya)(Ry; /a) e Ris/e,

Miller and Abrahams give C’=2/3n where n is the number of equivalent indirect minima (n=
This is for an exactly isotropic ground-state wave function.

n=4 for Ge).
(62), and (63), we have

Fexp[ - A (acy, o/ RT] .

properly we put the problem into the form of ef-
fective admittances for any given transition (#7)
- (kI).

For each transition a —~ g8 involving transfer of
charge from a to b, the admittance is

(€2/RT) fOU, s - (58)

U,g: is the absorption rate for the transition
o~ B. For several such transitions,

Yab.aﬁz

Y5, tota =2 Yopas (59)
aB

_E 5oy 60)

- kT B JaYaBs ( /

where the }’ always sets a to the lower energy of
a and B. The sum is over not only the transitions
of a given primary-auxiliary pair, but over all
possible auxiliaries. The factor f is then the
probability that the primary electron and the given
auxiliary are in the state o.

Using the form for the transition rates of Eq.
(46) and the form for the wave functions of Eq. (34)
we calculate the transitions of interest, using the
first term of Eq. (46). In all cases we write the
absorption rate,

C (ac), (dc) C (q(ac b ) ac c ( )
), (bC) 5‘( ), (be)
! ! Aab+ebc—eu.

=Cwib'Aac.bc‘e-A(ac)’(bc)/kTa (61)

where we have set the second part of the first term
of Eq. (46) equal to 1 and neglected all but the first
term. We have set the factor (e —1)'~¢™2 in
the phonon density #n(q), since in the cases we treat
ﬁA > 1,

(62)
Wﬁd IA(ac). (bd) ‘ 3[(Aab +€pe — eac)-z + (Aab +€pc t+ ead)-a][(Acd +€ad "'Rat::)-1
+ {I(Acd +€aa— eac).2 + (Acd +€pa — ebc)-z] [(Aab +€pc — ea1cY-1
(63)
(64)
6 for Si,

Inserting Eq. (64) into Egs. (61),

2 2
e R
U(ac), ey = CCIZA(ac), (M)(H ";&) exp("' aRa.b - BA(zxc), (bc)) s (65)

e
Utany, 00> = CC"*A (atr 00 (K_

2 Eﬁ!

2
) exp(— aR g, = BA (ag), o)) » (66)

a
2 2
Ry
Utaer, 0ay = CCIZ( ) < ) a ) exp(- aR,, — aR 4 - BA 40y, pa))
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- - - -172
xlAtac),(M)|3[(Aub+ebc-eac) 2 +(B g + €y — €50)7 ][(Acd+ead - €4) l+(Acd+ebd =257

+[(Acd +€qq — enc)-z +(Agg +€pg — ebc)-z ] [(Aab +€pc — eq0)t + (Agp +Epg ~ epc)-l]z . (67)

We assume a canonical ensemble for the form of the fg [Eq. (58)] for a single isolated elemental unit of

four sites occupied by two electrons.

If we then write the form for the admittances of Eqs. (54), (56), and

(57) using only the factors of Eqs. (64)-(66) involving energy (i.e., neglecting the R-dependent terms), we

have for the prescription of Eq. (58)

- (68)
Y (aey, 60y = CC" 2 |B oy, 50y | (€2/Koa)oe B2 taen @D £Q
Y(nd), ®a) = cc’? IA(ad), (dd) l(ez/Koa)ze-BA(“” (M)f((]aa) (69)
for &(a < 8 ay,
Y (e, 00> = CC"?| A (agy, oy | (€2 /Ko@) 810 atr, 00d 1 £0, (70)
for &(uy > 8 oy
Y (e, 6a) = cc? IA(uc),(bd) ,3(‘32/’1{04)4 eblaaey,alfd
X[(Aub +€pc — eac)-z +(Agp +epg — ead)-z ][(Acd +€aa— euc)-l +(Agq+epg — ebc).1 P
X [(Acd tea — eac)z +(Bgq +€pg — enc)z] [(Aab +€pe —€ge)  +(Agy + €pq — em)'I]Z . (71)
f
The object of this work is, of course, to deter- and
mine the effects of the electron-electron interac- Y (o) & 1 (73b)
tion on the transition rates. Thus, we want to Y (o). (o)
know when, inthe sum of admittances inEq. (59), the .
admittances of the form Eqgs. (69)—(71) predominate We have, with Eq. (68),
over those of Eq. (68). For a canonical ensemble, Y A
Mzmexp[_&A —A g+~ )]
. Yo, 0e)  Bac), e o4 Tab T Tad e
falfa=efet . (72) (74)
for Sean > Ewpar
The condition for the above to hold is Y A
a0, 0d) - —ad): @d) exp[ — B(A,, — Ay +€og — €pe)]
Yiaor, 000 Biae), 00 o4 Tab T Tad e
Y (75)
(ad)s (bd) >1 73a
Y, 00 (732) for &up >E ey
J
Yo ‘2 2 > 1 840pa!®
ek d) - C (e /Koa) —aadd__ exp[ = B(Acq+€pa - ebc)]
Y(ac), (be) Aac,bc
X[(Ag +epc - eac).z +(Ag+€pg = eM)-z] [(Acs+em— ege)t +(Bog+epg — ebc)-llz
+[(Agg +€ar = €ae) 2+ (Aog + €5a — €50 2] [(B gy + €4c— o) +(Bg +ep—eq) . ('76)

If we consider the exponents only, we have from
Eq. (74),

Beg—Bap+em—ec<0, Euny<Epa 5 (77)
from Eq. (75),
Bog=Bap+eu =<0, Eg>Epa; (78)

and from Eq. (76)
Ag+ep—€,c<0 (79)

for Eq. (73) to hold.
In the adiabatic case [Eqgs. (74) and (75)], the

[

preexponential term is not of great importance
since it is of the order of 1, when all energy terms
are equal to within less than an order of magnitude.
In the two-electron case [Eq. (76)], however, we
have a preexponential term on the order of

C"%(e?/Kqa)?a™. (80)

This is a number >1, A being of the order of
e?/n'Kyr,, where 10>n’>1. Thus, the preexponen-
tial goes like C’'2(n'r, /a)?, which in all cases we
discuss >1 or even > 1. Thus, the energy condi-
tion for the two-electron transition to predominate
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(u)bc_____ (b)bc (c) ad
ad Y be
bd— ¥  ad_| 1%  bd MA
ac 2 - ac 2 ac Tz
(d)od__ (e)bd (f)bd
bd_ b ad
be ad MA bc

ao MR oo ac_{MA

FIG. 7. Six possible energy schemes of the two-elec~
tron four-site problem, with ac the ground state. Indi-
cated are the excitations from a to » which are likely to
contribute to the conductivity. MA is the one-electron
transition, 2 is the two-electron transition, and « is the
“adiabatic” transition. As explained in the text, a is a
two-step process.

is somewhat softened. Equation (79) becomes
B(A gy + g — €5e) = 2In(C'n'r, /a)< 0. (81)

At sufficiently low temperature the last term can
be disregarded, which gives us Eq. (79) again.

From all of the conditions of Egs. (77)-(79), it
is plain that neither of the adiabatic transitions, as
far as the energy considerations go, dominates
over the two-electron transition. This proves to
be an important result at very low temperatures,
when the R-dependent terms we neglected here are
of relatively minor significance.

Including the R dependence in the above condition
changes only Eqgs. (79) and (81). This is due to the
fact that the same overlap term in all of the first
three rates of Eqs. (65) and (66) determines the
movement of the conducting charge. Equation (81)
now becomes

B(A g+ €pg — €pe) — 21In(R 4/ )
+2R ,/a-2In(C'n’'r,/a)<0. (82)

The second and fourth terms of Eq. (82) both soften
the condition for onset of the two-electron transi-
tion. Thus, for the condition of Eq. (73) to hold

Beye > Beyg+ BAcy + Ry
—41nv,/a -2InC'n’, (83)

where we have replaced R4 by the average separa-
tion 7, in the second term of Eq. (82). The impor-
tant factor is the Coulomb interaction between the
two electrons while they reside on the bc pair. If
this is large enough, then a two-electron transition
has the possibility of lowering the energy of the
excitation by reducing the large intersite Coulomb
energy. We rewrite Eq. (83) and define G:

G = Bleye = €pq) — ARy

>fA,, —4lnv,/a -21InC'n"' =M. (84)

Inserting the expressions for e,., e,, and R.,,

,2 2 I i (85)
G=B< ———>—a Tpy— Tpol 85
Kovse Kovsa 17oa = Toc

We also define the “gain” I" as I'=G - M.

It can be seen that the two-electron transition
will predominate over the adiabatic transition only
when e,,< €5, and even then only under certain
conditions.

The condition for the predominance of the adia-
batic transition over the one-electron transition is
strictly one of energetics [Egs. (74) and (75)]. The
absence of an extra term in the matrix element for
the adiabatic transition causes configurations which
have a predominant adiabatic transition (relative to
the one-electron transition) at one density to have
the same predominant transition at another density.
This shows qualitatively why the adiabatic transi-
tion can lower &, at low densities. The predomi-
nance of the adiabatic transition will prove to be a
function of compensation. In the following we will
compare only the two-electron and one-electron
transitions. The adiabatic transition will be the
subject of a later study.

V. DETERMINATION OF MACROSCOPIC PROPERTIES

This section deals with the counting of configura-
tions where two-electron transitions occur. For a
given primary pair, ab, we find the probability that
there is an auxiliary pair cd with properties [Eq.
(93)] that allow the two-electron transition to have
the predominant rate. The counting procedure
must count all configurations once and only once.
For a given temperature, density, and compensa-
tion the procedure first assumes that there is an
ab pair that is singly occupied. We then find the
probability that there is an occupied site ¢ with a
given value of #,.,. Then, given this site ¢ and
some gain I') we find the probability that there is
an unoccupied site d which lies at a point such that
the two-electron transition has the given gain I
over the one-electron transition; the two basic
ground rules are (i) 7, >7,. and (ii) (ac) is the
ground state of the two-electron system. This can
be seen to exhaust all configurations that need to
be counted.

The counting procedure looks for configurations
like abcd of Fig. 8(a). It does not count abc’d’ of
Fig. 8(b). If abc’d’ is considered in terms of holes
rather than electrons then abc’d’ can be seen to be
exactly like abcd. Thus, we include a factor of 2
in counting cd pairs in order to account for equiva-
lent c’d’ pairs that exist. This procedure must be
modified somewhat when K#0.5.

Figure 8(c) shows a configuration where (bd)
rather than (ac) is the ground state. Once again,
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FIG. 8. Aid to text for the enumeration of configura-
tions.

considering this configuration in terms of holes
rather than electrons makes it identical to abcd
and thus it is accounted for by the above counting
procedure. In Fig. 8(d) a state where (bc) is the
ground state is shown. Such a configuration will
not have a contributing two-electron transition and
is neglected, as is also the case of (ad) of Fig.
8(e). Configurations like Figs. 8(d) and 8(e) are
counted later as one-electron transitions. Thus,
all possible contributing configurations are ac-
counted for by the counting procedure by reducing
them all to the form of abcd given in the ground
rules.

In calculating the gain due to a given auxiliary
hop, we must evaluate Eq. (85). The relative con-
tribution of the two-electron transition to the total
admittance is

Ypor /Yiora =€/(1 +e") s (86)

when only one- and two-electron processes are

considered. If G< M, the two-electron process

does not contribute appreciably to Y, and we

shall neglect it. If G >M, we approximate Yo
= YZ-eI .

There will be the following two conditions on the
auxiliary pairs: (i) The first condition is imposed
by the assumption that the state where a and ¢ are
occupied is the ground state of the particular two-
electron system considered. This implies &,c,

> 8 gy and Epgy > E gy - Thus,

A +€pe— €4 >0 (87)
and

A +ALs+€Eyq — €4 > 0. (88)

(ii) The second condition on the auxiliary pair

imposes a minimun separation between sites to be
considered. If sites are closer than this distance,
a “molecule ion trap” described by Tanaka and
Fan'® is formed. The trap sites do not contribute
to conduction. Thus, we will not consider intersite
separations between b and ¢ less than 175-200 A

in Ge where the impurity Bohr radius is approxi-
mately 60 A.

Before considering the implications of the above
two conditions on the gain probability function, we
will find the conditions for which a configuration
has a positive gain. It is clear from Eq. (85) that
G >0 only when 7, >7,.. The gain is maximized
for a given 7,, and 7,, when sites ¢, b, and d are
colinear because this configuration minimizes the
final term in Eq. (85). For a given 7. and 7, the
gain falls off as we depart from this configuration.

The simplest way to study the effect of the varia-
tion of any one parameter is to study the colinear
case. Later this will be generalized to account
for all other configurations. We write

G=g7e) —8Weg) 5 52> 7pe (89)
where
g(r) = (B*/Kyr) + ar . (90)

Figure 9 shows a plot of g(») vs ». Two obser-

FIG. 9. Graphical representation of Eqs. (89) and (90).
Two-electron transitions can be important only if G=g(ry,)
—glryy) is a positive quantity. ». is the critical value for
Vpee I 7y >7., then no site d can exist which would make
a two-electron transition probable.



676 M. L. KNOTEK AND M. POLLAK

vations are noteworthy:
(i) G< 0 unless 7,.< R, where

R.=(Be?/aKy)' " . (91)

This is a very important point in this discussion.
The reduced Coulomb interaction e,./kT must be
large enough to compensate for the loss (e"F¢d) in
the matrix element before the two-electron transi-
tion rate can become comparable with the one-
electron rate. If the radius R, defines a correla-
tion sphere, then only auxiliary pairs that have at
least their initial site inside the correlation sphere
can contribute to correlated transitions. This is a
necessary condition for the two-electron transition
to occur. Setting R, =7, defines the critical density

N,=(3/4m)(1/R?) (92)

for the onset of many electron transitions. As a
means of orientation, in Ge where a=60 A and K,
=16, we find that R,=400 A for T=2 K.

(ii) There are two values of 7,4 for given values
of G, 7y, T, K,, and a [noted 7,4 and 7,,, in Fig.
9]. In three dimensions the surfaces of constant G
in 7,, space are closed surfaces. In particular,
7,4 and 7;,, are given by solutions of Eq. (85) for
Vet

1 G R\ 1 G RV 12
nep{ne=g oo )egl(e -G ) - 9%
4

(93)

We evaluated Eq. (85) numerically in order to
determine the topology of the surfaces of constant
G. The results show that for a given value of G,
7pe, and R, the surfaces of constant G in 7,, space
look like hemispheres to a good approximation for
the cases that are of importance here. The radius
R of the hemisphere is equal to the difference be-
tween the two solutions.

R=7y4=73, (94)
R=[(7y = G/a +R% /7y, —4RZ]}? if G>0, (95)
R=R? /vy, - G/a +(p® — 4R%)'~

+(p"2+4A)? if G< 0, (96)

where
p’'=7y.+G/a —=R% /7, (97a)
p=7y —G/a +R% /7,,. (97b)

The area of the surface of constant G in 7,
space is then

A7y, G, R,)=3TR%, (98)

The hemisphere approximation in nearly all cases
underestimates the true area and volume. The
volume contained in the hemisphere is

V(e G, R.)=3%7R%, (99)

|

r

CONSTANT G
SURFACE

FIG. 10. Ilustration of the spatial relationship of the
various parameters discussed in the text. For a given
value of 7., @, G and T, the site d lies on the surface of
the hemisphere of radius R.

The condition (¢) discussed above and expressed
in Eqgs. (87) and (88) truncates the surface. Fig-
ure 10 illustrates the spatial relationship of the
parameters discussed above. The sphere of radius
Vpapax determined from Eq. (88) truncates the sur-
face of constant G.

We define a function P,(G) such that P,(G)dG is
the differential probability that the nth nearest oc-
cupied neighbor of the site b is site ¢ of an auxil-
iary pair with gain I'=G - M. The nth-nearest site
¢ will interact with the first site available in the
volume [Eq. (99)]. The volumes of Eq. (99) con-
nected to different sites ¢ will rarely overlap. The
probability that the nth-nearest occupied site ¢ lies
at 7,. is given by the Poisson distribution

dnn('rbc) = [Y(VDc)]n-le-y(rhc) d'}'(rbc)/(n -1)! s (100)
where

Y(VDC) = I‘i‘”(ygc - 7’:0, min)Ni (101)

where for compensation K, N; =KN, and N;

=(1 - K)N, are the density of full initial and empty
final auxiliary sites, respectively. To find the
site d we look for the first available site in moving
away from R,.. Thus, we use

dn’(R)
dG

=N, 3nR? %% exp(- 3N, 27R%). (102)

Implying that for site ¢ at some 7,,, d will be the
site with the largest possible G. We then have

dP,,(G) = [(n - 1)‘ J-l Ni 4"7§cd7bc[%'nNi(’rb3c - Tgc,mln)] ™1



|

Xexp[ -Ni%ﬂ(ygc - ’rgc, min)]Nl

dR
><377R2E exp| - N, 27R%/3], (103)
where, by Eq. (95),
dR 11 G R2>
—— e —— ] Y —_——
7C Ra(’“ CM+——"'—rbc , G>0. (104)

Suitable modifications are made for G< 0.
Thus,

Py(G, Re, Ny, Np)= [ dP, (G, 50, R, Ny, Ny), (105)

where the integration is over the volume available
to site ¢c. The lower limit of 7, is determined
from the molecular ion consideration. The upper
limit is such that the final site d, with G=0, lies
at R,. Thus,

2 12
nc,mf%(g +2Rc>—[(g +znc) -435] . (106)

If G< O, then %, m,, is set equal to R..

We now look at Eq. (87). The left-hand side of
the inequality corresponds to the MA value of A,
since it is the energy difference between sites a
and b when the auxiliary electron is frozen on site
c. This quantity is related to the value of E,, for
the impedance Z,, in the following way.!® When site
a and b are on the same side of the Fermi energy,
the energy E, can be considered to consist of two
parts, an activation energy generally occurring in
the probability for the single occupation of a pair
of sites and the energy difference between these
sites.?® The former energy clearly vanishes when
the compensation is one-half. Thus, for the case
considered here, the left-hand side of Eq. (87) can
be identified with E,, of the one-electron theory.

We are now interested in the modification of the
one-electron impedances by the correlated motion.
The magnitude of an impedance in the percolation
theory depends primarily on the two random vari-
ables E,/kT, and 2v,/a. The effect of the corre-
lated motion is to reduce the value of E,,, so the
above discussion implies that we need not consider
impedances with an unreduced E,, larger than E,,
the largest value of £, in the critical paths of the
one-electron theory. Generally, E, is a tempera-
ture-dependent quantity. However, a temperature-
independent value of E,, is implied when in the un-
correlated limit the conductivity shows a definite
activation energy. This appears to be so in the
impurity conduction case under discussion. Thus,
we can assume a definite value of E,, which de-
pends only on the material and not on temperature.

Another argument for this assumption is as follows.

Since E,, related to the one-electron transport, we
can refer to the density of states in Fig. 3. The
fact that the density curve for the conducting elec-
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trons peaks away from E suggests that E,, is
close to the distance between E and the peak and
is insensitive to temperature.

We can now further simplify the set of imped-
ances which we must discuss because it is pri-
marily the largest impedance of the critical paths
which determines the conductivity of the material.
Therefore we need not consider in this semiquan -
titative paper impedances with the value of E,,
smaller than E,, and we can focus our attention
only on the impedances with E, ~E, = 8.

It remains to determine the value of §. In prin-
ciple, this can be theoretically obtained from the
one-electron percolation theory if the density of
states is known. The problem of the density of
states is quite complicated, and we prefer to take
a more heuristic approach here. The Coulombic
nature of the problem dictates that § has the form

8=06%/Kyrp, (107)

where for reasons explained earlier 6 is a number
much closer to unity than that obtained by MA. We
chose to use it as a slightly variable parameter and
wish to ascertain whether we can adequately repro-
duce the experimental results with a reasonable
value of 6.

To summarize the above discussion, we have
made the following three points: (i) The energy E,,
which occurs in the expression for the one electron
impedance Z, can be identified with the left-hand
side of Eq. (87). (ii) Only those impedances in the
one-electron network which have E, = & need to
be considered. (iii) The value of & is given by Eq.
(107), with 6 not much smaller than unity. We thus
change the inequality of Eq. (87) to

Aab+e,, —e,.=6. (108)

The integral [Eq. (105)] was carried out using
the technique of Gaussian quadrature. A tempera-
ture range from 1 to 5 K was covered. An average
effective interimpurity separation, 7, of from 200
to 600 A was used. We used a dielectric constant
of K=16 and an isotropic Bohr orbital radius of
60 A. In this calculation we used N;=N, which cor-
responds to a compensation of 0. 5.

Some typical results of the calculation are shown
for the first auxiliary in Figs. 11 and 12. We show
P(T') where A, has been set =0. Figure 12 shows
the first auxiliary probability for T=1.8 K, »,
=[(3/4mN,]'/%, as the parameter. Figure 11 shows
the first auxiliary probability for », =360 A with T
as a parameter. In this particular series we set
8=0.86%/Kyr,.

From the percolation problem we have the gen-
eral result!®

QZ)=Q(E)= [ p(t)di=y,

A (109)
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FIG. 11. Computational results of the probability gain
function P(G) of Eq. (105), as a function of temperature,
for a fixed value of the average intersite separation »
=360 A.

where
p(E)=4%7NQ1/a®)(E - §/RT)? (110)

is the average number of impedances less than Z,
when moving away from any site in a system. v is
some number between 3 and 1.

In the multielectron case, where we solve for a
new critical impedance Zx efc,

QiD= [7ar [Fp(', Tyag =y, (111)

where Q; is the counterpart of Eq. (109) for the
first ¢ auxiliaries and

Pi(¢', T)=P(E+T)P(T), (112)

where P,(T") is the probability that ¢ auxiliaries
modify the impedance by the gain I':

P(T)=S8(T")+Py(I'), (113)
where P,;(T") is given by Eq. (105) and

S=1- [ P,I)dr (114)
is the probability that I"< 0.

Thus,
Q:(£)= / SB(T)dT [p(&'+T)
+ [PD)dr [p(&’+T)as’, (115)

which becomes

SQUED + [[“P{T)p(E[+T)dT =7 (116)

Equation (118) was solved by setting £.= £, - X(T,7,)
and using the one-electron result of Eqs. (109) and
(110) and the form for P,(T", T, v»,) computed above
to solve for X(T, 7).

In the case where there are two auxiliaries in-
volved, we convolute the probabilities for the first
and second auxiliaries, thus
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Pl+2(r7 T’ 7's)

=P\(T, T, r)(1 - [ Py(T", T, r,)dT")

+ Jaen PAT, T, v )Po(0 =Ty, T, v)dTy . (117)

P,,(T, T, v,) is then the normalized probability
that there are two auxiliaries with total gain I' at
temperature T and average majority separation ..
It should be understood here that the P, (T, T, v,)
we use here, is a function of many variables that
must be used as discussed in Sec. IV. Among the
most important of these are §, A, N;, N;. All
four of these quantities are poorly known. All of
them require a detailed knowledge of the density of
states in order to be properly determined. At
present, the density of states when ion pairing is
taken into account has not been treated at any but
very small’® and very large compensation'?; we
consider it outside the scope of this study.

VI. RESULTS AND SUMMARY

Perhaps our most important result is the cri-
terion for the onset of the two-electron hopping,
contained in Eq. (91) and explained below that equa-
tion. The critical density obtained from Eq. (91)
above which many-electron transitions should be
included in the hopping conduction, is plotted in
Fig. 13. To use this figure, one matches the ap-
propriate localized radius a and temperature 7 and
reads off the critical density on the ordinate. The
example of impurity conduction in germanium, with
a=60 A, and at T=2 K, is indicated in the figure.
The critical density is seen to be ~3%x10% cm™3,
The figure is plotted for a dielectric constant of
16. For other dielectric constants K| the critical

FIG. 12. Computational results of the probability gain
function as a function of the average intersite separation,
for the fixed value of temperature T=1,8 K.
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FIG. 13. Criterion for the onset of many-electron
transitions in the dc conductivity. Two of the variables
in the graph determine the critical value of the third one.
For the example of impurity conduction in germanium,
with a=60 1&, and at T=2 K, many-electron excitations
will be important for concentrations above N=3x10'
cm™. For a-Ge, with a=10 A, and N~10!" cm=3 (Refs.
19 and 20) these effects appear below 2 K. Further de-
tails will be found in the text.

density should be multiplied by (#Ky)*?. In addi-
tion, the figure corresponds to compensation 0.5.

For other compensations the critical concentration
is larger.

It is of some interest to apply the criterion to
conduction in amorphous semiconductors. We can
ask ourselves what the temperature is below which
many-electron hopping must be important. For
most amorphous semiconductors we lack the neces-
sary knowledge of N and of a. However, for amor-
phous germanium these quantities are known'*2° to
be a~10 A, and N=2%10', Figure 13 then implies
that many-electron excitations are not important
for the conductivity down to 2 K.

A comparison between our many-electron theory
and a one-electron theory is shown in Figs. 14-17.
The solid lines in Fig. 14 are plots of

p<= (R, /a)? exp|2. 65(R, /a) + §/kT];
8=0.66% /Ky,

(118)

which is the result of a one-electron percolation
theory for a conductivity which exhibits an activa-
tion energy. The dashed lines are plots of the FC

results. The two sets of curves are not necessarily
plotted with magnitude on the same scale. They
are made to coincide, rather arbitrarily, at 7,
=190 f\, at high temperatures. The figure thus
does not test the absolute value of the predicted
resistivity, but rather tests the functional depen-
dence of the resistivity on temperature and concen-
tration of dopant.

Even though the activation energy chosen in Egs.
(118) is rather low in view of the earlier discussion
on the subject, the agreement between the experi-
mental results and Eqs. (118) is seen to be rather
poor. For example, the variation of the resistivity
for material with N=3.5X10% em™® (7,=190 A) in
the temperature range of Fig. 14 is off by seven
orders of magnitude and for material with N=2.6
x10% cm™® (r,=448 A), it is off by 2.4 orders of
magnitude. Another conspicuous feature of the
theoretical curves in Fig. 14 is the crossing of the
curves, which is clearly absent from the observed
data.

Figures 15 and 16 are our results for the con-
ductivity when two-electron transitions (i.e., one
auxiliary pair per configuration) are included.
Figure 15 uses §=0.6 e"’/Kf,'rs to enable comparison
with the one-electron theory, and Fig. 16 uses
8=0.7¢e%/Kyr, to show the effect of & on the re-
sults. The trend of the theoretical curves towards
the experimental curves is obvious when comparing
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FIG. 14. Results of a dc impurity conduction theory
for K=0.5 when correlation motion is neglected. As is
explained in detail in the text there is a slight arbitrari-
ness in the slope of the solid theoretical curves. The
dashed lines reproduce the results of Fritzsche and Cue-
vas (Ref. 1).
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FIG. 15. Our results (solid lines) including two-elec-
tron excitations, i.e., one auxiliary hop per configura-
tion. The value of the parameter 6 of Eq. (107) is 0.6,
The dashed lines are experimental results of Ref. 1.

Fig. 15 with Fig. 14. The discrepancy of approxi-
mately seven orders of magnitude at the high con-
centration is reduced to 2.5 orders of magnitude
and a discrepancy of 2.5 orders of magnitude at the
low concentration and is reduced to =0. 4 orders of
magnitude. Furthermore, most of the theoretical
curves cease to cross each other.

Comparison of Figs. 15 and 16 shows that the
general improvement of the two-electron theory,
as compared to the one-electron theory, is a much
more pronounced effect than that caused by an un-
certainty in the choice of &.

In Fig. 17 we plot our results when two auxilia-
ries per configuration are admitted. The plot uses
§=0. 7e2/K07f$. A continued improvement of the
predicted behavior is apparent. Because of the ap-
proximations made in the computations of the re-
sistivity with two auxiliaries, we do not believe
that these calculations are reliable beyond showing
that a trend in the right direction exists.

It may be noted that the features of the p-vs-T!
curves in Figs. 15-17 resemble qualitatively the
T-!/* dependence characteristic of the single-elec-
tron variable-range hopping theory of Mott.?! It is
of interest to comment on the relationship between
the variable -range and the many-electron hopping
processes.

The T~'/* process can take place when the Cou-
lomb interaction between the carriers is less than
the relevant random fluctuations of the potential.
For T-!/* the density of states has to be roughly
constant within a certain energy range around the
Fermi energy through which the electrons must
propagate. Therefore, this energy range must be

larger than the gap in Fig. 3. As discussed in the
Introduction, this gap is created by the Coulomb
interaction between the carriers.

As pointed out by Mott, in the variable range
hopping, there is a competition between the over-
lap (an exponential function of the distance) and an
energy term (an exponential function of the energy).
At lower temperatuers the carriers tend to hop longer
distances with less activation. When the activation
becomes comparable to, or less than the gap, the
energy factor can no longer be reduced by enlarging
the hops. However, as discussed the energy factor
can now be reduced by two- or-more electron hops.
(It will be remembered that the gap in Fig. 3 re-
lates to one-electron excitations.)

There is a certain qualitative similarity between
the variable range hopping and the two-electron
hopping. In both cases the optimum process is
determined by a trade off between the energy term
and the overlap. In both processes the overlap
term must increase to decrease the energy term.
In the variable range hopping it increases exponen -
tially with the hop distance, and in the many-elec-
tron hopping it increases as the exponential of the
sum of the hop distances of the involved electrons.

In conclusion, we believe that we have demon-
strated the importance of the correlated motion of
electrons in general and of many-electron excita-
tions, in particular, in hopping conduction under
conditions often prevailing. Specifically, we find
many -electron excitations to be important in much
of the data on impurity conduction reported in the
literature. On the other hand, it does not appear

26~
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FIG. 16. Figure caption is the same as Fig. 15, but
with 6=10,7.
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FIG. 17. Figure caption is the same as Fig. 15, but
approximately including three-electron excitations, i.e.,
two auxiliary pairs per configuration.

to be important for the reported measurements on

hopping conduction in amorphous germanium, %2
The following are, we feel, some experimental

demonstrations of the importance of many-electron
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excitations in impurity conduction.

(a) Thefirst is the general agreement of the mea-
surements of FC with this theory.

(b) The second is the work of Gordy?® who mea-
sured impurity conduction in germanium below 1
K. He observed a curvature similar to that we
would expect from this effect in that temperature
range.

(c) The third is the work of Allen and Adkins'’
who measured impurity conduction down to very
low temperatures. They find that in order to in-
terpret their results, they need dielectric constants
which are much larger than those of pure germani-
um. This may be interpreted as the dielectric re-
sponse of the “auxiliary” carriers to a conducting
electron, in accordance with the treatments in
Refs. 3 and 2.

(d) The fourth is the work of Emelyanenko
et al.,? where similar measurements on GaAs
were reported. Although the authors interpret
their results in terms of 7°!/4 we believe that the
alternative interpretation in terms of the theory
presented here is likelier. This is particularly
true for the low-compensation sample (K =0. 024),
where 7~'/* would not be predicted even with a
one-electron theory, > because the potential fluc-
tuations are of a longer range than the hopping
distance.

*Work supported in part by ONR Grant No. N00014-69- A~
0200-5005.
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