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The equations of the dynamical theory of polarizable diatomic lattices, for the long-wavelength
approximation, are shown to coincide with Mindlin's continuum equations for diatomic elastic dielec-
trics. The governing equations of the coupled mechanical and electrical fields account for the surface
effects due to elastic deformations and electronic and atomic polarizations and accommodate the optical
as well as the acoustical branches in dispersion relations. The material coef6cients in the constitutive
relations of the continuum theory are related to the lattice properties via the lattice formulation and
their numerical values are computed for NaI, NaC1, KI, and KC1. The long-wavelength»~its of the
transverse- and longitudinal-optical branches of dispersion relations are predicted and compared with
experimental values with close agreement.

I. INTRODUCTION

In a previous article, a theory of lattice dy-
namics of cubic ionic crystals employing the shell
model of Dick and Overhauser~ was formulated and,
through the long-wavelength-limit process, the
connections were established between the lattice
theory and Mindlin's continuum theory of elastic
dielectrics with a polarization gradient. 3 This
continuum theory with a polarization gradient3 is
an extension of the classical piezoelectricity. It
provides additional electromechanical coupling
which exists even for centrosymmetric materials
and accommodates the surface effect due to elec-
tronic polarization and elastic deformation. It
has been applied to account for the anomalous ca-
pacitance in thin dielectric films, and for acous-
tical activity and, with the inclusion of the mag-
netic field, optical activity in quartz. Theories
of elastic dielectrics including the gradient of
polarization or electric displacement have also
been considered by many others.

Extending the polarization-gradient theorys to
diatomic, elastic dielectrics, two sets of mechan-
ical displacements and two sets of electronic po-
larizations are introduced at each point of space
which is occupied by the two interpenetrating, de-
formable and polarizable continua. ' The disper-
sion relation obtained from this theory provides
both the acoustical and optical branches and the
surface effect includes the contributions from both
electronic and ionic polarizations.

In the present paper, by the long-wavelength ap-
proximation, the relationship between the three-
dimensional, dynamical theory. of diatomic crystal
lattices with shell-model atoms and Mindlin's con-
tinuum theory of diatomic, elastic dielectrics is

established. The material coefficients are ex-
pressed in terms of the lattice properties and their
numerical values are computed for NaI, NaCl,
KI, and KC1. The long-wavelength limits of the
optical dispersion frequencies, transverse and
longitudinal, are calculated and compared to ex-
perimental values with close agreement.

II. INTERACTION ENERGY OF NaC1 LATTICES WITH
SHELI MODEL ATOMS

In a compound lattice consisting of N different
atoms, the positions of the atoms are given by

X(l; k) =X(l)+X(k), (2. I)
where l indicates the cell origin and X(k) is the
position vector from this cell origin to each dif-
ferent atom within the cell. Thus k takes on the
values I through N, with X(k = I) =0.

The components of the vectors X with respect
to a rectangular Cartesian coordinate system are
indicated by Greek indices as X . The summation
convention is used only with respect to the Greek
indices, while summation over the Latin indices
is indicated by the symbol g.

The charge of the kth atom is given by

Z„q=(X + Y,)q, (2. 2)

x (l; k) =X(l; k) +U(l; k),

where X~q and Y~q indicate the charges of the core
and shell of the kth atom, respectively, and q de-
notes the charge of an electron, q=1. 6&&10 ' C.
For a dielectric medium g, Z~=O.

For the shell model the positions of both the
core and the shell before deformation are given by
X(l; k). Their positions after deformation are,
respectively,
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x2(l; k) =R(l; k)+U(l; k)+W(l; k), (2. 3)

where U is the displacement of the core and W the
displacement of the shell with respect to the core.

A theory of lattice dynamics for ionic crystals
similar to the one derived by Woods, Cochran, and
Brockhouse was presented systematically in Ref.
1. To save space, some of the results in Ref. 1
will be given without rederivation.

The changes in the total potential energy of a
finite lattice can be written as the sum of three
parts:

0= 0'+0'+0', (2. 4)

where g and gc denote, respectively, the energies
due to the short- and long-range force interac-
tions, and P~ represents the surface energy due

to the presence of a boundary. The long-range in-
teraction leads to the macroscopic electric field
(Maxwell field) and to a local electric field (Lor-
entz field) which appears in the material coeffi-
cients. All of the lang-range coefficients are ex-
pressible in terms of a single matrix, C 8(y; k, k ),
which has been calculated by Kellermann' by an

W(1) =0 . (2. 5)

This approximation is well justified by the consid-
eration that the polarizability of the alkali atom is
an order of magnitude smaller than that of the
halide atom.

For the harmonic approximation (2.4), the
changes in the total potential energy of a finite
NaC1-type lattice with shell-model atoms takes the
following explicit form [Eq. (V. 3) of Ref. 11]:

ingenious method of performing lattice sums. The
short-range interactions are taken to act only
between the shells of the first and second neighbors
and are expressed by B,~(y; k, k ). Furthermore,
the surface energy is accounted for by the interac-
tions of dipoles induced on the boundary of a finite
lattice going into a new equilibrium as compared
with the configuration in the infinite lattice. The
functions T(L, k) and Bz(L, k), expressing the sur-
face energy, are calculated by a sum over the finite
lattice. A simplification is introduced by taking
the one-ion-polarizable model, which amounts to
setting, for k =1 denoting the alkali ion,

({B,q (y; 1, 1) —B q (0; 1, 1) —B,z (0; 1, 2) + Z, Z, [C ~(y; 1, l.)
l

—C ~(0; 1, 1)+C,~(0;1, 2)])U, (1)U~(1)+ [B ~(y; 1, 2)+Z~ZRC, &(y; 1, 2)] U, (1)U&(2)

+ [B~(y; 1, 2) + Z~ Yz C z(y; 1, 2)] U~(1)Wz(2)} (e'~+ ~ '~~ " ~) + ([B~(y; 2, 1) + Z2 Z~ C~z(y; 2, 1)]U~(2)Uz(1)

+{Bq(y; 2, 2) —B~q(0; 2, 2) —B~g(0; 2, 1)+Z2Zz[C ~(y; 2, 2) —C q(0; 2, 2)+C~q(0; 2, 1)])U~(2)Ug(2)

+{B~&(y; 2, 2) B ~(0; 2, 2) —B ~(0; 2, 1)+Z2 Yz [C q(y; 2, 2) —C~(0; 2, 2)PU (2)W&(2)

+ [B q(y; 2, 1)+ YqZ&C~(y; 2, 1)]W,(2)Uq(1)+{B q(y; 2, 2) —B,z(0; 2, 2) —B q(0; 2, 1)+ YIZ& [C„q(y; 2, 2)

—C z(0; 2, 2)+C z(0; 2, 1)]]W (2)U&(2)+{-K25 ~+B„z(y; 2, 2) —B z(0; 2, 2)

—B,q(0; 2, 1)Y2 Y~ [C,z(y; 2, 2) —C~(0; 2, 2)]j W (2)W~(2))(e"'x"'~' "")2

-Q v (E I' —'e E E )(e' "'""'"
) +Q{T(L 1)+T(L ' 2)+B (L ' l)qZ Pq(1)e'~'

L L

+ By(L; 2)q[Z2 Ug(2)+ Ya Wg(2)]e"'"' ' (2. 6)

K2= Y2q /(4wna&0) . (2.7)

5 is the total polarization and is defined as

where the summation over l is carried over the
finite lattice and the summation over L is taken
over the free boundary. The indices 1 and 2 de-
note, respectively, the positive (alkali) and the
negative (halide) ions. K2 is the spring constant
characterizing the interaction between the core
and shell of a negative ion and is related to the
polarizability az by

ly(f) = P [Z„U(f; k)+ Y,W(f; k)],
Va k

(2. S)

where v, =2ro is the volume of a unit cell. f is
the Maxwell electrostatic field and is related to
%by

E S Sa &s

ly I &p
2 (2. 9)

where E and P are the amplitudes of the follow-
ing periodic, plane-wave forms:



LATTICE -DYNAMICS APPROACH TO THE THEORY OF DIATOMIC. . . 5293

~a, ~a

f(f) E e(ly X(l) n-(] p pe([y ~ f](l)- n(] &=(q/~. )[(Z2-Z])(u'-u')/2+ Ya w], (3.2)

Hence

B g (y; k, k ) = Bg (y; k, k '),
B g(y; k, k') =B~(y; k', k),

C g(y'k~k ) =Cga(y'k~k ) ~

C 6 (y; k; k ') = C~ (y; k, k),

T(L; k) = T(L),

Bg(L; k) =Bg(L) .

(2. 11)

III. LONG-WAVELENGTH APPROXIMATION

In order to obtain a continuum theory as the
long-wavelength limit of the dynamical theory of
diatomic lattices, a potential-energy density func-
tion which is defined as an average-energy repre-
sentation of the medium will be obtained from (2.6)
by the long wavelength approximation.

For long wavelengths including both the acoustical
and optical modes, the distinction of the positive
and negative ions must be retained. Let

U(1}=u', U(2}=u, W (2) =w, (3. 1)

where W(1) = 0 is due to the adoption of the one-
ion-polarizable model. Substituting (3.1) into
(2. 10), expanding functions of y about y = 0 in a
Taylor series and retaining the first terms, one
has

0= —Q [Z6U(k)+ Y6W(k))e"'x'2" . (2. 10)
Va

In Ref. 1, the coefficients B,g(y; k, k') and
C g(y; k, k ) were shown to be symmetric with re-
spect to n and Pby definition and with respect to
k and k' because of the cubic symmetry of the crys-
tal. Also, T(L, k) and Bg(L, k) were shown, by def-
inition, to be independent of k, i. e. ,

where the charge neutrality Z, + Za-—0 is employed.
It can be seen that (3.2} includes both the ionic
polarization (first term) and the electronic polar-
ization (second term). To distinguish these con-
tributions in the total polarization, define

Zaq ya Yaq
Vg Vg

where qa is a charge density.

(3. 3)

The coefficients associated with the short- and
long-range interactions are expanded, about y =0,
in a Taylor series as follows:

Bag(y; k, k') = Bng, gas —. B rgn; a2&6ry +6O(y ),

Cw(y; k, k ') = C 6.6 6. —C„gg. 6 „.y„yg+ 0(y ),
where

(3.4)

Bag 22 =B~(OP'k~k ) ~ C 6 sgs=C g(0'k k )

(3.5)

In (3.4), the vanishing of the linear term in y is
due to the cubic symmetry. Comparing (3.4) with
equations (8. 5) and (8. I) of Ref. 1, one finds

Bya 6gs )s (ss
= Brags p

Z Zg Za C sgg ynggs s= Cya
a'

(3.6)

where k'=1, 2, and B„~+ and C„N+ are coefficients
empolyed for the long-acoustical-wavelength ap-
proximation in Ref. 1.

By substituting (3.3)-(3.6) into (2. 6), replacing
P (e

'(y x(l) n(l) by Pa (x f) and fus y (e(VF %(l) n(]) by
u", „(x,f), etc. , replacing the summations over I
and L by integrations over the volume and the
bounding surface, and employing the symmetry
relations (2. 11), one obtains the continuum repre-
sentation of the potential-energy function:

[Brass u+Z]Cyngg;1. 1+ (Bag;]2 Zai Cag;]2) to 5rg/2] as„ua, g
o "V

+ 2[Bra(S;]2 —Zl Crass;]2 —(B g, 12
—Zl Cag, 12) ] 0 6yg /2]lla y llg, 6

+ [Brags;1]+Zl Crass;11+ (Bag, 12
—Zl Cng, 12}& 0 6y6/2] u, rllg, 6+ (Bng, 12

—Zl Cag, 12) (ua —ua) (u() —ug)

2vg 2 |+ [~yagglla+Zl 2 ya(gi]2 (Bag, 12+ Zl Ya Cng;12} 2 0 5yg / 2]un, yPg
~ 6

2

2vg 2 2+
Y [Br 66.,]1 —Zl Y2C„66,]1+(Bng 12+Zl Y2C , g)122 06yg2/] u

2

2
2vg

(Bag, la+ Zl Ya Cag;]2)(ua —un)Pg +» [Braggart]+ Ya Crass;11
qY2

2

(K II Bssss)" SS ~ I2)P ,:Ps +( p (KsSS s+B s.;ssly~s d. y
qY2
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E,[2'soE +P, +qu(u, u-))dV+ [To+b sPsn, +c~(u, —u')n ]dA,
V S

(3.7}

where

To = 2T(L)/A, ,

bas =v, Bs (L) na(L)/A, , (3.8}

c~=v, q*Bs(L)n (L)/A, .
The expressions and values of T(L) and Bs(L) are
given in Ref. 1. In (3.8), A, ,=2yo is the area of
a unit cell on the boundary and n, (L; 2) approach
n, the unit normal to the Lth cell on the boundary

I

I

xn the continuum lament.

Furthermore, introducing the definitions

Q =Q -Q
Cg I Of y

(3.9)

~n&' 2(u&'y a uu, &') &

and converting the surface integrals into volume
integrals, (3. 7) takes the form

&)&
= go+ ~2 a,s P Ps+ 2 b„ssP a, „Ps,o+ —Z c„,'N S",„Ss,+gd„N S „P&s» +a~ u, Ps+ 2d s &d „P&s~ »

where

+-,'auguuu&&+c
&&

&da*„o&g„+b"sPs,+casua s~dV- (2 eoE E,+E,P'+q*E u")dV,'j v
(3. 10)

go= f T&&dA,

a s=(K 2,8sB+s,12)2ro./q Y2,

&'aN [ &
aN'll+ Y2 &'uN 11 +(K2b 2a+suo&12} obro~2 o/q Ys &

22
Cree@=Crof6g ~~ro6g'11+ 1~racy;11+ zsB g;12 —Z1 C~g. 12'/0 v76i~'~ p ~

Croak = Croft' L rofeB;12 ~1 ~~oO8;12 —2 S~fmg;12 —~1 C~;12' &0 ~&oy 2& P &

12 2
d&uN

——[B„aN,12+ Zl Y2 C&nN;12 —~ (B2s, &su+ Zl Ys Cas. ls) ro bvoVqY2,

draN = [B„ass,11 —Zl Ys C„aN, 11+ z (Bns;12+ Zl Ys Cas. 12) r ob& ol/q Ys,22 2

Q2a as = (Bus, 12+ Zl Y2 C s., 12)/q Y2,
+2 2d, =(B s;12+Z,Y2C s;12)ro/4qY2 ~

I

a s =(B 2, 12-Z1C 2.,12)/2ro
2cas = s(Bas, 12

- Zl Cas;12}

(3.11)

In (3.10), P&s o& and P&s ~
„represent the symmetric

and antisymmetric parts of Ps „respectively.
&)&o is the portion of the surface energy which

depends on the bounding surface and the particular
lattice under consideration, but not on the deforma-
tion and polarization. Therefore, $0 is present
even at the initial state, i. e. , when all the field
variables are zero, in the bounded dielectric.
Hence the difference in energy with respect to the
initial state is

&C&
—

&)&
= f [W(S „,S „,P,„,u*, &d*„)

polarization and is defined by the integrand of the
first volume integral in (3.10). The remaining
terms in (3.12) correspond to the energies associ-
ated with the Maxwell electrostatic field and with
the electronic and ionic polarizations.

By noting that (3.10) should reduce to E&l. (8. 9)
of Ref. 1, which is the long-wavelength limit of
the total-energy expression for monatomic lattices
by setting u' =us =u in (3. 10), one obtains the
following relations among the material coefficients
of the diatomic and monatomic continua:

E Ea(P2 +q*uu)]d-V, (3. 12)

where W is the energy density of deformation and

c~'
y~g3 C7&ogg P ~ dyOf+ dyetN

A ~ 1

22 20 0 22b,.~=b,.~, b~=b.t, a~=a.t . (3. iS)
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IV. CONTINUUM THEORY OF A DIATOMIC ELASTIC
DIELECTRIC

8W
8u*

8W
eB eB

(4. V)

In this section, the procedure employed by
Mindlin to obtain the coupled linear field equa-
tions and boundary conditions for diatomic, elastic
dielectrics is briefly outlined.

Consider the body of an elastic dielectric which
consists of two interpenetrating deformable and
polarizable continua and occupies a volume V
boundedby a surface S, separating V from an
outer vacuum V . At each material point x, two
sets of mechanical displacements u" and two sets
of poiarizations P" (k =1, 2) are introduced. De-
fine electric-enthalpy density and kinetic-energy
density by

By substituting (4. 3), (4.4), and (4. 6) into (4. 1)
and employing the chain rule of differentiation, one
has

5H = —Q [T"», ~ + (- 1)'(T;»„—Tf —q* Q, ») ]5u»

—Z'(E»+E'». }5P'»

~P [cop, —P» —(-1) q»'u, ,]5/

+Z([T~+ (-1)"T~»] 5u»]', ~

P =P'+P +q*u~ . (4. 3)

Introduce the electric potential Q of the Maxwell
self-field as

E (4. 4)

then Mindlin's extension of Toupin's variational
principle takes the form

1 A ~ k ~ p (4. 1)

where the variables in W, the potential-energy
density of deformation and polarization, are de-
fined by (3.9), a dot over the symbol represents
the partial derivative with respect to t and p' and
p2 are the mass densities of the two continua cor-
responding to the positive and negative ions in a
unit cell. Hence

p' = m'/v. , p' = m'lv, , (4. 2)

where m are the masses of the atoms. P is the
sum of the electronic and ionic polarizations

+Z(E'.
& 5P»),.—Z([col,.-P. —(-1)

and

xq*u ]5qb)... (4. 6}

T~, ~(-I)'(W~, —Tg —q*P,)+f,"+(-I)'q*E,'

=p 9",

5(-'. e, p,.p, .) = e,f...5$ —e,(P,.5P)
~. (4. 9)

By integration by parts and accounting for 5ue
vanishing at 10 and t„ it can be shown that, from
(4. 11),

t tg t
5 Tdt= —g p uo5u~dt . (4. 10)

"t0 ~t0

Then the insertion of (4. 6)-(4. 10) into the varia-
tional principle (4. 5), application of the divergence
theorem, and the requirement of independent vari-
ations 5u, 5P, and 5Q lead to the following field
equations in V:

~tg ttg 1
5 dt (T H) dV 5 dt cop~ &jh ~dV

&t V0 +t0 V'

„t&
+ dt (f, 5u +E, 5P +E' q~5u*)dV

A 4t0

(4. 6)

5W= Q(T~»5$~» —E~5P~+E»5P»» )

t~
+ Q ) dt t" 5u" dS=O, k =1, 2

s

where f", E, and t" are, respectively, the ex-
ternal body forces, external electric field, and
surface tractions. By partial differentiation,

EB+EeB e —Q B+EB= 0,k 0

and in V':

=0;

and the boundary conditions on S:

n. [T», + (- I}»T», ]= t»,

neEeB =0,

(4. 11)

(4. 12)

(4. 13)

where

+ T~e 5u~e + T~ 5~~~, (4. 6) n (- eo fQ, ) +P +P +q» u") =0,

8W g, 8W g, 8W
TeB ——

Sa ' Ee pa, Ety peB 8 B~e

where g j is the jump in P,, across S.
For centrosymmetric cubic crystals, the energy

function of deformation and polarization is taken as
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rW= —~ (a sP Ps+5"„esP Ps
~ e+cy esS"„Sse+2d"„esS „Pts e&)

A, l

+ p (aa*u*Ps+2da o&C PU&»)+ —,a**u*u*+c*a eo*s o&*s
A

+ Q (b"P', ,+C~S'.,) . (4. 14)

+ b77 (5as 5yo 5ay 5se) ~ (4. 15)
Al Al Al Alc~ye ——c 5yaes+ c1s 5,„5s,+ b44 (5as 5ye+ 5ae 5sy)

Al Al Al Al
dasye—-d 5yaes+d&e 5a„5se+d44 (5as 5„4+5ae 5s„),
where 5y es is unity when all its indices are alike
and zero otherwise, and

Al Al Al Al Al Al Al Alb = b11 —b12 b44 y C = C11 —C12 C44 ~

Al Al Al Ald = d11 —d12 —d44 .
Substitution of (4. 14) and (4. 15) into (4. 7) yields

the constitutive equations

T,s=c 5 s+Q (c 5asyeSye+c125asSyy+2C44$'s)
l

y Z (d ' 5 as„e Pe „+d&s 5as Py~ y+ 2 d44 Pte, a &),
l

The second- and fourth-rank tensors of the mate-
rial coefficients in (4. 14) for centrosymmetric,
cubic symmetry are of the following form:

Al Ala g
=a 5~ ,

b~ye=b 5, es+»s5 .5se+b44(5 s5ye+5 e5s,)

grand of the first volume integral of (3.10), which
is obtained from the lattice formulation through
the long-wavelength limit. In comparing these
two expressions,

'
one should take into account

(4. 15) and the fact that P, does not appear in the
lattice formulation because of the one-ion-polar-
izable model employed. Also note that, in (3. 10),

cso ua cso ($s $1 ) cso($s $1 ) (4 16)

Hence (4. 18) is equivalent to gec~S", in (4. 14) and
the additional. condition c +c =0, which is ob-
tained by requiring that, in the initial state, there
is no resultant force across any surface, ex-
terior or interior, of the continuum.

V. NUMERICAL VALUES OF MATERIAL COEFFICIENTS

The material coefficients appearing in the con-
stitutive relations (4. 16) of the continuum theory
described in Sec. IV are related to the short- and
long-range interaction coefficients by (3.11).
Their values are evaluated as follows.

A. Short-range interaction coefficients
—EgA = a pg +a**u

l

Eas b 5as+ Q(b 5asyePe y+ b115as Py
l

(4. 16)
By expanding the short-range interaction func.-

tions B,s(y; k, k'), given in (7. 5) of Ref. 1, into
Taylor series of y~ and comparing the resulting
expressions with (3.4) and (3.5), one finds

+ 2 b44 P 7&, a &
+ 2 b77 P Is a 1) + 2 d*"o&

&1

++(d '5~ S„ye+de5aessS„'„+2d44Sas),
l

T*=a** +usa' aa'Ps,

Taas -—2 caa o&a~+ 2 Q da Pts a &
.

l

Ba a.11 = 4(As+ 2Bs),

Bogs 11

B„,.„=2(As+Be)ro

Boas;11= (Ae+ 3Be)r o

wsl&1 (As Bs)r o &

2

Baa, 1s = 2(A1+ 2B1),

B~;12=0 ~

2B
2Bg g, 12=B1ro,

BNegg 12-o ~

(5. 1)

Ws = ,'natb'oP'+—bsoP +c uaa] (4. 17)

It may be noted that the energy-density function
(4. 14) of the continuum is the same as the inte-

In a state of equilibrium and in the absence of
external forces (f„E,= 0), it can be shown that
the surface energy, per unit area, of deformation
and polarization induced by the presence of a free
boundary is

where o, , P, y represent the three orthogonal direc-
tions of the cubic lattice and ro is the distance be-
tween the nearest neighbors. In (5. 1) and the sub-
sequent equations of this section, summations over
repeated Greek indices are suspended. The values
of these short-range interaction coefficients, shown
in Table II for NaI, NaCl, KI, and KCl, are com-
puted by employing the numerical values of A1,
A2, B1, and B2, obtained from Ref. l, and other
lattice parameters shown in Table I.
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TABLE I. Lattice parameters.

fp
(10 8 cm)

Af A2 Bf

(10 dyn/cm)

B2
K2

(10 dyn/cm)

NaI
NaCl
KI
Kcl

3.23
2. 81
3. 53
3.14

21.01
27. 14
17.32
20.23

—0. 10
—0. 07
+0.11
+0.14

—l. 37
—3. 03
—2. 82
—4. 40

—0.23
0. 00

+0.44
+0.79

1.59
3. 09
1.59
3. 09

B. Long-range interaction coefficients C o.u. -0 C g;g2=0 ~

—5»». E C~»(0&k, k")Z„Z». (5. 2)

where
2

C*»(y, k, k ') = C~»(y; k, k )—
~a~o ~y t

(5.3)

On the right-hand side of (5.3), the first term is
regular as y- 0, while the second term, which
characterizes the Maxwell electric field, is not
analytic at y =0; i.e. , the limit of this term de-
pends on the direction at which y approaches zero.

By employing the relations (5. 2), (5. 3), and ex-
pansion (S.4) and numerical differentiation of the
results given in Tables 2 and 2a and Eq. (4. 12)
of Kellermann with proper accounting for the
limits, one obtains

4m
Ca e;11

e2

2rs
0

4m 'e2
eel 12 3 2 3ro

The functions for long-range interactions were
calculated by Kellermann as the sum of infinite
series and the values were given in Tables 2 and
2a in his classical article'~ as functions of the wave
number. By comparing (1.9), (1.10), and (1.12)
of Ref. 11 with (3.2), (4.4), and (4. 6) of Ref. 1,
one finds

k kc = Z» Z». C*,»(y; k, k )

e2
eeee; f1 cd p

2

Cgege, ~~ =0. 50
4f p

2

C aa ~2=1.61
270

2

Cgage;~2= —0.78 „
hap

(5.4)

2 e2

Ceegg. gf Oi 289 y Ceettg y2
= 0~„985

It can be seen that these values when inserted
into the compatibility relations (3.6) agree with
the exact values, 2. 56 e a/(2r 0), 1.26 e /(2ro), and
0.696 e /(2ro) for C. . . C»», and C»», re-
spectively.

Upon substituting the values of the short- and
iong-range interaction coefficients given in Table
II into (S.11), one obtains the numerical values of
the material coefficients of Mindlin's theory as
shown in Table III.

VI. WAVE PROPAGATION

The purpose of this section is to compute the
limiting frequencies, as y-O, of the optical
branches of the dispersion relations for plane waves
by emplqying Mindlin's continuum theory and the
numerical values obtained in Sec. V.

By substitution of constitutive equations (4. 16)
into the field equations ('4. 11), the equations of
motions in terms of u„P, and Q for cubic crys-
tals are obtained as follows:

TABLE II. Auxilliary values for computing material coefficients.

Baa.f 1 Baa.12

(103 dyn/cm)

Baaae,'11 aeea i12 ae~' f f aa gg; f 2

(10 12 dyn cm)

Bag-« Bl»a~. 12

NaI
NaC1
KI
Kcl

—2. 24
—0. 28
+3.96
+6. 88

36. 54
42. 16
23. 36
22. 86

—0.69
—0. 11
+1.37
+1.83

21.92
21.43
21.58
19.95

+0.14
—0. 06
—0.41
—0.64

—0. 82
—0. 06
+1.78
+2. 47

—1.43
—2. 39
—3. 51
—4. 34

NaI
NaC1
KI
KC1

Caa;11 Caa;1
(10 dyn/cm)

14.32 14.32
21.75 21.75
10.97 10.97
15.59 15.59

Caaaa.

—3.39
—3.89
—3.10
—3.49

Caeaa; 12

5. 74
6.60
5.25
5.91

—1.03
—1.18
—0.94
—1.06

—3. 51
—4. 04
—3.21
—3.61

Caagg. 11 Caen/. f 2

(10 dyn cm)

Cg g

1.78
2. 05
l. 63
1.83

C

—2. 78
—3.20
—2. 55
—2. 86
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~c"'
5ugt'gusyl'a + Cls ua~ as + C44 ( 2 act +ua~ag)]+ [d 5as„g Pg „a+dig Pa as + d44 (Pg «+ Paiag)]

l '
Al l N lA l lA l lA l

l l

+ (- 1)"Q [da'(Pg —P g) + (- 1)' c"a
(utt „,—u'. ..2) ]

—(-1) [a* Ps+a* Ps+a*a(ug-ug)+q*Q 2
—q~Es]+fg=P ug, «,

Z [d 5~„gug „+dlgua, ag+d4t(ug
~ aa+ua ~

ag)+(-1) d* (ug, aa —ua, ag)]
l

(6. 1)

+ Z [5 '5ag„sP4 „a+blsPtt ~ ag+b44(Ptt aa+Pa
~ ag)+b1V(PS aa —Pa ag)]

—a Pg —a rg —a (ug —ttg) —Q g+Es=0 t
1A 1 2A ~ g2 2 1 0

In applying these equations to the one-ion-polariz-
able case, one should set P' = 0& consequently
Ea =E'as= 0 from (4. 16). Therefore, the second
set of equations in (6.1) is reduced to one, for k
only takes on the value of 2.

By introducing longitudinal plane waves propagat-
ing along the x1 axis,

( 2 P2 p) Qk El, C) e«&lxl-at)

and then transverse plane waves,

(ug P2 y) gg E C) et tglxl-at &

into the equations of motion (6.1) with fs =Egg= 0,
and setting the determinants of the matrices for
A"„B,, C and A2, B„C, equal to zero, dispersion
relations are obtained, respectively, for lpngitu-
dinal and transverse waves. Of the four branches
in each case, only two are real, corresponding to
the acoustical and optical branches. At y1= 0,
frequencies of the acoustical branches approach
zero and the limiting frequencies of the transverse-
and longitudinal-optical waves are

(a** 1/2
(0To =

i
(1 —E,)

TABLE III. Material coefficients.

ii 22 12 21 c"=c c' =c '
Cf2 Cf2 Cf2 Cf2

(10 dyn/cm )

11 22
C44 = C44

12 21
C44 = C44

C20 —C10

(103 dyn/cm)

NaI
NaCl
KI
KCl

Nar
NaCl
KI
Kcl

0. 111
0. 091
0. 068
0. 031

d22fi

5 ~ 146
6. 324
4. 788
5. 811

0. 068
0. 153
0. 098
0. 169

—l. 335
—1.668
—1.615
—l. 885

—0. 013
—0. 028
—0. 015
—0. 027

d22
12

0. 632
0. 745
0.626
0. 720

0. 052
0. 091
0. 037
0. 058

df2
12

(10 dyn cm/C)

-2. 196
—2. 524
-2. 009
—2. 259

0. 186
0. 227
0. 127
0. 128

d44
22

1.926
2. 604
1.793
2. 429

—0.152
—0. 163
—0.099
-0.082

d44
12

-4.578
—5. 665
—4. 250
—5. 197

0. 030
0. 052
0. 021
0. 033

dt)42

1.483
1.940
1.486
1.898

2. 77
2. 55
l. 55
0.91

g Q2

(10 2 dyn/cm C)

5.687
9.828
4. 771
7.701

b22if bf2
22

b44
22

(10 dyn cm /C )

b'7'7 —b 20

(10 dyn cm /C) (10 dyn cm /C ) (10 6 dyn/cm )

NaI
NaC1
KI
Kcl

0. 366
0.369
0. 599
0.673

—0. 027
—0. 021
—0. 033
—0. 026

0.274
0.254
0.410
0.424

0.228
0.218
0.352
0.378

1.26
l.44
1.15
1.29

0.874
1.106
1.131
1.534

3.297
4. 600
1.408

, l. 175
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TABLE IV. Comparison of the predicted and experimental values of dispersion frequencies.

(dTo (10' sec ')
Predicted Experimental~

(dLO (10'3 sec ')
Predicted Experimentala (1 Z )1/2

NaI
NaCl
KI
KC1

2. 5
2. 7
1.5
1.3

2. 2b

3.1
1.9
2. 7

0.94
0.90
0.93
0. 82

3.9
5. 3
2. 7
3. 8

3 3"
5. 0
2. 6
4. 0

0. 88
0. 88
0.89
0.89

'C. Kitten, Introduction to Solid State Physics {Wiley, New York, 1971), p. 190.
M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford U. .P. , Oxford,

England, 1954), Table 17, p. 85 for NaI values.

any + (qg)2 e 1/2
&r.o- ' (1-F2)

P
(6. 2)

where

p = p' p'/( p'+ p') = m' m'/v, (m, + m, ),
(ag2)2/a22 aug (6. 2)

F, = (a"+ q~ e2') 2/(a22+ e2') [a*++ (q~)2 e,' ] .
p is the effective density, and m~ and m2 are the

atomic masses of the positive and negative ions.
F, and F2 in (6.2) may be regarded as the correc-
tions of the frequencies brought by the shell model
over the rigid-ion model. The values of frequencies
predicted by (6. 2) are calculated and compared
with measured ones as shown in Table IV. It can
also be seen from the values of (1 —F~)'I and
(1-F2)2'~2 shown that the modification of the values
of dispersion frequencies may range from 5 to
15%.
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