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Using density-matrix formalism which takes into account relaxation more correctly, we show that
resonance $4~m scattering and hot luminescence are two distinct physical processes, although they are
alw'ays simultaneously present and can interfere with each other. The transient response of the two
processes are, however, di8erent.

With the advance of tunable lasers, resonance
Raman scattering has become a subject of much in-
vestigation. ' There is, however, apparent con-
fusion in the literature on the difference between
resonance Haman scattering (HHS) and hot lumines-
cence (HL). Recently, Kleins showed that in some
cases the RHS efficiency could be written as the
product of the absorption coefficient and the quan-
tum yield for hot luminescence. He then concluded
that RRS was often equivalent to HL. In the litera-
ture, usually either one or the other was used to
interpret the observed resonant-Raman data. ' '
We want to present in this paper expressions for
the cross sections of BRS and HL derived from the
density-matrix formalism which takes into account
relaxation due to random processes more properly
than the golden-rule approach. ' We show that HRS
and HL are, in fact, two distinct physical process-
es although they are simultaneously present in or-
dinary HHS experiments.

The physical differences between the two process-
es are perhaps quite obvious intuitively. HHS is a
two-photon direct process, while HL is a two-step
process. HL arises from radiative decay of the
excess population pumped into the intermediate
state by the exciting field, but HHS does not. The
two processes have in general different line shapes.
If the exciting field is abruptly shut off, HL should
have an exponential decay corresponding to the de-
cay of the excess population in the intermediate
state, aside from the usual induction decay. These
differences can be seen more clearly in the follow-
ing derivation.

Since we are dealing with a resonance phenome-
non, relaxation for transitions must be taken into
account properly. For this reason, we use the
density-matrix formalism. The equation of motion
for the density-matrix operator p is '

= bing+ 3C, pl+ tX
~P I . 9P

0 ~t

where 3C0 is the Hamiltonian of the unperturbed sys-
tem, 3C is the interaction Hamiltonian between
light and matter, and (Bp/Bt)~, t~, responsible for
relaxation, comes from interaction of the system

with random fields. We can use the semiclassical
approach to find the transition probability for the
system to change from the ground state to an ex-
cited state by absorbing a photon at co, and emitting
a photon at &tt, . We first solve p(t) from Eq. (1)
using the iterative-perturbation procedure, and ob-
tain the third-order polarization at ttt, from ( pi '

(&tt„ f)) = Tr[p' '(ttt, , f)p, ]. Then, the differential
probability for spontaneously emitting a photon at
co, per unit volume per unit time is given by

d~W (o,' Im(p"'((o, ) E(&u, ))
(d~, dn 22e' IE(~, ) I'

In the steady state, the corresponding differential
scattering cross section is

d'a lf(ot to,' Im ( pts'((o, ) E((o, ) )
d(o, dQ wC' I E((ut) I' IE(&u ) I'

Consider first a three-level system with a ground
state (gI, an intermediate state (n I, and a, final
state (fI, as shown in Fig. I. The frequency &ot of
the exciting light is close to the transition frequency
ra„, between In) and Ig), a.nd the frequency &u, of
the scattered radiation is close to &„z. We can

FIG. 1. A three-level
system interacting with an
exciting field at frequency
a&-a~ and a Stokes field
at QJ~.
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write

5&" =5&"(&d, )+5t" (&d, )+5&"(- &d, )+X (- &0, ), (4)

where

5&" (&d, , ) = [X'(- (o,„)]'= —p,'„E(&d,„),
E((g }—g e ~&,s&

%'e expand p into a series of ascending orders, p
= p' '+ p' '+ p' '+ p' '+. . . , and find each term suc-
cessively through the iterative solution of Eq. (1)"
In each iterative process, we need to keep only
those density matrix elements which are near res-
onance. We assume, for simplicity, (il p' 'Ij)
= p &0'=0 except that p~ '=1. As a result, we obtain
from the various orders of interaction the following
set of equations:

& p'"(a, ) &
=—(p, )~. p&,"(~,),

+ (i&d„~+ r„~) p&~ (&0, )

=,~[- p"'(0)5&'„'t(&d, )+5t" ((o&) p~&" (&d, —&d, )],

+ ~-p.'."(o}= .
Z

[5&".', (~, )p&"(- ~, )

—A'„"(&d&)5t" (- &d, )],

(a)
&a&

at
+ (i~.~+ T.t}p.t (~. —~&)

pg ( ~&)&nS(~s} ~gn

at
+ (i&d„, + I'„,)p„&,"((o&)= —.„v„,(&d, ),eg ng ng l ~@ ng l

p&,"(~,) = [p&'„"(-~&)1* . (5)

In the above equations, the damping constants I"s
come from the (sp/st)~ „„term in Eq. (1). How
I"s result from interaction of the system with ran-
dom fields has been a subject of extensive studies
in magnetic resonance, ' but is not well understood
in optical cases. It is usually believed that the life-
time broadening often dominates the linewidth of an

optical transition. ' Then, we can write I;;(i& j)
', (1/T, +1-/T, }, where . T, and T~ are the lifetimes

of &il and (jl. Since &n I is far above &gI, we also
have I' = 1/T„Norm. ally, we also expect T, » T„,
Tf. %'e must, however, emphasize that in general

I&& does not necessarily have any simple relation
with T; and Tz or I;; and I'~~.

The solution of the set of equations in (5) is
straightforward. Assume the exciting radiation is
switched on at t= —~ and then suddenly shut off at
t=to, as described by g(t}=A[I —u(t —to)] in Eq. (4),
where u(t) is a unit step function. We then find

from Eqs. (5)

(~s ) &
= ( P (&d~ ) &Ra&& + & P («'~ ) )sL

x['[I —u(t —t )]e"~ ' Ie+'" f" f'"~ uO( -tt }f

&P'"(~.)&HI, g8[ }2 z4] (P )tn(P & 41(P&'&&)

I - &&(t - to) , & „,& , u(t - to) ~(-f id -1 /Tn) (t -0 0)

(u, —(o„~+iI'„q ~, —~„q+ i(I'„q —I /T~)

~ ~

1 1
«(t —to}e&-& ~&-r&)"

(g —(g„y + tV„y &d —&d„t + i(F„g —1/T„)

We note that &P&~'(&d, )) consists of two terms.
The term &

P&~'(&d, ) &R» comes from the $~'(&o, —~,}
contribution to p&t'(&o, ) in Eq. (5) and the term ( P' '

(&d, )&„L comes from the pg'(0) contribution to p„'q'

(+, ) in Eq. (5). They can be identified as the Ita-
man scattering part and the luminescence part, re-
spectively, for the following obvious reasons.
( P' '(&d, )&a„«does not depend on the excess popula-

tion p'2'(0} pumped into the immediate state ( n I by

the exciting field, while &
P' '(&o, })„„is directly

connected with p+'(0). In the steady state (corre-

sponding to t & t() I, if v, is sufficiently far away from
resonance such that

then Im(E (&d, ) P„'z', (&o, )& is negligible compared
with lm& E~)&d, ) Pg„'s(~, )&, and the substitution of
(P '(&o, }&»s in Eq. (3) leads to the weLl-known ex-
pression for the differential Raman scattering
cross section. Near resonance (&o,

™ur„,), the term
1m& R~((o, )- Pzq(&o, )& becomes important. If, how-

ever, the linewidths are dominated by lifetime
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broadening with 2rmT. =1 and Tg» Tn, Tf, then by
substitution of & 5")((d,)&a„,+&p")((d,))„L into Eq.
(3), we find"

O 4O&&Os
3

fz
d(d, dQ ttCt ((d, —(d, —(d~, )t+ r),

This is the usual expression one normally uses for
the differential cross section of 888 when there is
only one intermediate state effective in the resonance
scattering process. Note that Eq. (7) is usually
derived from the golden-rule approach which im-
plicitly assumes lifetime broadening for the states
2I'„,T„=1, and 7, » T„, Tz. ' As shown in Eq. (6),
Baman scattering and hot luminescence have, in
general, different line shapes, as one would ex-
pect. In the transient state (t & fo), both 1m& En ((d, )
' Pa(ta)s((d, }& and Im(E*((d, ) Ps(tL)((d, )& have a term
which decays in the form of a damped oscillation
with an oscillating frequency of ((d, —(d„z) and a de-
cay rate of I'„f. This is due to luminescence from
In) to If) induced by the abrupt change of the excit-
ing field, and is the source of coherent Baman beat
recently observed by Shoemaker and Brewer. '
However, the HI term has an additional pure ex-
potential decay term which reflects the decay of
the excess population pumped into the intermediate
state I n& by the exciting field.

One limiting case in the steady state is of inter-
est. As seen from Eq. (6), if I'„, =r„z»I&„ then
(d'a/d(d, dQ) „,obtained from 1m&m*((d, ) Pa(ta)8((d, )&

reduces to the usual expression for resonance Ra-
man scattering as given in Eq. (7), while
(cPo/d(d, did)» would appear as a broad background
(with a half-width I'„f).

The total scattering efficiency is given by

0'= d&qdA .d 0'

d(d dA (6)

Assuming Eq. (7) with 2r„tT„=1 is valid, we then
recognize that

cr = ct((dt)T' /T„,
i.e. , the total scattering efficiency is equal to the
absorption coefficient multiplied by the quantum
yield for radiative transition from I tt& to I f).
This equality has led Klein to believe that RRS and
HL are equivalent. s However, we should again
emphasize that there are assumptions involved in

is proportional to the absorption coefficient tt((dt),
and 1(P, )&„ I proportional to the inverse radiative
lifetime Ts for radiative transition from In) to If).
It is then easy to show that

deriving Eq. (7). On the other hand, we can easi-
ly show from the steady-state expression of
&0"'((d,)&» in Eq. (6) that the total HL efficiency
0„~ is given rigorously by

(10)

as one would expect. %e should of course consult
Eq. (6) for the more subtle differences between
RRS and HI,.

The case with several intermediate states which
are close to resonance with the exciting field is
more complicated. The first few equations in (5)
must be ~odified as followse'9.

—+t(d„&+ r„& P~ ((d )(
(3»

8t

+i(d ~+—r ~ pt~)((d, —(d, ) = —. Zpt„(- (d, )x'„~((d, )'

The major difference between this case and the
previous case is in the last two equations of (11).
Through interaction with random fields, the inter-
mediate states can be strongly coupled with one
another. Here, W ~ represents the transition rate
from In'& to In) induced by the random fields.
%e have actuallys'

I' = Wt„+ W)„+Z W„.„n'

/W enn)nnttInr

In the equation of pN)(0), we have neglected the
term W~p '(0) which is usually small. The re-
sulting polarization &0"'((d, )& again consists of an
RRS part and an HI. part, coming, respectively,
from the p ~&)((d, —(d, } and g„.p ~ (0) contributions
to P„'~ ((d,).

The RRS part of &F"((d,)& leads to a differential
scattering cross section

(
d 0' (d ~CO 1

d(dndA tta() ttC t
—(dn —(dyt) —tryt

(Pt ),„(P,}„,(P,},~ (Pt )„.,
n, n' ((d( —(dnn —tI nn)((dn —(dna'+ tInsg)



DISTINCTION BETWEEN RESONANCE RAMAN SCATTERING. . .

If I ~, —co I =
I u, —+& I » I'„~, I &, then the above

equation reduces to the usual expression for dif-
ferential Raman scattering cross section (near
resonance) as it should be. The HL part is non-
neg1igible only when (d, is close to resonance. Be-
cause of coup1ing between intermediate states
through relaxation, it is difficult to derive a gen-
eral expression for the differential cross section

of HL. %e shall therefore discuss only a few limit-
ing steady-state cases in the following. %e shall
present only the results, the derivation of which
is straightforward and will not be reproduced here.

Consider first the ideal case where the interme-
diate states are not coupled, i.e. , W ~ =0. If we
assume lifetime broadening of the states with
2F~T„=1 and T~» 7„, T&, we have

~

~ ~d, do „C' ( — „))' )(,— & ')',g)( —;,—i)';,))

Then, the total differential scattering cross section
becomes

d 0' d g d 0'

cf40 dA co& CA Rps cf(io+d A

(d~(d~
3 I'»

vC ((di —(()q ())yg) + Fyg

(P.),„(s,')„,
'

ff 40) 42~+ cF~ de) dA g

which is the expression one often uses for RRS.
Consider next the case where only one interme-

diate state !no) is being effectively pumped. The
other intermediate states are populated only
through relaxation from the excess population in

l no). With the assumption of lifetime broadening,
w'e find

= (d ad&a, dQ)~+ luminescence, (15)
d 0'

d(0~ dA

where the luminescence part'3 comes from
(p( ))~„o0. In the limit when l s&„ I » I' „we
have (d o/d~, dA)z reduce to Eq. (7); in ober
words, so far as scattering is concerned, the sys-
tem becomes effectively a three-level system.
This is the approximation often used, for example,
in the work of Yu et al. 5

Consider finally the case where the relaxation
rates between the intermediate states are so large
that the excess populations in In) are always close
to thermal equilibrium. %e then find

(a) 0 ~ ~ 21'~./I'
Pnn ( ) ))~ ffR[(~ ~ P PR j

2

x
~

yt* g, )„,,I,
where the constant coefficients A„describe the
thermal distribution among ls) and I' is the aver-

I

age relaxation rate from the set of intermediate
states ln) to other states. The differential cross
section for hot luminescence (or luminescence in
general) is given by

„~ 2A„(1"„.,/I')1(P,')~, I'
n' 8 [((d) —(()„eg) + F„eg]

(P)) (&))..).)(, — .,—).,))
(17)

As seen from E(ls. (12) and (17), both RRS and HL
are simultaneously present in this case, but they
would have different spectral distribution.

%'e have seen in the above discussion that RRS
and HL are in fact two different physical processes,
but they are always simultaneously present and
can interfere with each other. In experiments
measuring only steady-state response, they are
not clearly distinguishable except that HL usually
has a broader emission spectrum. Both RRS and
HL have been observed, for example, by Gross
et fT/. In some cases, the two processes can
probably be distinguished in the transient time-re-
solving experiments, since RRS is essentially an
instantaneous two-photon direct process and HL is
a two-step process which depends on the relaxation
of the excess population in the intermediate states.
Our discussion here will of course apply to other
two-photon processes as well, such as two-photon
absorytion. Using picosecond pulses, Reintjes
and Mcoroddy' have recently demonstrated the
importance of the indirect two-step process in the
two-photon absorption in Si at 1.06 pm.
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