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A time-dependent ambipolar theory describing transient photovoltaic effects that occur in illuminated
anisotropic semiconductors is discussed. The formalism is such that the theory may be used to describe
transients in the transverse Dember, photopiezoresistance, and photomagnetoelectric effects. An
anisotropic semiconductor having one surface uniformly illuminated with light of time-varying intensity
is considered and general expressions for the short-circuit current and open-circuit photovoltage per unit
length are obtained. Particular solutions for several different illuminations are included. Experiments
undertaken to observe the transient photopiezoresistance effect in germanium, in which photovoltages as
large as 1 V were recorded, are also described. A comparison between theory and experiment is

included.

I. INTRODUCTION

When the surface of an anisotropic semiconductor
is exposed to light that is strongly absorbed, a car-
rier-concentration gradient forms normal to the
surface and this is accompanied by the diffusion of
excess carriers into the bulk, As a consequence
of anisotropy, however, the diffusion of electrons
generally proceeds in a direction different from
that of holes. Because of this, a photovoltage de-

velops continuously along the length of the specimen,

In addition, if the ends of the specimen are shorted,
an electrical current flows. The photovoltaic ef-
fect occurs in naturally anisotropic semiconductors
as the transverse Dember effect.'? Similar effects
are also observable in cubic semiconductors for
which anisotropies have been externally created.

In the photopiezoresistance effect’~® elastic strain
produces the requisite transport anisotropies,
whereas in the well-known photomagnetoelectric
effect™® an external magnetic field is employed

for this purpose. All of these effects arise from

a common cause, the preferential drift and dif-
fusion of photogenerated electrons and holes, and
they can all be treated with a single phenomeno-
logical theory. In this paper a time-dependent
ambipolar theory is discussed, one that may be
employed to describe transients in all of the above
effects.

In Sec. II, an anisotropic semiconductor having
one surface uniformly illuminated with an arbitrary
(time-dependent) light flux is considered. The
equations needed to describe the photovoltaic effect
are first presented. The intrinsic case, for which
the effect is largest, is then discussed in detail and
general expressions for the short-circuit current
I, and open-circuit photovoltage per unit length
V.. are obtained. Particular solutions for several
types of transient illuminations are included. The
extension of the theory to include the extrinsic case
is also discussed. In Sec. III, experiments de-

leo

signed to observe the transient photopiezoresis-
tance effect in germanium are described and the
experimental results are compared with the predic-
tions of the ambipolar theory.

II. THEORY

Let us consider an anisotropic semiconductor
having dimensions x,, vy, 2, that is oriented as
shown in Fig. 1, We assume the semiconductor to
be characterized by electron and hole mobility ten-
sors ‘u-,,' and 75, , that are anisotropic in the xy
plane and whose principal axes do not coincide with
the x and y axes of the specimen, Beginning at
time #=0 the lower semiconductor surface at y=0
is uniformly illuminated with light of intensity I,(¢).
The time dependence of the illumination intensity
is arbitrary. The following assumptions are made.

(a) The quasineutrality approximation holds such
that the concentration of excess electrons 0n is
equal to the concentration of excess holes 0p.

(b) The production of electron-hole pairs due to
illumination occurs with quantum efficiency 8 and
takes place at the illuminated surface and not in the
bulk,

(c) VxE=0, where E is the local electric field.
That is, we shall neglect effects due to time-depen-
dent magnetic fields.

(d) End effects and trapping effects are negligi-
ble.
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FIG. 1. Geometry of specimen considered in text.
The z axis is out of the plane of the paper.
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For the case to be considered, the electron and
hole mobility tensors, i, and T, , may be expressed
in matrix form in the specimen coordinate system

9
as

LT

o= | Hgy Hnyy O | 1)
L O 0 Hnge
[Hors Moy O]

Tp= | Hpyx Hpyy O |. (2)
L 0 0 Ky,

For nondegenerate semiconductors, the correspond-
ing diffusivities are given by

D,=(xT/e)L , 3)
D, = (kT/e)T, . @

Likewise, the conductivity tensors™G,, 7, , and G
are defined by

'&.n=ner"n ’ (5)
?, = pels, , (6)
T=T AT (1)

where n and p are electron and hole concentrations,
respectively.

We seek expressions for the current I, that flows
in the illuminated semiconductor when the ends
along x are short circuited and for the photovoltage
per unit length V, that develops under open-circuit
conditions. Using the methods discussed by Shah
and Schetzina, ® an excess-carrier continuity equa-
tion for the case under consideration may be ob-
tained in the form

B (80P _ .30p _05p_385p
8y (D*ay) v 8y T ot - ®)

Likewise, expressions for J,, the x component of
the total current density, and J,,, the y component
of the hole current density, are obtained as

5
g =— eau*—%yﬁ+ o*E, (9)
dpy = = eD*E%e+p*ev* . (10)

In the above expressions 7 is the excess-carrier
lifetime and

7 + p)Dpyy D
D*—( p)Dnyy Pw’

= (11)
nDn:w +pD»w

_ Omyx , (12)

ZOL"!_.%}L (13)
UPW onw ’
* _ pnoyy

p noﬂ)’)’ + po’”? ’ (14)
a* :0“_0"00;: ) 15

vy

o'
o =a*(E)E, ) (16)
where

ot = Tnw Tovy an

aﬂyy +0’PY? ’

The parameters a* and a are dimensionless anisot-
ropy factors. They are zero for an isotropic semi-
conductor.

If the semiconductor is intrinsic, considerable
simplification occurs. Let us consider this case
first. Upon changing to dimensionless variables
Y=%/L and T=t/7, where L=(D7)*/? is an effective
diffusion length, Eqs. (8)-(10) may be written as

#op_ 3% . 8bp

8Yz R Y Gi)_ 8T ’ (18)
1

J,,=—eav,,—é—£+a"‘E, R (19)
86

A @0

In the above equations

D =2D,,,D,,, /(an +Dyy,) (21)

V= ea*DE,/ZkT s (22)

1)‘ =D/L ] (23)

R=v/v, . (24)

Under short-circuit conditions, E,=0; thus, us-
ing I,. = [J,dydz and (19), one obtains
I, = zgeav,L[8p(0, T) - 8p(Y,, T)] . (25)

Under open-circuit conditions, [J,dydz=0. Using
this fact and (19), one obtains V=~ E_ (., in the
form

5p(0, T) — 8p(¥,y, T)
oYo+ [§08p(Y, T)dY]

Vo =% (26)
In (26), p, is the equilibrium carrier concentration
and u*=0*/pe. We therefore seek a solution to
(18) that satisfies the initial condition 8p(Y,0)=0
and appropriate surface boundary conditions. Sub-
stitution of such a solution into (25) and (26) will
then yield the desired results.

Under short-circuit conditions, the drift terms
in (18) and (20) are zero since E,=0. We shall as-
sume these terms to be negligible under open-cir-
cuit conditions as well, This will always be the
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case in the small signal regime and also for mod-
erately large signals provided the anisotropy fac-
tor a* is small. With the above approximation, the
continuity equation simplifies to

8%5p 36p

aye- P=%r (27)
and the usual surface boundary conditions reduce
to

a6
3—;-,’3:515;)_1 @atvy=0), (28)
86p

Sy =-S5 @tyY=Y,). (29)

In (28) and (29), I=Aly/v,, S;=5,/v, and S,=s,/v,,
where s; and s; are the surface recombination ve-
locities at the illuminated and dark surfaces, re-

spectively.

Equations (27)-(29) may be conveniently solved
using Laplace transformation techniques. Upon
making a Laplace transformation on 7', one obtains
the continuity equation

d>op

Sy V=0, (30)
where

£(8p)=0p= [~ 6pe™TdT (31)
and A*=s+1. The boundary conditions transform

as
|

9
5— I
%,Ls,ap—z (at Y=0), (32)
dbp ~
_&_Y_:_szsp (at Y=Y, , (33)
where
£()=1= ["1e™TdT . (34)

The transformed set of Eqs. (30)-(33) can be
solved by standard means. The solution obtained
may be written in the form

8p=1G , (35)
where

— A - A A -

G- Sp sinh AM(Yy = Y)+ Acosh A(¥y - V) (36)

(A2 +8,S,;) sinh A¥+ (S; + Sp)A cosh AY,

Inspection of (35) indicates that the excess-carrier
concentration 8p may be expressed as a convolution.
Thus, we have

6p=+"(IG), (37)
sp= [ I(T)G(T-T")aT" (38)
where, by the Laplace-Mellin inversion theorem,

1
6v, T=5 - [

€40

; GeTds . (39)

The above integral may be evaluated using the
method of residues. When this is done one obtains

G(Y, T)=2,C,(Y)e™nT . (40)
n=1

In (40)

2a,[a, cosa,(Yy - Y)+S, sina, (¥, - )]

Y =[(aZ 25,5, - (5, + 53)]c08 @, Yo+ a,[(S, + 5,0, + 2sin Y, ’ (41)
f
the a,’s are the positive roots of the transcendental simplification,
equation w
- 5152 I = Y2 AR, (T) (44)
- 42) sc " n ’
cotay, «GrS,) ( 1
and T A RAT
Ve ca . 43) Voor th ot LR T) (45)
Expressions for I, and V,, may now be obtained =l Tntn
by the substitution of Eqs. (38)-(41) into (25) and
(26). This procedure gives, after integration and In the above equations y= zpeaL and
J
A 2Ba,[a(cosa,Yy - 1)+, sina, ¥, ] (46)
" [(a2 - 5,8,)Y, - (S, +S5)]cos @, ¥+ @,[(S, +S,)Y, + 2]sing, ¥,
B - 20 @, sin@, Yo+ S,(1 - cosa, ¥,)]
" [(0f - 8,8,)Y, - (S, +S,)]cos @, Yy + @, [(S, + S,)Yy+2lsina, ¥, (47
T 1 .
Rn(T):fo L(T e TTqr" (48)
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It should be noted that the coefficients A, and B,
listed above are independent of the form of the light
excitation. They are defined exclusively in terms
of semiconductor parameters. Thus, to determine
the specimen photovoltaic response to different il-
luminations, only (48) need be calculated for each
case of interest. For example, if the semiconduc-
tor is exposed to radiation of constant intensity I,
that begins at T=0, we have [,(T)=1I,(T > 0) and (48)
gives!®

R,(T)=(Io/v,)(1 —e™nT) . 49)

For an illumination at constant intensity I, that be-
gins at T=0 and ends at T=T,; we have

IU(T) = Ig (0 <T< Tl)
(50)
=0 (T>Ty).
Substitution of the above into (48) gives
R,(T)=(Iy/v,)(1 —e™nT) 0<T<Ty)
= L/va)le™n'TTY —e™nT) (T>Ty) . (51)

For a sinusoidal light pulse of peak intensity I, and
duration T,, setting w=n/T,, one has

I(T)=IysinwT (0<Ts<Ty)

=0 (T=1T,) . (52)
In this case (48) gives

Iy, sinwT - wcoswT + we™nT)

R, (T)= ot (0<T<T)
I w(e-v,,(T-Tl)+e-vnT)
= 2 2, o2 (TZ Tl) .
Vn (53)

In this way solutions for a variety of light excita-
tions are easily obtained. !

The photovoltaic theory may be extended to in-
clude extrinsic semiconductors also. However,
solutions are readily obtained only for small illu-
mination intensities. In such cases, the excess-
carrier concentration 6p is everywhere small com-
pared to the equilibrium majority carrier concen-
tration and D* and o* reduce to D, and ¢, where
the zero subscripts indicate equilibrium values.
Likewise, the excess-carrier lifetime 7 becomes
the minority carrier lifetime 7,. With the above
identification, (44) and (45) apply. For intermedi-
ate illumination intensities D* is concentration de-
pendent. Thus, the continuity equation is nonlinear
and cannot readily be solved. Unlike the steady-
state case, the above situation prevails in the large
intensity regime also, particularly at the onset of
illumination. Therefore, caution is to be exercised

in applying the time-dependent theory to such cases.

The photovoltaic theory may be used to describe
the transverse Dember effect that occurs in natu-

rally anisotropic semiconductors. In this case the
quantities", and T represent the electron and hole
conductivity tensors that characterize the particu-
lar material under consideration. It is clear, how-
ever, that the theory applies only to cases for
which the transport tensors are of the form indi-
cated by (1) and (2). Thus, in experimental studies,
properly oriented specimens must be employed.
The form of the tensors considered herein is en-
tirely one of convenience, such as to make the
problem essentially one dimensional. The more
general three-dimensional problem is quite formi-
dable and remains unsolved.

The theory may also be used to describe photo-
voltaic effects in cubic semiconductors for which
anisotropies have been externally created. In the
photopiezoresistance effect, elastic strain produces
the required anisotropies. In this cases, and o,
are to be regarded as piezoconductivity tensors. It
might be noted that these tensors are required to
be symmetric so that the two anisotropy factors,

a* and a, are equal for this case.

In the photomagnetoelectric effect, an external
magnetic field H produces the conductivity anisot -
ropies. Thus, @, and G, represent magnetoconduc -
tivity tensors in this case. With H along the posi-
tive z axis as defined in Fig. 1, we have a standard
Hall -effect geometry and the magnetoconductivity
tensors have the form indicated by (1) and (2).
These tensors are such that!?

Onxx = Onyy 5 Opxx = Opyy »
(54)
Onxy = = Onyx 5 Opxy = ~ Opyx -
In addition, one may define!?
tanb, = 0,yy/ Opyy »
(55)

tan, = 0.,/ 0pyy

where 6, and 6, are Hall angles for electrons and
holes, respectively. Thus, one obtains

a= - a*=tand, —tang, (56)

for the anisotropy factors in this case. For small
Hall angles and negligible magnetoresistance, the
anisotropy factor a=0, where

6=6,-6,,

=6,+ (64| , (57)

and (8)-(10) reduce to the van Roosbroeck equa-
tions® for the photomagnetoelectric effect. Thus,
the theory given herein is a time-dependent theory
for the photomagnetoelectric effect, one not limited
by the small-Hall-angle approximation, and the ef-
fect itself is seen to be a special case of the photo-
voltaic effect that generally occurs in anisotropic
semiconductors.
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11II. TRANSIENT PHOTOPIEZORESISTANCE EFFECT IN
GERMANIUM

As a specific application of the theory, let us
consider the photopiezoresistance effect in more
detail. The photopiezoresistance effect was first
observed in germanium by Kikoin and Lazarev.*
Recently, a more complete set of observations was
reported by Hahn and Schetzina.® In both cases,
however, only steady-state properties were inves-
tigated. In this section, the results of a series of
experiments undertaken to observe the transient
photopiezoresistance effect in this semiconductor
are discussed. The experimental results are then
compared with those predicted by the ambipolar
theory.

Two germanium specimens were prepared from
an undoped single-crystal ingot for use in these ex-
periments. The ingot was oriented using the opti-
cal-reflection technique and rectangular parallelo-
pipeds, having dimensions xy=1.50 cm, y,=0.10
cm, z3=0.45 cm, were cut from the ingot with a
diamond-blade saw. The crystallographic orienta-
tion of these specimens is illustrated in Fig. 2. In
the figure a (110) plane slab is shown with [111] and
[112] crystal directions indicated. The specimen
axes are defined such that ¢ is the angle between
the x axis and the [111] crystal direction. A spec-
imen cut as shown and compressed along its x axis
will display the required electrical anisotropy. A
plot of the anisotropy factor for germanium versus
orientation angle ¢ is also shown in the figure. The

curve was obtained by first expressing the anisot-
ropy factor in terms of appropriate piezoresistance
coefficients® and then computing its value for vari-
ous orientation angles. The parameter values used
in these computations are listed in Table I. Both
of the specimens used in the experiments were ori-
ented such that ¢ =29°, in order to maximize the
effect for a given compressional stress.

The two germanium samples were subjected to
different surface treatments. The illuminated sur-
fact (at y=0) of each was lapped, polished, and
etched with CP4A to obtain a low-surface-recom-
bination velocity. The dark surface (at y=1y,) of
specimen I was prepared in similar fashion, where-
as, for specimen II, this surface was lapped with
a 20-pm abrasive to obtain a high-surface-recom-
bination velocity. In all other respects, the two
specimens were identical.

The ends of the specimen to be compressed were
cemented into slotted brass cylinders that were en-
cased in nylon cups for electrical insulation. The
brass cylinders also served as large-area electri-
cal contacts. These contacts proved to be of low
resistance but did produce small photovoltages with
the specimen illuminated but unstressed. In all
cases, however, zero-stress photovoltages were
less than 1% of the signals observed with the spec-
imen under appreciable compression and were,
therefore, neglected. Compressional forces were
applied to the specimen with a mechanical vise.
Force levels were monitored with a calibrated load
cell.

a

FACTOR

FIG. 2. Anisotropy fac-
tor a vs orientation angle

+

ANISOTOPY

- | 1 ] 1

T ¢ for germanium. In the
insert, the specimen x and
9y axes are shown.
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150° 180°



9 TRANSIENT PHOTOVOLTAIC EFFECTS IN ANISOTROPIC... 541

TABLE 1.,
in text.

Parameters used in calculations discussed

Parameter Value

Electron mobility®
Hole mobility*

3900 cm’/V sec
1900 cm?/V sec

Piezoresistance coefficients®:

Tt -5.2 (107'2 cm?/dyn)
T2 —-5.5 (107" em?/dyn)
Totd -138.7 (10" em?/dyn)
Tort -10.6 (102 cm?/dyn)
LTS ~5.0 (10°"2 cm?/dyn)
Tpaa 98,6 (1072 cm?®/dyn)

Surface-recombination velocities:
Sy 100 em/sec
s, (specimen I) 100 cm/sec
sy (specimen II) 10000 cm/sec
Excess-carrier lifetime® 500 psec
Temperature 298°K
Quantum efficiency 1. 0 electron-hole pairs per
photon

Equilibrium carrier concentration? 2%10" em™3

*Reference 16.

PReference 17.

®Determined via transient photoconductivity experiment,
dRepresentative values.

In the initial experiments, the germanium sam-
ples were illuminated with chopped white light from
a calibrated 1000-W tungsten-halogen lamp. The
mechanical chopping system produced trapezoidal
light pulses of 3.5 msec duration having 50-usec
rise and fall times. In these experiments, the
lamp was positioned such as to produce an illumina-
tion intensity I,= 10" photons/cm?®sec (+5%) at the
surface of the specimen. All illumination intensi-
ties quoted in this paper are those giving rise to
fundamental absorption only and have been correct-
ed for reflection losses.

In the second set of experiments a General Radio
type 1531-AB xenon stroboscope was used as a light
source. The particular unit employed, when oper-
ated at 60 Hz, produced relatively intense light
pulses of 2-usec duration. The strobe was placed
such that the peak light intensity at the illuminated
semiconductor surface was 10'® photons/cm?sec
(£ 20%).

All of the experiments were performed at room
temperature with the specimens in air. Photovolt-
ages were measured with a Tektronix type 555 oc-
cilloscope using type 1A2 plug-in units. The ex-
periments were performed as a function of increas-
ing stress with photographs of the oscilloscope
trace taken at each stress level. The specimens
were subjected to maximum stresses of 5x 10°
dyn/cm?,

In all of the experiments the observed photovolt-
ages were found to increase linearly with stress.
Typical plots of the photovoltage versus time ex-
hibited by specimens I and II, when illuminated with
chopped white light, are shown in Fig. 3. The
curves shown in this figure were recorded with the

specimens under a compressive stress of 5x 10°
dyn/cm? The photovoltage curve for specimen I
(etched dark surface) shows a relatively sharp peak
at £t~ 50 usec followed by relaxation to a steady-
state value of about 25 mV. For specimen II
(abraded dark surface), the initial peak is absent.
However, the steady-state photovoltage exhibited
by this specimen is approximately three times
greater than that shown for specimen I. The dif-
ferences in the two curves are clearly attributable
to different dark-surface treatments. The above
behavior is reminiscent of that reported by Bul-
liard, ®® Hall,  and Gridin and Elesin®® in their in-
vestigations of the transient photomagnetoelectric
effect in germanium. In view of the foregoing dis-
cussion, such similarities are to be expected.

In Fig. 4 the photovoltaic response of specimen
L when illuminated with 2-usec light pulses from
the xenon strobe, is shown for several stress lev-
els. The curves illustrate both the large magni-
tude of the photopiezoresistance effect for this type
of illumination as well as its linear dependence on
stress. Photovoltage curves, nearly identical in
both shape and magnitude, were also recorded for
specimen II. Thus, for relatively fast rise-time
light pulses, the recombination velocity at the dark

T T T T T T T
80 INTENSITY = n
10'7 photons/cm? sec
60L DARK SURFACE:ETCHED |
. 40 -
>
€
20k .1
w
2] (a)
<
- : = : : + -
-
)
>
e sot .
1)
a (
a
60 -
40 INTENSITY = n
10'7 photons/cm? sec
20k DARK SURFACE : ABRADED ]
(B)
] | 1 ) 1 1
0.0 0.5 1.0 1.5 2.0 2.5 3.0
TIME (msec)
FIG. 3. Photovoltages displayed by (A) specimen I,

and (B) specimen II when exposed to chopped white light
from tungsten lamp.
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w 9
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; when illuminated with 2, 0-
> psec light pulses from xenon
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o
x
o
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surface does not significantly affect the specimen ing (48) one then obtains
response. This is expected since the photovoltage
developed is determined by the evolution of the R,(T)=1 <€'U"T + VT - 1) 0<T=<Ty
photogenerated carrier distribution with time. At " 0 VT,
the onset of illumination, the number density of
excess carriers of the illuminated surface is large, enT —enTTY Ly T
while that throughout most of the bulk and at the 210( T - ) (T>T1, .
dark surface is zero. The diffusion of excess car- nit (59)

riers into the interior of the specimen is, thus,
initially determined by bulk properties rather than
dark-surface properties. Only for (dimensionless)
times T > Y, do appreciable numbers of electrons
and holes reach the vicinity of the dark surface, at
which point the recombinaticn velocity at this sur-
face affects the spatial distribution of carriers and,
therefore, the magnitude of the photovoltage. It is
for this reason that steady-state values are quite
sensitive to dark-surface preparations, as evi-
denced by the curves shown in Fig. 3, whereas the
initial transient is not.

Let us now turn our attention to a quantitative
description of the curves shown in Figs. 3 and 4.
Theoretical expressions for the open-circuit photo-
voltage per unit length for the above types of light
excitations may be obtained from (45) and (48). The
relaxation to equilibrium that occurs at the termin-
ation of the chopped tungsten light pulse will not be
considered, in which case the illumination intensity
may be expressed as

Io(T): (T/TI)IO (0 <T< Tl)

=1, (T=T,) (58)

with I,= 10" photons/cm?sec and T,=¢,/7, where
t,=50 psec is the rise time of the light pulse. Us-

The light pulse from the strobe can be represent -
ed by a sinusoidal function of the form given by
(52), in which I,=10'® photons/cm?sec and w=w7/¢,,
where ¢,=2 psec. Apart from a small relaxation
tail, the above is a good approximation to the pulse
shape determined experimentally using a fast sili-
con photodiode. The time-dependent function R,(T)
is then given by (53) for this type of illumination.

In order to generate theoretical photovoltage
curves, all of the stress-dependent quantities that
appear in the theory were evaluated using methods
discussed in Ref. 5. Parameter values used in
these calculations are listed in Table I. A com-
puter was then employed to obtain roots of the
transcendental equation (42) and to evaluate (45) at
selected times. To ensure proper convergence,
500 terms were included in (45) for the excitation
given by (58). In the time range t<2 psec, 6000
terms were included in the series solution for the
excitation given by (52). The results of these cal-
culations are illustrated by the curves shown in
Figs. 5 and 6, in which the fotal photovoltage for a
specimen of length 1.50 cm is plotted. The photo-
voltage curve obtained for specimen I for the
chopped tungsten-lamp illumination is shown in Fig.
5A. It is seen that the theory correctly predicts
the initial peak in the photovoltage that is observed
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10'7 photons/cm? sec
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-
)
3 (\
© ot .
-
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& so0k INTENSITY - _
10'7 photons/cm? sec
a0l S, =102 cm/sec .
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20 ~
(B)
] ] ] | | ]
0.0 0.5 1.0 1.5 2.0 2.5 3.0

TIME (msec)
FIG. 5. Theoretical photovoltage curves obtained for
(A) specimen I and (B) specimen II for chopped-white-
light illumination.

experimentally. In addition, relatively good quan-
titative agreement between theory and experiment
isindicated. In Fig. 5(b), the theoretical photovolt-
age curve obtained for specimen II is shown. The
large photovoltage peak is absent in this case, al-
though a slight relaxation is indicated.
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At any given time, the specimen photovoltage is
directly proportional to the difference in carrier
concentrations at the illuminated and dark surfaces,
respectively, and inversely proportional to the con-
ductance, as is indicated by (26). The peak in the
photovoltage curve shown in Fig. 5(a) is due to the
rapid generation of excess carriers at the illumi-
nated surface during which time the increase in
conductance, proceeding via diffusion, is negligible.
Thus, the numerator in (26) is initially large and
the denominator is small. At later times, both the
concentration of carriers at the dark surface and
the photoconductance are appreciable and the photo-
voltage decreases. The absence of an initial peak
in the curve shown in Fig. 5(b) is due to the large
dark-surface-recombination velocity associated
with specimen II which, in effect, locks the number
density of carriers at this surface to the equilibri-
um value for all times. Thus, the numerator in
(26) is always large and the large steady-state
photovoltage which results masks the initial tran-
sient. For illumination intensities I;> 10" photons/
cmzsec, however, the theory predicts an initial
photovoltage peak for this specimen also. In sub-
sequent experiments, in which an intensity I,=5
% 10" photons/cm?sec was used, such behavior was
observed.

The above physical description clarifies why
large transient photovoltages develop in the limit
of intense fast-rise-time light excitations. In Fig.
6, theoretical photovoltage curves for the sinusoi-
dal excitation given by (52) are displayed. The
curves shown in this figure are in general agree-
ment with the experimental curves shown in Fig.

4. The theory gives peak photovoltages to within
10% of those actually observed and correctly pre-
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dicts the linear stress dependence. In addition, the
theoretical curves are found to be independent of
the value of the dark-surface-recombination velo-
city used in the calculation.

The experimental results discussed above illus-
trate the close similarity of the transient photomag-
netolectric and photopiezoresistance effects. The
results also indicate that the transient photopiezo-
resistance effect is often much larger than the

steady -state effect. In addition, the general agree-
ment between theory and experiment lends support
to the validity of describing processes of this type
via an ambipolar approach.
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