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Dielectric constant and ano~&ous magnetoresistance of zero-gap semiconductors
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It is shown that for a zero-gap semiconductor the static dielectric constant at infinite wavelength

(q = 0) and zero temperature contains a magnetic-fielddependent term of the form of 0 '". Because
of this anomalous term, both the longitudinal and the transverse classical magnetoresistance for a
p-type sample are expected to have a dependence on the magnetic 6eld other than the usual 0'
behavior in the low-temperature region.

I. INTRODUCTION

There has recently been considerable interest in
zero-gap semiconductors, especially in their di-
eleetrie properties. In a pure semiconductor with
inherent zero energy gap, both the static and the
dynamic dielectric functions at zero temperature
have been shown to possess singularities. In the
static case, the singularity is of the form q

' at
small q. The dynamic dielectric function has a

dependence for small (d. These anomalies in
the interband polarizability eorne from the band-
edge structure, which is degenerate as required by
crystal symmetry. For this reason, the static in-
terband polarizability depends strongly on impurity
doping' or on temperature. 4 All these effects have
been predicted theoretically within the framework
of the random-phase approximation (RPA). In view
of the subsequent work of Abrikosov and Beneslav-
skii' on the renormalization of the energy spectrum
due to electron-electron interactions for zero-gap
materials, the form of the RPA anomalous terms
may have to be modified within a very small region
close to the point where the singularity occurs.

Since the band-edge degeneracy plays a decisive
role in these polarizability anomalies, it is expected
that any external field which lifts the degeneracy
should have a strong effect on the dielectric func-
tion. For crystals like o. -Sn, HgTe, or HgSe, '
the degeneracy is required by cubic symmetry, and
hence an uniaxial stress should remove it. The de-
pendence of interband polarizability on uniaxial
stress is the subject matter of a recent publication
by one of us. s In this paper we discuss the effect
of a uniform magnetic field, which is another means
for opening up an energy gap in a zero-gap materi-
al. We predict that the interband polarizability
should have a H ~~ term from both the spin-flip
and the non-spin-flip transitions, where H is the
magnetic field strength. With this kind of anoma-
lous screening, the low-temperature classical mag-
netoresistanee of a p-type sample is shown to have

a, field dependence significantly different from the
usual H behavior.

II. CALCULATION OF MATRIX ELEMENT

To calculate the interband polarizability in the
presence of a magnetic field, we need to know the
matrix element of the perturbing wave field e'~

between two Landau level states. Assuming that

q is along z, which is the direction of the magnetic
field, the relevant matrix element is denoted by

I =(c, n, k, o ~e" ~v, n', k', o' ), (2. I)

where c and n label the conduction and valence
band, respectively; n is the Landau quantum num-
ber; k is the wave-vector component along the
field direction; and 0, which can be either + or —,
is the spin index. For n -Sn-type semiconductors,
the degenerate band edge is of I"8 symmetry. Wave
functions for the I'8 edge in a magnetic field have
been deduced in the effective-mass approximation
by various authors. For our purpose it is more
convenient to use the results of Yafet, '0 who had
deduced the wave functions by taking only interac-
tions among I"', and the two close-by I'7 and r;
states into account. The wave functions are given
by

~c or v, n, k~, 0')=

ly
x Z ~, „(k„,k.)e*""-.-'u, , (2. 2)

f~kz

where f. is the crysta1 volume and s = eH/Sc If.
we further confine the expansion of the magnetical-
ly perturbed wave function into the four Xa band-
edge states only, the summation over j in Eq.
(2. 2) runs over the following four states:

u, =
~
(I/v 2 )(X —iY)t ),

u2= ~(I/%6)[(X —iY) t+ Z24]),

u, = ~(I/&6)[(X+iY)~ —2Z~]),
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n, = ~(1/&2)(X+f1 &~&, (2. 3)

where X, F, Z are the I'2~ wave functions which
transform as atomic P states and the symbols 0 and
0 designate the spin-up and spin-down states, re-
spectively. The expansion coefficients A, „asob-
tained by Yafet1P are quoted in Table I. In these
coefficients @ is the linear -harmonic-oscillator
wave function of the dimensionless variable k,/vs.
The energy eigenvalues of the conduction-band Lan-
dau levels with + or —spin are given as

Z„',= '()P ~-'/Z )[k2+(2n+1)s]+-s IP ('/Z, , (2.4)

where Z =Z(FS) —Z(F~) and P is the momentum
matrix element, P =(k/m) &iS IP Ix&. The wave

function 8 is that for the I'2 state having atomic s

symmetry. The valence band has been assumed to
be flat and hence the magnetic field splitting of the
valence band is to be neglected in this approxima-
tion.

With the wave functions given in Eq (.2. 2) the
matrix element is calculated to be

~M ~'=6„, „ZA~„(k„k,)A, „,(k„k,') . (2. 5)
x

From Table I it is evident that for non-spin-flip
transitions, the selection rule is be==a'-n =0, and
for spin-flip transitions, he= +1. By using the or-
thonormal properties of linear harmonic -oscillator
wave functions, we can write down in explicit form
the matrix element in the small-q limit correspond-
ing to four types of transitions in the following:

(a) ~v, n, —)to ~c, n, -&

l 2(n+ 1)sk~'
2k + (4n+3)s]s(2ks+ns)

'

(b) i v, n, +) to
i c, n, + &

12nsk q n ~+1 ~

[2k~+ (4n+ 1)s]s[2k~+ (n+ l}s]
(c) iv, n, -)to ic, n —1, +&

6n(n + 1)s'q'
M +

(2k', + ns)[2k, + (4n —3)s][2ks + (4n+ 3)s]

(d) iv, n, +&to ~c, n+1, —)

6n(n + l)s'q
M =

(
+ ~

[2k, + (n + 1)s][2k + (4n + 1)s][2k, + (4n + 7)s]

(2. 6)

(2.6}

III. CALCULATION OF DIELECTRIC CONSTANT
'2 (e'Kc)'~~ Z I;jpj' (3. 3)

4sn=, Z4e s jM|~

a~n, e ~, fy

(3 1)

The factor s in Eq. (3. 1}is related to the degener-
acy of Landau levels (I.s) obtained by restricting
k„/s in the phase factor of Eq. (2.2) to be within a
length of L. The summation is over the occupied-
valence-band Landau states for a pure saxnple.
Each state is connected with two conduction-band
Landau states-, one corresponding to spin-flip tran-
sitions and one to non-spin-flip transitions.

With the matrix element in Eqs. (2.6}-(2.9} and

energy eigenvalues given in Eq. (2. 4) the interband
polarizability in Eq. (3.1) can be straightforwardly
calculated. The result is expressed as

where the constant X is given by

%e calculate the RPA interband polarizability a.t
zero temperature according to the following expres-
sion with a flat-valence-band approximation:

X2
I2=Z 2n dx.o (2x2+4n+1) ( 32xns++1)

I, =En( +n1) ' dx[(2x'+4n-3)'
sf=1 4p (3.4)

&& (2x'+ 4n+ 3}(2x'+n)]

I, =Z n(n+1}
~

dx[(2x'+4n+'7)'
n=l

x (2x'+4n+ 1)(2x'+n+ 1)]

The four numerical constants I& are contributions
from the four types of transitions listed in Eqs.
(2. 6)-(2. 9). They are given explicitly in the fol-
lowing:

2

I =7 2(n+1
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IV. MAGNETORESISTANCE

The anomalous screening discussed in this paper
should have an effect on the magnetoresistance at
low temperature. For n-Sn, HgTe, or HgSe, the
effective mass of the hole is much larger than that
of the electron. It is then advantageous to investi-
gate a P-type sample such that suitable temperature
and field regions can be chosen to make the conduc-
tion-band states quantized, but not the valence-
band states. In this way, quantum effects do not
set in other than giving rise to a field-dependent
impurity screening. Since the impurity scattering
dominates at low temperature, the relaxation time
7 should show a field dependence through its depen-
dence on the dielectric constant & as given by

~= r.(e/e. )', (4. I)
where the subscript r refers to an arbitrarily cho-
sen reference point. The dielectric constant c
should contain a, field-independent part &0 and an
anomalous part given in Eq. (3.2}, or

e = ~, + X/&H . (4. 2)

For a p-type sample, the energy surface is suf-
ficiently warped to give rise even to a longitudinal
magnetoresistance. Both the longitudinal and the
transverse magnetoresistance ordinarily should
have a H' dependence on the magnetic field. Now
with the field-dependent impurity potential, the
quadratic dependence on the magnetic field has to
be modified. Since the magnetoresistance hp/po
depends on the square of the relaxation time, '~ we
expect that

In the integrals above, the upper limit which should
be K/vs, K being the Brillouin-zone dimension, has
been replaced by infinity. The starting n in each of
the series summation above is given explicitly for
a pure sample. The series do not converge very
rapidly. We have estimated the value for each se-
ries and obtain/;f, f;-0. 16. If we take the values
of E~ = 0. 413 eV and

E, = 2m
i
P

i
'/8' = 24. 8 eV

as calculated by Leung and Liu' for o, =Sn, we ob-
tain X 8, =6&10 g' ~ This value for X should only
be regarded as an order-of-magnitude estimate.

It is remarked here that for a doped sample of
either n or P type, the H ' dependence of interband
polarizability as given in Eil. (3. 2) is not valid when

Ts«k~, k~ being the Fermi momentum for a de-
generate sample.

(4. 3)

From the measured vainest' of eo(=24) and the cal-
culated value of X for pure n-Sn, it is expected that
the field dependence of the magnetoresistance as
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given in Eq. (4. 3) can be significantly different from
the usual H behavior. In the small-field region
v s «k~, however, the magnetoresistance does not
have this anomaly.

An experimental study of the magnetoresistance
anomaly is not only of interest for its own sake but
also may provide one additional verification of the
anomalous screening effect. %e suggest certain
typical experimental conditions in this paragraph.

At 4. 2 K and in a magnetic field below 10 kG, the
valence band for all the presently known zero-gap
semiconductors should remain unquantized. For a
p-type sample containing 10'5 carriers/cm~ or less,
the magnetoresistance should rise as H at very
low field and gradually change to the field depen-
dence given by Eq. (4. 3) as the field increases.
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