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A theory of the time dependence of resonance transfer of excitation energy between molecules is
developed in terms of memory functions appearing in the transition rates of a generalized master
equation (GME). The memory can be computed explicitly and, due to the coarse-graining operation
incorporated in our derivation of the GME, the accuracy of the memory function depends only on the
amount of detailed information one has, or wishes to include, about the spectrum and dynamics of the
system. The formalism yields a unified description of coherent motion at short times and diffusive

transport at long times, and for the case of transfer between and among identical molecules provides a
generalized approach to the theory of exciton transport. Memory functions for transfer between
anthracene molecules are obtained as an illustration of the theory. The connection between the new

formalism and existing exciton-transport theories is indicated and its relation to the theory of
non-Markoffian random walks is presented.

I. INTRODUCTION

Exciton transport plays a role wherever a trans-
fer of electron excitation energy from one spatial
location to another takes place. without an accom-
panying particle transfer. An extensive review of
exciton-diffusion phenomena in organic solids has
been recently published by Birks. Serrhitized lu-
minescence has been an active field of solid-state
research for a long time. The biological process
of photosynthesis provides yet another example of
such energy transfer. When light is incident on a
photosynthetic system, it is absorbed and the im-
pinging photons are converted into excitons. Re-
action centers capable of utilizing the energy in
these excitons exist however only at certain loca-
tions in the system and a transfer of the excitation
from the absorbing sites to the reaction centers
must therefore take place before the photosynthetic
reaction can begin. The investigation of excitation
transfer is therefore of importance in diverse
fields of study and much theoretical work has been
done in this area. Forster developed a diffusion
equation and computed the rates of excitation trans-
fer between molecules. Dexter extended the trans-
fer-rate calculation to cases of dipole-forbidden
transitions and with Schulman applied it to the
kinetics of various processes mainly in the inor-
ganic realm. Trlifaj' further developed the dif-
fusion equation, and several others, beginning with
Bay and Pearlstein, have applied it (or an equiva-
lent dynamics) to biological problems. A wealth
of detail is available on the exciton-diffusion ten-
sor in polyacene crystals, much of it due to Avak-
ian and co-workers. However as these authors
pointed out, an inaccurate microscopic model for
the exciton propagation could reproduce the cor-
rect diffusion behavior on a macroscopic scale and
great care must therefore be exercised in drawing
conclusions concerning the microscopic motion of

excitons, which are based pn the diffusion equation.
Recently the question of how and under what con-

ditions diffusion theory must be replaced by a more
accurate theory has been raised and answered
quantitatively to varying degrees. A unified treat-
ment of "excitonic" (wavelike) and "Forster" (dif-
fusive) transfer is an old problem which has re-
ceived increasing attention. '

In this paper we investigate the problem of ex-
citation transfer with the help of a formalism based
on generalized master equations (GME). The
GME is introduced in Sec. II as the point of depar-
ture for transport calculations and it is indicated
how a unified description of coherent and incoher-
ent motion can be given with its help by making
use of its non-Markoffian character. In Sec. III,
coarse graining is introduced through a modifica-
tion of the Zwanzig projection operators and ex-
plicit expressions for the memory-possessing
transition rates in the GME are presented. The
theory is then applied to excitation transfer be-
tween like as well as unlike molecules in Secs. IV
and V, expressions connecting the transition rates
to optical spectra being given in Sec. V. These
two sections provide a generalization of Forster's
well-known theory. A discussion including a com-
parison of our formalism to existing theories of
exciton transport and the connection of our theory
to the formalism of continuous-time random walks
is presented in Sec. VI.

II. GENERALIZED MASTER EQUATIONS

Transport theory traditionally employs the Pauli
master equation as its point of departure. An im-
portant problem of nonequilibrium statistical me-
chanics is therefore the clarification of the connec-
tion between this equation and the Schrodinger
equation satisfied by the system constituents at the
microscopic level. Several authors' "have at-
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tempted this problem and, as an intermediate step
in such derivations, have obtained non-Markoffian
equations obeyed by the system probabilities.
These equations are known as generalized master
equations (GME). Among the various methods for
obtaining the GME the procedure of Zwanzig dis-
tinguishes itself by its elegance and economy of
effort. Starting from the Liouville-von Neumann
equation for the density matrix p

i =—(&, pl = Le-. ep
8t

(where 5=1), one arrives at

SP t(t) ds g {'w&„(t—s)P „(s)—~„&(t—s}P&{s))

= P[P,„P,(t)-P„,P,(t)] (9)

A(t) = f ds B(t —s)C(s)

is that the transition probabilities P&„ in (9) are
time independent while their counterparts ~&„(t)
in (8) are non-Markoffian. However, this very
difference makes it possible for the GME (8) to
provide a description of transport phenomena that
lie outside the reach of the PME (9).

The passage from (8) to (9) in Refs. 15-17
makes the use of the Markoffian approximation,
mhich consists, in general, of replacing an equa-
tion of the kind

~i (t)= —{O'Le ' (1 —O')Laic)BB (5)

S,{t)= i{aLe-""-"'(1-O)p(9))«

Under the initial-diagonality condition

p(o) = p.(o)

Eq. (8) forces s&(t) to be zero and one obtains

This is the GME. While it normally serves as on-

ly an intermediate step in the derivation of the
Pauli master equation (PME), we shall use it (in

fact a different form of it obtained by a modifica-
tion of the operator O') as our point of departure in
transport calculations.

The only formal difference between the GME (8)
and the PME below,

+ &i{t)

where I- is the I iouville operator„H is the system
Hamiltonian which is decomposed through

H=Hp+ V,
ti are eigenstates of Ho, and P& Q Ip ($)—-—is the

diagonal element of p in the representation of Hp

eigenstates; it represents the probability of occu-
pation of the states 5. The projection operators
employed in the derivation of (2) from (1) are de-
fined through the relation

6'0=0~, for any operator 0,
mhere 0„is the part of 0 diagonal in the represen-
tation of the Hp eigenstates. As explained in Ref.
16, the operators O', I etc. can be represented by
tetradics and the &&„and s& in (2) have the follow-
ing exact expressions:

B(() (f Bs B=(s))C(t)

which involves replacing B(t) by

dsBs g t

Whatever the finer details of the argument may be,
the derivation of the PME (9) from the GME (8)
therefore consists of assuming a 5-function-like
%i,„(t). It must be emphasized that this passage
from (8) to (9) does not hold for all interactions
and for all times and its validity is claimed only
for certain Ys and only on a certain time scale
(see Refs. 15-17). Also, given a particular sys-
tem, the analysis in Ref. 16 does not provide one
with a criterion to decide whether or not the tran-
sition from (8) to (9) or equivalently the perfect ab-
sence of memory in 'W&„(t} is valid for the given
system. Van Hove has emphasized' that certain
interactions V may only lead to a "dressing" of
the Hp states and cause no approach to equilibrium
and therefore be incompatible with a master equa-
tion of the type of Eq. (9). An example may be
easily given. If Hp represents free electrons
(noninteracting among themselves) a V arising
from impurity scattering or phonon scattering may
lead to an irreversible behavior and to Eq. (9}but
one arising from a periodic Bloch potential mill
only lead to a dressing of the electrons with a tran-
sition of the free states into Bloch states. No ir-
reversible behavior mill be present in this ease
and Eq. (9) will not be obtained.

The relevance of the immediately preceding dis-
cussion to the present problem lies in the conclu-
sion that the assumption

m, „(t)= E,„5(t)
that is made to obtain Eq. (9) from Eq. (8) may not
always be appropriate. In fact it is valid or.ly in a
limiting sense, and is responsible for "mashing



GENERALIZED-MASTER-EQUATION THEORY OF EXCITATION ~ . . 5281

x Q[F,+„(s)—F,P, (s)] (14)

out" a considerable amount of the reversible be-
havior of a system which may be important in a
particular situation. In fact, it is this reversible
part of the behavior of the system that leads to the
wavelike transport of excitons but an assumption
like Eq. (12) eliminates it entirely causing it to be
absent in Eq. (9).

A study of the exact expression for ~,„(t) shows
that the memory is actually oscillatory or some-
times even time independent. This is a conse-
quence of the reversible nature of the microscopic
equation and it makes the GME (8) incomPatible
with the PME (9). However, as will be shown be-
low, a coarse-graining operation introduced to
represent the passage from the microscopic to the
macroscopic level of description causes the re-
sulting W's to decay in time. If 7' is a character-
istic time of m(t), i. e. , if %(t) tends to zero for
t » 7', the PME (9) is able to provide an accurate
description of transport for large times while the
GME (8) must be used for t & v and t- v. The sim-
ple physical picture that emerges from the detailed
analysis in terms of the GME is that the exciton
(or any other quasiparticle undergoing transport)
hops from site to site but pauses at each site be-
tween hops. In the case of excitons this pausing
may be said to come about due to the exciton-pho-
non interaction. The pausing time is represented
by v and for excitons v-10 sec in most systems
of interest. The physical meaning of the relation-
ship between the PME (9) that is traditionally used
for transport calculations and the GME (8) that we
propose to use is therefore quite transparent. The
PME assumes the pausing time 7 to be essentially
zero. The GME (8) can thus probe into transport
phenomena at times shorter than 7' while the PME
(9) gives a coarser description "smoothed" over
such times.

The details of our modification of 6' and our new
GME will be given in the following sections. We
shall end this section with a few remarks about a
simplified form of Eq. (8). While transport theory
should really start from Eq. (8) in its full com-
plexity, a simplification may often be possible
whereby the time dependence of w&„ is assumed
independent of the states $ and p, :

'N)„(t) = Fg„g(t)

This reduces Eq. (8) to the simpler form

8P,(t) ds y(t —s)et

GME formalism can provide a unified formulation
of wavelike and diffusive transport. Consider a
quasiparticle undergoing transport in two different
limits: the wave limit

8 P(x, t) 38 P(x, t)
St2 eX2

=C (15)

[where the proper initial conditions are taken so
that positivity of P(x, t) is assured throughout its
evolution] and the diffusive limit

8P(x, t) 82P(x, t)
eg eg2 (16)

As is well known, the characters of the motion
predicted by (15) and (16) are combined into the
solutions of

ssP(x, t) c 8P(x, t) s82P(x, t)

which is a particular case of the telegrapher's
equation. On making the nearest-neighbor ap-
proximation on the F's in (14) and taking the con-
tinuum limit, the GME (14) reduces to

8 (x, t) ' 8'P(x, s)
(18)

III. COARSE GRAINING

The quantity basic to the approach suggested in
this paper is the memory-possessing "transition
rate" %&„appearing in the GME (8). It connects
the probability at a "site" p, and at a time s in the
past to the rate of change of the probability at the
"site" ( at the present time t. An expression for
it appears in Eq. (5) where it is given in terms of
elements of tetradics corresponding to the opera-
tors L, 6', etc. Following Zwanzig we can obtain
an approximate expression for w~„by replacing L
by Lo in the exponential in Eq. (5). The latter de-
notes commutation only with the part Ho of the full
Hamiltonian H. Observing that $, p are eigen-
states of Ho it is straightforward to show that Eq.
(5) reduces to

where the F's have been assumed symmetric (no
bias). It is stra!„~htforward to write the memory
Q(t) in (18) in terms of the F's and the!t! (t) in (14).
It is now seen that (15) and (16) can be obtained
immediately from (18) on taking the respective.
forms Q(t) =cse(t) and Q(t)=D5(t) for the memory
function. Furthermore (17}which constitutes a
unification of (15) and (16) is obtained from (18)
on assuming that the memory in Q(t) is neither per-
fect as in the case of (15) not completely absent
as in (16) but has the intermediate form Q(t)

2 -(c2/ D) g

The nature of the transport is then decided by the
memory!t! (t) as well as by the rates F«

A simple example will clearly show how the

VP,„(t)= 2
~

V', „~
s cos(E, —E„)t

where E& and E„are eigenvalues of Ho and V,„
(19}
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= &( I VIp, ). As discussed by Zwanzig, ' (19) is the
first term in a systematic perturbation expansion
and the higher-order terms, if difficult to display
explicitly, can be at least written down formally.
An idea of what is involved in this approximation
may be obtained by comparing the approximate and
the exact expressions for 'N&„calculated for a sim-
ple soluble model. This has been done in Appen-
dix A where it is seen that the exact and the approx-
imate expressions are identical to each other ex-
cept for a first-order correction to the difference
in the frequency of the cosine function in Eq. (19}.
While the complete expression for 'N~„ is given by
Eq. (5), an exact evaluation of it would be tanta-
mount to the full solution of the dynamical problem.
Except for a few (drastically simplified) exactly
soluble models, such a solution is quite out of the
question. For this reason the approximate ex-
pression (19) will be used in the rest of this paper.

The reduction of the GME (8) to the PME (9)
with its rates F~„described by the golden rule can
be immediately done with the help of the Markoffian
approximation discussed in Eqs. (10)-(12). For
the replacement of fo dt cos(E, -E„)by+5(E, -Z„)
indeed yields the golden rule.

Inspection of Eq. (19) shows that, as one might
expect, the basic microscopic form of W&u is os-
cillatory and nondecaying. Since an irreversible
description of transport and an eventual passage
into the Pauli master equation necessitate a de-
caying memory, one requires a coarse-graining
operation representing the passage from the mi-
croscopic to the macroscopic level of description.
For this purpose we modify the Zwanzig projection
operator in such a way that it incorporates the
coarse-graining operation. The operator 6' acting
on an arbitrary operator 0 now erases all off-di-
agonal elements of 0 and replaces the diagonal ele-
ments by their averages over the regions over
which the coarse graining is carried out. The mi-
croscopic states will now be denoted by (' and p'
and the macroscopic states (equivalently the sets
of $, p, etc. over which the coarse-graining is
carried out) by the original state labels $, p, etc.
In this notation

I60
I

pl )= g Iol( )bgr+ ~
=—ogtgtbgi+i

for the Zwanzig operator but

jection operator it is possible to derive a modified
GME which is formally identical to (8) with its 'W's

and S's given by (5) and (6). The explicit expres-
sion for %'&„at the same level of approximation as
(19) is, however, after some calculation

'ut .(t)= 2 ~ 1&4'I vl u')I'cos(z, -z„,}t (20)
u'( u

and the GME describes transport in the coarse-
grained space of the $, p states. Using Ig')
= 1$) la) which is particularly appropriate when
the description is in terms of a bath whose states
are the a' s, one has

x cos~,~t cosQ&ut

minus a similar term with sine functions, the &,~
and Q&„being energy differences of the bath and the
(coarse-grained) system, respectively. The mem-
ory possessing "transition probability" ~&„(t}is
thus seen to emerge (except for the cos Q&„t fac-
tor) as the Fourier transform of the interaction

One at once sees how the decaying macroscopic
memory arises out of and in spite of the basic os-
cillatory memory at the microscopic level. The
cosines cos &d~.„.t at the microscopic level serve
in Fourier transforming the interaction V. The
basic oscillatory character of the memory is still
seen at the macroscopic level through the cosQ&„t
factor but the time dependence of ~&u is dominated

by the nature of V. It should be noticed that our
present analysis provides a means of knowing
whether a given V will lead merely to a "dressing"
of the Ho states and cause no approach to equilibri-
um or whether it will result in an irreversible be-
havior of the kind described by the master equation.
This information which was absent in previous in-
vestigations of the problem of irreversibility
carried along these lines, is contained in the
Fourier transform of

v

The present analysis can thus be used for an in-
vestigation of the irreversibility problem. How-
ever the details are not particularly relevant to the
phenomenon of exciton transport and will therefore
be presented elsewhere.

for our modified operator. The coarse-graining
sums run over all states $ within the "grains" $.
The label $ often provides a complete description
of a state in a subspace of the system: ~g )
= l))e (a). The sum over ( Cg is then a sum over
all states la). With the new definition of the pro-

IV. EXCITATION TRANSFER BETWEEN MOLECULES

So far the fact that the entity whose transport is
being studied is an exciton has not entered into the
picture. The analysis can as well be applied for
instance to study the motion of electrons in an
amorphous solid. We shall now restrict our atten-
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tion specifically to the problem of exciton trans-
port.

Let us consider transfer of excitation energy
among a group of identical molecules. A state $

will be represented as M, m where M refers to the

site at which the exciton (the excited state) is, and
m represents the vibrational states. For simplic-
ity only two electronic states (the ground and the
excited state) will be assumed to exist at each site,
a trivial restriction which is easily relaxed. The
GME (8) thus takes the form

BP„, (f) ds P[&„~~»,„(t—s}P«~~(») N«, ~», ~(t s)P—» ~(s)]
0 N, n

(21)

The terms on the right-hand side of this equation
with N= M represent intramolecular relaxation
whereas those with N4M denote intermolecular
transfer and relaxation. The Forster-Dexter anal-
ysis is equivalent to making two approximations in

Eq. (21): (i) replacing ~(t) by [Jo dt %(t)]5(t) and

(ii} replacing P» „(s) by P»(s)P„', where P»(s)
=g P»,„(s). Here P«(s) refers to the probability
that the excitation is at site N no matter what its
vibrational state and P„'" is the thermalized dis-
tribution among vibrational states. Assumption
(i) is the Markoffian approximation discussed ear-
lier and is the one responsible for washing out all
wavelike behavior. Assumption (ii) insists that
thermalization occurs before transfer and makes
it impossible for "fast" or "hot" transfer to be
described by the formalism.

The Forster analysis is unable to study prob-

lems such as hot transfer since the PME, which is
its starting point, is already in a highly coarse-
grained space. Information in vibrational states
m, n, etc, is integrated out leaving only a descrip-
tion in the space of M, N, etc. In other words,
the transitions described in the Forster approach
are from sites N to sites M and not from states
N, n to states M, m. Our present analysis is quite
capable of treating the problem of transitions of
the latter kind. To make contact with the Forster
theory however, we shall first show what the new

predictions of our analysis are at its own (coarse)
level of description. For this purpose we redefine
the projection operator in such a way that it coarse
grains over m, n, etc. as well as over a, 5, etc.
which might represent vibrational and collisional
states of the surrounding medium. The result is

BP„(t) ds P;Q»«(t —s )P«(s ) %'„»(t —s )P„—(s ))N (22)

Imitating the development of Forster step by step one arrives a
Igl OO Igl p + gal

~««(t) =- d%» dt's» dW d(d W/ff) cos(EW/lf)tg '(cu»)g(tu»)
W 0 g=0 ~ 0 hlV

~

cc„»(gr„', m«; Wo —W+ w» + 2 A W, W —Wo+ gy»+ —,'gW)
~

3 (23)

The meaning of the various symbols, except for
the replacement k-M, l N, are identical to the
one's appearing in the Forster theory and it should
be recalled that the matrix element of the Coulomb
interaction u is evaluated partially in terms of en-
ergy-normalized states. M and N represent, as
stated before, two sites or molecules. The vibra-
tional contributions to the energy are denoted by
su with a prime to denote the (electronically) excit-
ed state. Thus if the excitation resides on mole-
cule M, the vibrational contributions of the two
electrons involved are m» and ce„. The energy of
the purely electronic excitation on either of the
two molecules is W0, and W and 6W are abbrevia-
tions for the expressions (Wo+ 2 (cu« —tv„+to„—t»») j

and (w»+ w» —m„- to»}, respectively. Finally the
g's represent the products of the densities of states
and thermal factors of the type e ~&. The deriva-
tion of Eq. (23) is straightforward from the general
theory developed in this paper as presented in Eq.
(20) and the (model) assumptions of Forster stated
explicitly in Ref. 4.

Equation (23) is the result of our general formal-
ism at the (highly) coarse-grained level of de-
scription of the traditonal theory. It should be
compared to Eq. (9) of Ref. 4 which is the well-
known Forster result that forms of the basis for
most discussions of excitation transfer. The two
equations are identical except for the absence of
v cos(b, W/ll}td(bW), the hW integration, and the
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terms —,'b, W, in the expression for u»in Eq. (9)
of Ref. 4. In the derivation of Eq. (23) the model
assumptions of Ref. 4 have been postulated but the
Marhoffian and the thermalisation assumPtions
have not been made. Thermal factors of the type
e s"k( appearing ing(kk)„), etc. appear also in our
treatment in spite of the fact that the thermaliza-
tion assumption is not made. They arise naturally
from the coarse-graining operation. Qf the two

coarse-graining sums present in (20) one is re-
sponsible for the Fourier transformation of the in-
teraction matrix elements. The other sum should
normally cause bath parameters to appear in the
final expressions. The only characteristic of the
bath allowed to be reflected in this treatment how-

ever is the phase space of the bath-system aggre-
gate. The states of this aggregate appear with

equal weight in the second sum and this naturally
gives weights e ~ in a summation over the vibra-

tional levels. It is the absence of the Markoffian
approximation which gives rise to the I R' terms in
Eq. (23). It should be noted once again that the re-
duction of the GME with its %u/„(t) given by Eq. (23)
to the usual PME of the traditional theory with its
E» given by Eq. (9) of Ref. 4 is easily and im-
mediately done by the replacement of cos(t) W/)f) t by

5(()(f~ ds costa()'/I)1} = 5(()all(4(('/I()

in Eq. (23). As we have remarked before, this re-
placement is valid only at large times and leads to
results [e.g. , Eq. (9) of Ref. 4] which are unable
to provide a correct description of exciton trans-
port at short times.

The application of our theory to unlike molecules
gives the following interesting result involving os-
cillations of excitation between or among the mole-
cules:

40 (Sk p+ (x)

%»{t)= —
I dke„'du)„d(t)W/ft) cost(t) W —4W())/tt

lVao gpge0 fe+O~h, Wa m

Xg (keek(u/„} ~u»(kukk, kk)„; Wo —W+u)z + kt) W, W- Wo+ kk)s+ zb W}
~

where the energies of purely electronic excitation
on molecules M and N are Wo and Wo, respective-
ly, and Wo —Wo = TWO. Note that (24) predicts
W„„(t) to have the form

A(t) coshWot+ 8(t) sinhWot

wherein A(t) and 8{t)are, respectively, the cosine
and sine transforms of the same quantity. At long
times, of course, the transfer rates predicted will
be identical to those predicted by the usual form of
the Forster theory with a shift h, WO between donor
and acceptor spectra.

V. CONNECTION VGTH OPTICAL SPECTRA

An important contribution of Forster to the theory
of exciton transport is the connection he estab-
lished between the formula for the rate I"» ob-
tained from the master-equation formalism and

the optical spectra of the molecules under study.
This connection derives its importance from the
fact that actual molecular aggregates are immense-
ly complicated systems and a computation from
formulae like the golden rule of Eq. (9) of Ref. 4,
while possible in principle, are impossible in
practice. 'It is only for a few drastically simpli-
fied models that such calculations can be carried
out completely. Under the same general assump-
tions concerning the interaction used in the tradi-
tional theory we shall now show how our present
theory generalizes the connection between the op-
tical spectra and the transport characteristics.

With Forster, Dexter and others we take the
interaction u to be given by the Coulomb interaction
of the electrons suitably modified by the introduc-
tion of the "solvent" refractive index n. It is then
possible to obtain from Eq. {23)

4 ((nk +co

m~{t)=
38m R~„

dWd{KW/5) cos(EW/K)t du)'„g'(u)'„)
50 Jg ~0

x lM((('o (('+ ~(('+~' ~')-l'f '".g(~ )I((((~ ((' -"(('-(('.~ ~.)l',
40 gao

(23')

w»ch should be compared to Eq. (9 ) of Rsf. 4. Here Ru„denotes the distance between the sites M and ti.
The quantity M(W) is the matrix element as defined by Forster, i. e. , M is proportional to the transition
probability density on an energy scale. Recalling that the Einstein spontaneous transition probabihty den-
»ty to the states between {Wo —W+ k&W+u) ) and (Wo- W-dW+ —,'hW+ u ) of the ground electronic state is
given (except for constant factors) by



GENERALIZED-MASTER-EQUATION THEORY OF EXCITATION. 5285

A(Wo —W+ —,'6W+ sv', tv') - (W ——,'&W)
i
M(WO —W+ —,'»+ ra, su ) i

one may write down for the average over the thermal-equilibrium distribution function

A(W —zbW}-(W-~zhW) J, ding g (av )~M(WO —W+zhW+te, gv ) ~z

(25)

(26}

It is to be noted that A(W)dW, which gives the number of quanta emitted per unit time per molecule in the

energy range dW, represents the fluorescence intensity in that range. By following the discussion in Ref.
4 it is possible to obtain a similar expression for the absorption spectrum which shows that the extinction
coefficient & (W) is given (again except for constant factors) by

s ( W+b, W/2)-(W+ ,'d -W) f dwg(m)iM(so, W+-,'4W- Wo+u)i (27)

Observing that the integrals in Eqs. (26) and (27) are exactly the ones appearing in Eq. (23 ) one may write
the memory w„„(t) in terms of the absorption and emission spectra T.he final expression is

(f)
( " o}8'c' '

d(~W/g) „,(~W/8)f dW~(W- l W)~ «+ '»)-
4v 8 N RzN gear gr o

'

(W 24W) (W+zkW)
(28)

where c is the speed of light and N = 6. 02m 10z is the number of molecules per millimole (see Ref. 4).
For like molecules we may use Levschin's law of mirror correspondence between the absorption and emis-
sion spectra and further reduce Eq. (28) to

(29)

For the sake of comparison we repeat Forster's corresponding result for F„„[Eq (14) of R. ef. 4].

3(ln10)zoic 1 " z(W)Z'(2WO —W)
4v& sz(N')z R6

N ~0 W(2W0 —W)
(30)

1.
~„N(t) =— dz F„„(z)coszt

7l

(31)

The traditonal theory is then seen to be repre-
sented by the zero-frequency region of F„„(z)
which, by well-known theorems of Fourier analy-
sis, corresponds to the long-time behavior of

which is a consequence of our Eq. (29) under the
Markoff ian approximation.

Thus while the Forster analysis allows one to
compute F» from the optical spectra through an

evaluation of the integral in Eq. (30) [or the equa-
tion corresponding to (28) above] the algorithm
suggested by our analysis is a little more involved.
One does calculate the F» in Forster theory, and

renames it F„N(0). One then shifts the two curves
W A(W) and W & (W) on the frequency axis, the
former by +—,'bW and the latter by ——,'hW [see Eq.
(28)] and redoes the integral, symbolizing it by

F„„(ZW). By repeating this operation for all val-

ues of 48' one builds the entire curve. This
F„„(hW}is then the i'mportant quantity in our the-
ory since its cosine Fourier transform yields the
memory-dependent "transitio-n rate" Wzz(f):

%~(t). Once again one notes that the replacement

w (t) fds w„(s))s(t)==a([It „( )0„
0

(which is the Markoffian approximation) allows us
to reobtain the Forster expression. Description
of exciton transport at short times is influenced
by F„„(z)at nonzero values of z and is thus seen
to be outside the ken of the traditonal theory. In-
sistence on using the PME at all times t presup-
poses flat absorption and emission spectra which
are of course unrealistic and would lead to a catas-
trophe.

As an illustration of the memory function, we
have computed F~(z)/F~ for transfer between
anthracene molecules (Fig. 1). The absorption
curve used was that of anthracene in cyclohexane
solution and the mirror symmetry relation was
assumed for convenience. The memory function

P(t) =(vF~) ' J dzF„„(z)coszt

is shown in Fig. 2. The memory vanishes well
within a time corresponding to the usual picosecond
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FIG. 1. Shape of the extended overlap integral F&N(4v)
in the case of anthracene emission and absorption spectra
in solution (see Ref. 21). The ordinate is normalized
such that for the case of the usual F6rster overlap inte-
gral (4v = 0) its value is 1/7I.

thermalization time, a fact which is of course re-
lated to the scale of the fine structure in the opti-
cal spectra. Sharper peaks in the spectra would

mean smaller interactions with phonons and the en-
vironment and a correspondingly longer memory.
It is instructive to examine the consequences of
simulating the functions A(W)/W and e (W)/W ap-
pearing in (28), by Lorentzians: The resulting
memory has the form

e "cos(EEt/5)

where hE denotes the Stokes shift between the two
curves. While the actual features of the anthracene
spectra are reflected in Fig. 2, one indeed notes a
decaying curve with an oscillating factor, since
there is a Stokes shift in the spectra.

VI. DISCUSSION AND COMPARISON WITH OTHER
TREATMENTS

We shall now carry out a brief comparison of
the present formalism with other treatments of
the problem of excitation transfer. Principal
among the existing theories are (i) the one de-
veloped by Forster, (ii) the Grover-Silbey" for-
ma, liam, and (iii) the Haken-Reineker theory. 'o A

detailed comparison between the Forster theory
and the present formalism has already been carried
out. It has been pointed out that since the PME
forms the basis of the former, it is unable to de-
scribe exciton transport at short times. Our for-
malism achieves this through the memories 'e(t).
As pointed out in Sec. IV, the Forster theory
makes two assumptions in its development: (i) The
thermaEization assumptkm which states that the
exciton undergoes complete intrasite (vibrational)
relaxation ending in the achievement of a ther-
malized distribution after every hop and before
the next hop away from the site, and (ii) the Mar-
koffian assumption which is implied by the PME.

These two assumptions have totally different char-
acters but appear to have been sometimes con-
fused in the literature. The first has been ques-
tioned several times in the past, particularly by
Dexter and collaborators. The second assump-
tion is the one that destroys the "wavelike" or "co-
herent" behavior and is the one that has been ques-
tioned by Robinson~4 among others. In the present
theory neither of these assumptions is made. How-
ever, results formally equivalent to those of the
thermalization assumption automatically appear as
a natural consequence of the coarse graining at the
level of the Forster description. The absence of
the Markoffian assumption introduces cosine fac-
tors in expressions for w(t) and provides a pre-
scription to construct the memory in the transport
equation from the absorption and emission spectra
of the molecules.

A detailed comparison of this theory to the
Grover-Silbey (GS) and the Haken-Reineker (HR)
formalisms can be made. The initial stages of
these formalisms (in particular GS) are equivalent
to our approach but the specific approximations
and model assumptions cause differences to appear
in the final transport equations. Here we shall
merely point out these differences along with the
similarities and display the expressions predicted
by the respective treatments for the mean square
disp). acement

(x'(t)) = f' dx-x'~(x, t)/f dxP(x, t), (32)

which has been denoted by R2(t) and n (t), respec-
tively, by GS and HR.

For the sake of simplicity in the comparison we
shall consider the one-dimensionhl (no-bias) con-
tinuum problem. 25 Inspection shows that Eq. (34)
of QS may then be written

2.5
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CP
tP

R io —
i

o.o

-0.5—
I I I I I I I
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FIG. 2. Memory function Q(t), which is the cosine
Fourier transform of the curve in Fig. 1. The ordinate
is chosen in such a way that the curve is normalized
to unity.
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SF(x, t) ~. . . , 8'F(x, t)

+ "off-diagonal" terms . (33)

this theory:

d(x'(t)) '„()dt

In the same context the corresponding HR equation
is

SF(x, t) ~» 8'F(~ t)
8 x2=4T a2y

+ "off-diagonal" terms . (34)

traditional:

d(x'(t) &

dt

+ dxx sx, t
~00

(38)

(38)

The theory developed in this paper yields for this
situation [from Eq. (2)]

dsQ(t- s)D +S(x, t), (36)
o

and the traditional theory gives the diffusion equa-
tion [Eq. (16)]

d(x'(t)& =SJ a y~(t)+forcing term; (36)

HR:

d(x'(t )
dt

=SJ' a2y+forcing term . (37)

We have modified the notations of GS and HR slight-
ly to avoid confusion.

The traditional Eq. (16) has an instantaneous dif-
fusion coefficient and no inhomogeneous term
s(x, t); the HR Eq. (34) has, like Eq. (16), an in-
stantaneous diffusion constant but an inhomogene-
ous term appears; finally the GS Eq. (33) has an
inhomogeneous term and a diffusion coefficient that
is neither constant nor involves a convolution (i.e.,
a memory) but is time dependent. The special fea-
ture of our formalism (which it acquires from the
use of projection techniques) is that the inhomo-
geneous term is given explicitly in terms of the
initial condition and the (given) evolution operator.
This is in contr'ast to the unknown inhomogeneous
term in the GS or HR formalisms that require a
complete solution of the problem before they can
be given explicitly. Although ease in calculation
is not necessarily assured by this fact, this may
be considered a formal advantage of our theory
(see also Ref. 16).

It can be shown that for the calculation of (x2(t)),
the inhomogeneous term is of minor importance in
the GS Eq. (33) but makes the major part of the
contribution to the results of the HR Eq. (34). By
imposing proper boundary conditions at infinity it
is possible to deduce the following equations for
(x'(t) ).
GS:

(x'(t) ) = a'[(2n'+ 4Z'/Sn') t

+(4T'/Sn")(s ' ' —1)], (4o)

it suffices to replace the forcing term by the con-
stant 2a n and y~(t) by (1 —e ~~ ')/6n . With this
substitution Eq. (36) gives 2a n as the initial val-
ue of d(x2(t))/dt and it is of interest to observe that
this corresponds to a calculation from a diffusion
equation like (16) with D given by 4J2amy, (~). In
terms of Eq. (38) one then has

2a'n' f' dx=x's(x, 0) .
Maintaining this value of the driving term in (38)
constant for all times one then recovers the GS
result for (x') from our Eq. (38) by taking the ex-
ponential form 3n e ~ ' for the memory tP(t).

By making the correspondence z =I'- —,'yo, the
results of the HR Eq. (37) [or of Eq. (4. 2) of Ref.
10] may be written

(x'(t)) = a'[(2n'+AT'/Sn' ——,
'

y, )t

+(4J /Sn )(e ~+' —1)] ~ (41)
This expression may also be recovered from our
Eq. (38) by assuming P(t) = 3n e 3' ' and

f. d sx(xt) x=Ce(t)

as in the GS case but with C = (2n —+~yo)a .
For the specific calculation of the mean-square

displacement one thus sees that the HR and G$ re-
sults correspond to the particular exponential form
for the memory P(t) in our formalism. As pointed
out earlier the F„z(z)/F~ curve possesses a struc-
ture that is reflected in the memory Q(t) (see Figs.
1 and 2). The results in Refs. 10 and 11 are thus
equivalent to an approximation of the F~gz)/F„N
curve by a Lorentzian [which, incidentally, means

In view of the fact" that y, (0) =0, the t=0 value of
the forcing term in Eq. (36) is

t'd&x'(t) )
dt ~0

The actual calculation" of (x (t)) from (36) is ob-
viously dependent on the different values of this
forcing term at different times. However, for ob-
taining the final expression [Eq. (42) of Ref. 11],
which in our modified notation is
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that the driven form of a telegrapher's equation (17)
is used for the probability evolution].

The GS and HR theories as well as the present
formalism go beyond the Forster theory in that
they can describe coupled wavelike and diffusive
transport of excitons. In spite of their being en-
tirely equivalent to our formalism in their begin-
ning stages (particularly the GS theory which is
purely dynamic, i.e. , contains no stochastic ele-
ment) their final results differ due to the specific
approximations and model assumptions and as we
have seen above correspond to an approximation
to the memory curve, 7 which we obtain directly
from optical spectra.

A non-Markoffian equation for the time evolution
of the exciton probability which is based on a spe-

, cific model calculation of Kudinov and Firsov28 in
the context of the polaron problem, has been writ-
ten down by Paillotin. '~ It is a special case of our
GME (8) in that it corresponds to a particular form
of the memory function.

Two equivalent approaches have been used in in-
vestigations of exciton transport: the method of
master equations and the method of random walks.
A generalization of the former has been presented
in this paper and it is therefore natural to ask
whether the latter method can also be generalized
in a similar manner. An extension of the Markof-
fian theory of random walks to continuous time
situations already exists in the literature" and
has been recently used & ' for certain transport
problems. It has been shown~ that the memory
Q(t) in a simplified GME of the form (14) above
and the "pausing-time distribution function" g(t)
defined and used in Refs. 29-31 are related to
each other through

—+ dsg(s)P(t-s) =Q(t) —g(0)6(t) .
dt

(42)

(43a)

4g(~)
Fg(~) =

y ( )
y (43b)

( )
W,„(e)
&+ 0g(&)

the, generalization of the MW random walk which
is exactly equivalent to the GME (8) takes the
form

(43c)

It can be further shown that the Montroll-Weiss
continuous-time random walk~9 can be extended to
situations where the pausing-time distribution func-
tion g(t) is not a universal function of sites and that
an exact correspondence can be established between
this generalization and the GME (8). With the re-
lations

( t
P, (t) =P, (0)~ 1- dsg, (s)

~)

40
(44)

The continuous-time random walk, which was
originally introduced as a specific model, is now

seen to correspond exactly to the consequences of
the Liouville equation under the initial diagonality
condition. Exciton transport may thus also be

analyzed within the framework of extended non-
Markoffian walks.

The initial diagonality condition (IDC) imposed
in the derivation of the GME (8) from Eqs. (1) or
(2) requires comment. The situation in modern
treatments of statistical mechanics is that this
condition is essential to the derivation of the PME
(and the consequent irreversible behavior) from
microscopic dynamics. This is representative of
the fact that the Schrodinger equation is not com-
patible with an approach to equilibrium under I,r-
bitrary initial conditions. The IDC is thus present
in all traditional treatments of excitation transfer.
It should be further emphasized that the IDC is
used also in the modern treatments of exciton
transport. It appears explicitly in applications3~
of the HR theory [see Eqs. (4) and (10) of the two

Refs. 33] and implicitly in the GS treatment. This
is evident from Eqs. (C4), (C1), and(40) of Ref. 11.
The IDC can occur either due to random phases
(the density matrix is obtained from the wave func-
tions through a.n ensemble average) or in the pure
case if the system is initially totally in a state

i. e., p~„= 5~, „5„„,where $, p, , q are the
eigenstates.
The GS and HR treatments" ' assume the latter
more restrictive form of the IDC whereas the
GME treatment uses the less restrictive random-
phase condition. Furthermore within the frame-
work of the present formalism it is possible to go
beyond the IDC since S,(t) is a knoum term in prin-
ciple [see Eq. (5)]. On studying the structure of
this term with the help of Eq. (6) or an approxi-
mate form which is analogous to (20), one reaches
the following conclusions: (i) There are many situ-
ations when the S&(t)'s, even when not identically
zero, decay much more quickly than the memories
'W&„(t) and a time range therefore exists when the
GME can describe the transport correctly although
it is still outside the reach of the PME; (ii) while
the nature of the evolution of 'Iv, „(t)'s depends sole-
lyupontheinteraction, that of s~(t)'s depends upon
the initial density matrix (in fa,ct its off diagonal
part) as well as upon V; (iii) the "coherent" or
"wavelike" nature of exciton transport arises in
general both from the memories 'iiV, „(t) and the
initial term s, (t); and (iv) the exact transport equa-
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In this appendix we derive exact results for the
case of a two-state system characterized by a
Hamiltonian 0 given explicitly in the representa-
tion of the Zo eigenstates ($, iI, etc. ) as

(@+0 V»
( V~,

The convolution term on the right-hand side of
Eq. (2) may be written

r Jd a—L, "'""~"(I-s)~()
I0 jr'

(A1}

To evaluate this term note that the following
simple result can be established for the two-state
system:

(1 tP)LO=( g}oO- (A2)

tion which is a "driven" GME (the "driving" or the
inhomogeneous term is s, ) can sometimes be trans-
formed into a true GME without the driving term,
which means that under these conditions the QME
analysis is quite exact.

Note added in Proof: Some further calculations
concerning the mean-square displacement have now

been pubiished [V-. M. Kenkre, Phys. Lett. A 47,
119 (1974)]. In connection with the comparison of
our formalism to the GS and HR theories, which
appears in that reference as well as in Sec. VI
above, it should be mentioned that the calculations
concerning the initial values of &x (t)&, etc. , can be
replaced by the simple statement that the &x (t)&

given by the GS theory may be obtained from our
formalism by approximating the actual memory
Q(t) by the expression 3o. e ~ '+ (n a /D) 5(t) and
writing D = 2J a /3n' . The HR expression is ob-
tained in a similar manner.
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Dr. R. Pearlstein, and Miss T. Rahman.

APPENDIX: SOME EXACT RESULTS IN A TWO-STATE
MODEL

one notes that the two results are identical except
for the frequency of the cosine factors. The exact
expression (A3) contains 0, the difference between
the first-order energies of the two states, where-
as the approximate expression contains w, which
is the difference between the zero-order energies,
i.e. , the IIO eigenstates. For a two-level system
the approximate expression (19}is thus seen to
simulate the exact Eq. (5) very closely and in fact
reduces to the exact result in the case when V is
off-diagonal in the 80 eigenstates.

It is also interesting to observe that the analog
of the wave equation for a two-state. system is ex-
actly obtained whenever the energies of the two
states are identical (i.e. , the memory is time in-
dependent) and when the s(0) term is zero (i.e. ,
the system starts out completely in one of the
states at 1=0, or random phases apply at the ini-
tial instant). The conservation of positivity of P
is assured by this initial condition.

The Zwanzig approximation used to derive (19)
from (5) may also be used to obtain an expression
for the inhomogeneous term in (2):

g (f) im2ig e butts~ Eg)

~&(I vl l && i Ip"(0)I &&, (A5)

where Im represents the imaginary part and p (0)
is the off-diagonal part of the density matrix at
t= 0. It may be noted from (A5) as well as (6) that
s&(t) is identically zero if p(0) is diagonal. Equa-
tion (A5) shows that s~(t) depends upon matrix ele-
ments of V as well'as of p (0}. The behavior of
the inhomogeneous term thus depends on a combi-
nation of the interaction and the initial conditions.
Equation (A5) has been derived from the Zwanzig
definition of 6. On using our modified 6', the ex-
pression for 8&(t) is found to conte, in a coarse-
graining operation which induces its decay in time
in a ma, nner analogous to the decay of 'vv„(f) . We
shall here exhibit the exact and approximate ex-
pressions for S~(f) derived with the Zwanzig (P for
our two-state system. These are respectively

for any off-diagonal operator 0. This shows that
the action of the operator e "' ""~' is extreme-
ly simple in this system. A straightforward calcu-
lation then yields the exact result

~,„(f)=2I&gI VI y. &I'cosnf. (A6)

8&(t) = XcosQt+ YsinAf

and

s&(t) = Xcos&ut+ Ysin&uf,

where

(A 6)

(A7)

(A4)

On comparing it with the approximate expression
obtained from Eq. (19)

~,„(f)=2I&gIVIl &I'costi,

2(X+iY) = V~~ pa~(0).

Again the difference appears only in the. frequen-
cies.
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