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The self-consistent Hartree-Fock energy bands which are presented in this paper for LiF and Ne closely
match Hartree-Fock energy bands reported by other groups for these compounds. The Hartree-Fock
equilibrium lattice constant and bulk modulus for LiF are 3.972 A and 7.54 X 10" dyn/cm', as
compared to the experimental values of 4.02 A and 6.71 X 10" dyn/cm . Hartree-Fock x-ray structure
factors and directional Compton profiles in the impulse approximation are presented. The calculated
x-ray structure factors of LiF agree with experiment to within 2%, while the calculated Compton
profiles of LiF agree with experiment to within 3%.

I. INTRODUCTION
~ (r) ~ II (e (r -R) -e- (r+R) )P

In previous papers, ere presented a straight-
forward crystal Hartree-Fock (HF) formalism
which utilizes crystalline symmetry and various
two-electron integral approximations. ' Diamond
results were given for energy bands, the cohesive
energy, and x-ray structure factors', for the HF
equilibrium lattice constant and bulk modulus';
and for directional Compton profiles calculated
in the impulse approximation. ' These results sug-
gest that correlation is not a major factor in the
ground-state properties, except for the cohesive
energy, but is very important in the description of
the energy bands.

In the present paper, a slightly improved HF
computational model is applied to crystalline Ne

and LiF. These compounds were chosen partly
because HF energy bands have already been cal-
culated for these materials with Gilbert's local-
orbital (LO) formalism by Kunz and Mickish, ' '
and with a muffin-tin augmented-plane-wave (APW)
formalism by Dagens and Perrot."Our energy
bands can thus be compared to these earlier re-
sults. The results for ground-state energetics
and for the first-order density matrix (as mea-
sured by Compton profiles and x-ray structure
factors) are compared to experimental results for
LiF, and are presented for future comparison with

experimental results for Ne.

II. COMPUTATIONAL DETAILS

Our basic canonical HF formalism is discussed
in detail in Ref. 1. Contracted sets of Gaussians
centered on atom sites are used as local basis
functions

(p,(r) =Q A e

together with Gaussian lobe functions of p sym-
metry

= g B e " (-4o.r R).

These functions consist of oppositely signed Gaus-
sians with centers slightly displaced in order to
simulate Cartesian Gaussians. The contracted
sets of Gaussians used in this study are given for
Ne in Table I and for LiF at the experimental
lattice constant in Table II. The corelike basis
functions were taken from tables compiled by
Huzinaga' for the free atom, while the more dif-
fuse Gaussians were adjusted to minimize the total
energy of the crystal, and to lower the conduction
eigenvalues.

The local basis functions are used to construct
Bloch basis functions at a regular mesh of 19 in-
equivalent points in the first Brillouin zone

C(k (r) —Q eilt' Rg~ (P R )

The local basis functions also form a basis for
the first-order density matrix

p, (r, r') =P A&~(p„(r —R,)((((*„(r'-R,) .

Varying the coefficients of the Bloch basis func-
tions to minimize the total crystalline energy then
leads to the usual matrix eigenvalue-eigenvector
problem for each zone point

~yk gk Ukyk

ak = ek -V'-

(,i 2p, (r', r') —p, (r, r )p, )',
Uj ~

= &@((r)I@'„(r)),

where P„„.interchanges variables r and r'.
The secular equation is solved using the Lowdin
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TABLE I. Gaussian basis for Ne. The coefficients C multiply normalized 1s and 2P Gaus-
sians, Ce~"~. Atomic units are used throughout.

C

1s

3s

,4s
5s

47 870.213
7355.8349
1660.1762
460.538 77
146.038 08
50.413 86
18.279 945
6.707 072 1
1.924 453 9
0.720 81321
0.3
0.13

0.000 209 549
0.001 616 522
0.008 611477
0.036 244 592
0.122 191475
0.307 653 162
0.712 234 4
0.325 45
0.385 495 36
0.524 560 63
1
1

1P

2P

3P
4p

84.8396
19.7075
6.218 77
2.160 902 2
0.705 515 92
0.34
0.15

0.036 158 526
0.239 481 67
0.811942 44
0.447 095 37
0.503 568 3
1
1

orthogonalization procedure. ' We use this tech-
nique to eliminate linear dependence in the fol-
lowing manner: The eigenvalues of the overlap
matrix are scaled so that the largest eigenvalue
is unity. The eigenvectors corresponding to scaled
eigenvalues less than 'some tolerance (typically
0.005-0.01}are discarded. The Hamiltonian ma-
trix is then transformed with the remaining rec-
tangular matrix in the usual manner. We will re-
turn to the choice of the overlap tolerance later.

The eigenfunctions for the filled electron states
are used to build new first-order density matrix
coefficients A'„', at each of the 19 zone points.
These coefficients are then averaged with ap-
propriate weights ioobtai'n the updated first-order
density matrix, which in turn yields an updated
Hamiltonian. The process is iterated to self-
consistency.

Crystalline symmetry is used to reduce the num-

ber of integrals which must be done, and to com-
bine the integrals before entering the self-con-
sistent cycle. These techniques are fully described
in Ref. 1. In addition, three charge-conserving
integral approximations are used. These permit
us to zero or approximate all of the smaller, rela-
tively unimportant integrals without destroying the
very important balance between nuclear and elec-
tronic charge. These procedures are summarized
in the Appendix. The tolerances given in paren-
theses in the Appendix were used in this study.

In our first two papers, "we only calculated two-
electron integrals for which all four local basis
functions were within six shells of neighbors of
each other. To compensate for this sharp cutoff
at the computational boundary, we introduced so-
called monopole and dipole corrections. We no
longer need these corrections, because we now
calculate integrals over many more shells of

TABLE II. Gaussian basis for LiF for the lattice constant 4.01852 A. For notation and
units, see Table I.

1s

2s
3s
1p

1354.9159
203.301 16
46.323 493
13.133489
4.247 754 2
1-.487 274 3
0.6
0.3
0.3

0.000 847 312
0.006 513912
0.032 726 414
0.118486 46
0.296 433 8
0.447 232 88
1
1
1

1s

2s
3s
4s
5s
1P

2P
3P

10255.863
1545.I5575

357.069 77
103.63143
34.502 616
4.831 832 8

12.546 095
1.233 123 5
0.6
0.24

44.608 007
10.096 673
2.984 881 3
0.93
0.27

0.001 129 262
0.008 586 802
0.041 957 136
0.146 491 37
0.351 91132
0.158 19461
1
1
1
1
0.016 248 533
0.102 196 15
0.312 641 05
1
1
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TABLE III. HF energy bands of Ne in Ry. The LO
results are from Ref. 4. The APW results are from
Ref. 6. All results are adjusted in absolute position so
that 1 &5 is at 0.0 Ry.

Present
calc. LO APW

1s
ri(2s)
res
r,
r25)

X&(2s)
X4)
Xs)
X4)
X)
Xs)

L i(2s)
L2)
L3.
L2)
Li
L3)

—63.879
-2.178

0
1.882
3.822

'-2.173
-0.044
-0.017

2.438
2.670
3.016

-2.175
-0.048
-0.006

2.288
2.372
3.571

-63.927
-2.190

0
1.846
4.101

—2 ~ 183
-0.022

0
2.448
2.822
3.139

-2.176
-0.029

0
2.279
2.417
3.778

-63.854
-2.176

0
1.868
3.201

-0.034
—0.012

2.420
2.348
2.983

—0.036
-0.019

2.254
2.315
3.084

neighbors, and then use Ewald summation tech-
niques to handle the remaining infinite crystal. "

III. ENERGY BANDS

Our HF energy bands are given for Ne in Table
GI and for LiF in Table IV. The LO and APW HF

F 1s
Li 1s
r,
r~s
r,
res

Xg
X4)
Xs)
X3
x,
Xs)

Lj
L2)
L3.

L2)
L3

Present
calc.

-51.333
-3.617
-1.892

0
1.685
2.870

-1.844
-0.245
-0.088

2.211
2.352
2.610

-1.895
-0.220
-0.022

1.819
2.428
2.495

LO

-51.85
-3.62
-2.021

0
1.688
3.188

-1.886
-0.259
-0.081

2.478
2.493
2.906

-1.924
-0.223
-0.033

1.847

2.700

APW

0
1.552
2.692

-0.149
-0.055

2.001
2.077
2.523

-0.138
-0.018

1.733
2.117
2.427

TABLE IV. HF energy bands for LiF in Ry. The LO
results are from Ref. 5. The APW results are from
Ref. 7. These results are adjusted in absolute position
so that rfs is at 0.0Ry. The Li and F 1s levels are also
given.

bands are also given. For ease of comparison, the
top valence band at l has been set to zero in each
case. [No information is lost by this adjustment
of the levels. The zero of potential, and hence
the absolute positions of the energy eigenvalues,
is dependent upon the (arbitrary) grouping of posi-
tive and negative charge contributions to the con-
ditionally convergent summation. ] One word of
caution is in order. Our HF eigenfunctions have
not been symmetry analyzed. Present symmetry
assignments are based upon the degeneracy of the
eigenvalues, and upon their agreement with the
earlier published results. This procedure is
dangerous for the higher conduction bands.

The agreements between the three sets of calcu-
lations is striking for the core levels, the valence
bands, and the lowest conduction bands. This
agreement is especially impressive when it is
remembered that. completely different computation-
al formalisms were employed by the three re-
search groups.

Comparison of the higher conduction bands shows
a shortcoming of the analytic local basis functions.
The conduction-band wave functions are large in
the interstitial regions. Our calculations, and
those of the LO formalism, both suffer from in-
adequate basis sets in these regions. The APW
muffin-tin potential does not handle the inter-
stitial regions correctly either, so these higher
conduction bands are also suspect.

The close agreement of our results with those of
the other groups for the lower bands for both the
rare-gas crystal Ne and for the ionic crystal LiF
gives us confidence that our Ewald summation
technique and various integral approximations are
sound.

Both of the other research groups have applied
correlation corrections to the HF energy bands
and have obtained close agreement of the corrected
bands with experiment. In this paper, we shall
concentrate upon ground-state properties.

IV. GROUND -STATE ENERGETICS

We performed LiF calculations at five separate
lattice constants. The standard deviations of the
outer overlapping Gaussians were scaled directly
with the lattice constant. The Gaussian with an
exponent of 0.93 was only partially scaled. The
essentially nonoverlapping core basis functions
describe the behavior of the crystal wave functions
in the virinity of the nuclei, and should conse-
quently not be scaled. The Gaussian exponent co-
efficients that were scaled are tabulated in Table
V for the five LiF lattice constants.

Table VI gives the total energy per atom for Ne

and the total energy per atom pair for LiF for
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TABLE V. LiF Gaussian exponent coefficients in a.u.
for five lattice constants (in A).

3.82 3.90 4.018 52 4.10 4.20

Li 2s 0.663 98 0.637 022
3s 0.33199 0.318511
1p 0.33199 0.318511

F 4s 0.663 98 0.637 022
Ss 0.265 593 0.254808 7
2p 0.98 0.955
3P 0.298 79 0.286 659 8

0.6 0.5763892 0.54927
0.3 0.288 1946 0.274 635
0.3 0.288 1946 0.274 635
0.6 0.576 389 2 0.549 27
0.24 0.230 555 7 0.2197
0.93 0.91 0.90
0.27 0.259 375 0.247 17

each lattice constant. The atomic HF total ener-
gies are also given for the atomic Gaussian bases.
The comparison of results from two calculations
done with different basis sets is not altogether
valid. However, in the present case there is no
alternative.

For ionic crystals such as LiF, there are two
commonly used definitions of binding energy. One
definition is "the energy required per pair to con-
struct the crystal from individual isolated free
atoms. " Experimentally, "this value is 0.69 Ry/
pair, while our HF value is 0.53 Ry/pair. It is
hard to estimate how much of the difference is
due to correlation and how much is due to a poor
Gaussian basis. The crystal Gaussian basis has
an important deficiency. The Gaussian contrac-
tions appropriate to free atoms were used, where-
as in retrospect it would have been better to use
contractions appropriate to the Li' and F ions.

The more usual definition of binding energy for
ionic crystals refers to "the energy required per
pair to construct the crystal from individual iso-
lated Li' and F ions. " To calculate the HF ener-
gy of the free ions, we performed restricted HF
calculations on the ions, using the same con-
tracted basis sets as were used in the crystal,
together with some additional longer-range Gaus-
sians. We obtained a HF ionic binding energy of
0.82 Ry/pair, which should be compared to the

experimental value" of 0.79 Ry/pair. We suspect
that this agreement is fortuitously close. Lowdin,
in a much earlier non-self-consistent HF calcula-
tion of LiF obtained 0.71 Ry/pair for the ionic
binding. Froman and Lowdin" have given argu-
ments that the correlation corrections to the
ionic binding should be very small. Our results
are consistent with their conclusions.

The results for neon are given in Table VI for
two choices of the overlap tolerance. For an over-
lap tolerance of zero, one obtains a nonphysical
binding of 0.019 Ry/atom, while for an overlap
tolerance of 0.014 the crystal is unboun& by 0.003V
Ry/atom. Rare-gas crystals are thought to be un-
bound in the HF approximation, ' and the experi-
mental binding. energy" is only 0.0019 Ry/atom.
This would seem to indicate that the tolerance of
0.014 is in some sense more correct. However,
if one varies the overlap tolerance from 0.018 to
zero, the total energy decreases smoothly to the
lower value. Furthermore, increasing the number
of zone points used from 19 to 89 changes the
energy by 0.000004 Ry/atom, while decreasing
the integral tolerances (see Appendix) by a factor
of 100 changes the energy by 0.0001 Ry/atom. In
short, the results are intern&3&y consistent and
numerically stable. The only thing that can be
said of this situation is that there appears to be
no definitive choice of the overlap tolerance to be
made in this instance. For an overlap tolerance
of zero, these calculations are 0.02 Ry/atom too
low. We do wish to note, however, that the (111)
x-ray structure factor for neon is V.949 for a
tolerance of zero, but only changes to V.953 for a
tolerance of 0.014. Similar differences are seen
in the other structure factors. The error in the
first-order density matrix due to changes in the
overlap tolerance is thus small relative to the
experimental error in the x-ray structure factors
and in the Compton profiles, and to reasonable
variations in the Gaussian basis sets.

TABLE VI. Neon and LiF total energies per cell (TE) in Ry; free-atom total energies
(atom TE) in Ry; the virial coefficient (p) which gives the negative ratio of twice the kinetic
energy per cell to the potential energy per cell; and the pressure-volume product (pV) in
Ry. v is the overlap tolerance used in the Lowdin orthogonalizatfon. These quantities are
given for lattice constants (a) in A, .

pv

LiF 3.82
3.90
4.018 52
4.10
4.2

0.0
0.0
0.0
0.0
0.0

-214.179 79
-214.182 16
-214.18338
-214.18034
-214.17979

-213.653 85

0.999 71
0.99945
0.999 15
0.998 986
0.998 85

-0.0418
-0.0785
-0.1208
-0.1446
-0.1645

Ne 4.52
4.5&

0.0
0.014

-a57.0994
-257.073 637

-257.0803 0.99967
0.998 94

-0.0574
-0.1817
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FIG. 1. LiF HF total energy per atom pair in Ry. is
plotted against lattice constants in A. The five calculated
points are circled. The least-squares-fitted parabola is
also shown.

The LiF crystalline total energies are plotted
against lattice constants in Fig. 1. The least-
squares-fit parabola has a minimum at a lattice
constant of 3.97 A, which is close to the experi-
mental value of 4.02 A (Table V). The same 1%
decrease below experimental value was found
previously for diamond. ' Lowdin, ' in a much
earlier calculation, found the equilibrium lattice
constant of LiF to be 4.2 g.

The bulk modulus B can be obtained from the
curvature of the parabola. For a face-centered-
cubic lattice

B=

Our LiF result of 7.5 x 10"dyn/cm2 is about 10%
larger than the experimental value of 6.7 x 10"
dyn/cm2. Lowdin' obtained 7.7 x 10"dyn/cm', in
close agreement with our result. The HF bulk
modulus obtained for diamond was 5% above the
experimental value. ' This parallels experience
with molecular force constants, which are also
usually too large in the HF approximation.

Table VI also gives the virial coefficient for
each lattice constant. This coefficient, the nega-
tive ratio of twice the kinetic energy to the po-

Expt.
TE
pv
Lowdin

4.02
3.972
3.668
4.2

6.71
7.54
5.89
7.7

0.79
0.82

0.71

TABLE VII. LiF experimental and computed equilibri-
um lattice constants a (A); bulk modulus B (&&10 ' dynes/
cm2); and ionic binding energy (IBE) (Ry/pair). The row
labeled TE was obtained by analyzing the total energy
versus lattice constant curve. The row labeled pV
was obtained by analyzing the pV vs lattice constant
curve. The Lowdin results are from Ref. 9.

IBE

V. X-RAY STRUCTURE FACTORS

The electron charge density n(r) is the diagonal
part of the first-order density matrix

n(r) =p, (r, r).
The Fourier transform of the charge density

TABLE VIII. LiF experimental and calculated struc-
ture factors in electrons per unit cell. The experimental
values are taken from Ref. 11. The Debye-Wailer cor-
rections were removed. The reciprocal-lattice vectors
are labeled by the integers h, k, and l.

Ski Expt.
LiF

Calc.
Ne

Gale.

111
200
220
311
222
400
331
420
422
511
333
440
531
600
442
620

4.84
7.74
5.71
2.37
4.61
3.99
1.65
3.46
3.07
1.38
1.38
2.58
1.28
2.41
2.41
2.24

4.98
7.70
5.72
2.36
4.60
3.90
1.63
3.40
3.04
1.37
1.36
2.57
1.26
2.41
2.41
2.28

7.95
7.43
5.86
5.05
4.82
4.10
3.69
3.57
3.18
2.94
2.94
2.64
2.49
2.45
2.44
2.29

tential energy, is unity for any system in equi-
librium when a complete basis set is used for the
calculation. A quantitative analysis of this state-
ment when a system is not in equilibrium involves
the pressure-volume product. " For a face-cen-
tered crystal

pV= —', (2T+ V) =-B(3a /4)5a,

where T and V are the kinetic and potential ener-
gies per cell. The slope and intercept of the pV-
vs-a line should again give the HF equilibrium
lattice constant and bulk modulus. However, as
can be seen from Table VII, the results are bad,
as they also were for diamond. ' Only for a more
complete local basis set will the pV analysis give
reliable results.

The analysis involving the total energy versus
lattice constant, however, does seem reliable for
both LiF and diamond. The success in computing
the ionic binding energy of LiF, and the equilibrium
lattice constant and bulk modulus of LiF and dia-
mond, illustrates the ability of the HF approxima-
tion to reproduce the ground state energetics, at
least for small symmetric deviations of the atoms
from equilibrium.
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TABLE IX. Atomic and crystal1ine HF Compton pro-
files for neon and crystalline experimental (Ref. 18) and
HF Compton profiles for LiF. Huzinaga's 11s/7P Gaus-
sian basis (Ref. 8) was used for the atomic neon calcula-
tion. No eigenvectors of the overlap matrix were dis-
carded in the crysta1line calculation. The Compton pro-
fQes and momentum transfer q are in atomic units. The
column headings (heal) indicate the direction of the mo-
mentum transfer in the crystal.

Ne

q Atom 100 110 111
LiF

Expt. 100 110 111

0.0 2.723 2.722
0.1 2.715 2.716
0.2 2.692 2.695
0.3 2.651 2.654
0.4 2.592 2.593
0.5 2.514 2.513
0.6 2.416 2.413
0.7 2.302 2.296
0.8 2.173 2.167
0.9 2.035 2.030
1.0 1.892 1.889
1.2 1.607 1.607
1.4 1.344 1.348
1.6 1.117 1.125
1.8 0.927 0.934
2.0 0.771 0.776

2.722
2.717
2.697
2.656
2.593
2.510,
2.410
2.296
2.172
2.040
1.900
1.606
1.338
1.119
0.936
0.779

2.726
2.720
2.699
2.656
2.588
2.507
2.415
2.307
2.176
2.032
1.884
1.603
1.348
1.123
0.933
0.775

3.78
3.74
3.70
3.59
3.47
3.31
3.12
2.91
2.71
2.48
2.22
1.75
1.37
1.11
0.94
0.80

3.839
3.825
3.779
3.700
3.586
3.446
3.290
3.122
2.938
2.728
2.489
1.968
1.515
1.184
0.940
0.757

3.875 3.881
3.861 3.865
3.814 3.818
3.732 3.740
3.617 3.630
3.472 3.488
3.303 3.315
3.112 3.113
2.900 2.887
2.669 2.646
2.425 2.398
1.935 1.921
1.506 1.514
1.183 1.189
0.954 0.962
0 ~ 786 0.783

s(K) =Ijn(Re'"" dr,
V

evaluated for reciprocal-lattice vectors K (the
integral vanishes otherwise), are the x-ray struc-
ture factors. The integration over V, the crystal
volume, keeps the integrals finite and ensures
that S(0) gives the total electronic charge per cell
in the crystal.

The experimental" and theoretical structure
factors for LiF, and the theoretical structure fac-
tors for Ne, are given in Table VIII. The published

. experimental values include the Debye-Wailer fac-
tors, which were removed in order to allow com-
parison with HF results. The agreement between
theory and experiment is usually within the esti-
mated experimental error of 1%. The principle
exception is the (111)structure factor. This struc-
ture factor most directly reflects the valence
charge density and therefore is most sensitive to
details of the basis set, and to correlation effects.
Nevertheless, the 2% discrepancy is not at all
serious.

and then taking the diagonal part

v(k„k„k,) =o(k, k) .
The Compton profile in the impulse approximation
for momentum transfer q is then the integral over
a plane in k space which corresponds to this mo-
mentum transfer. For example, for a momentum
transfer q in the z direction, the Compton profile
is given by

I oo

J(q)=, dk, dk„~(k„k„,q) .
7l

Calculated HF Compton profiles in the impulse
approximation for Ne and LiF are tabulated in,
Table IX, together with the experimental LiF
Compton profile. " For ease of comparison of
theory and experiment, the LiF results are
graphed in Fig. 2. The HF curves are consistently
abjure experimental value at low momentum trans-
fer, as is observed in the atomic calculations;
we also found this to be true for diamond. The
differences between the experimental and calcu-
lated profiles are within the quoted experimental
accuracy of 3%.

Although Weiss reported observing no appre-
ciable directional dependence of the LiF Compton
profiles, our calculations do show a directional
dependence of up to 3% between the [100] and all

4.0-
(III)

(60)
(fXP)

J(q)

2.0

I.O

VI. DIRECTIONAL COMPTON PROFILES

The electron momentum distribution is ob-
tained by separately Fourier transforming the
two variables in the first-order density matrix

I

05
I

I.O

~ ~ ~p
e(k, g)= e'" ' P,(r, r')e '& ' dr dr~

FIG. 2. LiF experimental (Ref. 12) and calculated
Compton profiles. Both [111] and [100] directions are
shown. Atomic units are used throughout.
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FIG. 3. LiF Compton profile directional dependence is
shown. Atomic units are used throughout.

other directions. This dependence is illustrated
in Fig. 3. The Compton profiles for the other
calculated directions, the [110],[ill], [112], and
the [221] all agreed with each other to within 1%.
The next larger directional dependence is also
illustrated in Fig. 3.

The HF Compton profiles for three directions of
Ne are also tabulated in Table IX. No appreciable
directional dependence was found for the same
five calculated directions.

VII. SUMMARY

We have been discussing HF results for a cova-
lent semiconductor, diamond, an ionic insulator,
LiF, and a rare-gas insulator, Ne. The remark-
ably close agreement of our LiF and Ne energy

bands with bands obtained by two other completely
different computational models gives strong credi-
bility to all three models. The HF equilibrium
lattice constant for LiF falls 1% below the experi-
mental value, as does that of diamond. The LiF
bulk modulus exceeds the experimental value by
10%, while that of diamond is high by 5%. These
results are similar to those obtained from small
molecules. We conclude that the HF ground state
energetics are relatively close to the experimental
values for at least the symmetrical vibrational
modes of diamond and LiF.

The HF first-order density matrix results are
also good. The x-ray structure factors closely
match the experimental values for both diamond
and LiF. The agreement of the HF Compton pro-
files with the experimental values for LiF is some-
what worse than that for diamond, ' although the
LiF results agree to within the quoted experi-
mental uncertainty of 3%. It will be interesting
to see whether the predicted directional dependence
in the case of LiF is an artifact of the calculation,
or is real. The calculated HF directional depen-
dence for diamond is real. ' The Compton profile
for Ne is found to be isotropic, which is con-
sistent with the usual picture of a weakly bound
solid of essentially spherical atoms. All of these
results indicate that the HF first-order density
matrix is quite close to experimental values.

We hope that the success of these crystalline HF
calculations will encourage others to join in the
development of more efficient HF computational
techniques. The HF results are close to experi-
mental values, and can be systematically cor-
rected for correlation effects.

APPENDIX: TREATMENT OF SMALL TWO-ELECTRON INTEGRALS

Two-electron integrals have the form

I — d, g, r —R, y, r —R~y, r'-R, y, r'-R~

This integral represents the energy of interaction
on two charge distributions;

, n~(r) ng(r')drdr'

In the first integral approximation, ' ' the indi-
vidual n(r) are each approximated by a single
Gaussian for s-s basis pairs, by two Gaussians
for s-p pairs, and by four Gaussians for p-p basis
pairs. The Gaussian for each lobe-lobe pair has
the correct charge and is centered on the center
of charge. This approximation is exact when the
local basis functions are both single Gaussians, or

single Gaussian lobes. All two-electron integrals
are first done with this approximation. When the
approximate integral is larger than some tolerance
(10~), the integral is redone exactly.

For the two other approximations, ~e introduce
the concept of a "pseudocharge" to measure the
"strength" of the charge distribution n(r). For
s-s basis pairs, the pseudocharge can be taken
as the total charge of the distribution. For s-p
and p-p charge distributions, we reorient the p
directions to maximize the charge, and we then
call this maximal charge the pseudocharge. For
basis functions on the same site, we always de-
fine the pseudocharge to be unity. In this case,
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the s-p tota1 charge is always zero, although the
strength of the charge distribution is large. This
particular definition has the disadvantage that,
for s-p distributions, the pseudocharge is not
monotonic, decreasing as the s and p centers move
away from each other. There are probably better
measures of the strength of charge distributions.

In the second integral approximation, "all one-
and two-electron integrals are zeroed when the
pseudocharge of either distribution is less than
some tolerance (10 '). This approximation is also
charge conserving, since the first-order density
matrix is normalized to the correct charge.
Zeroing the one- and two-electron integrals for
a given local basis pair eliminates that term from
the first-order density matrix.

In the third integral approximation, we make use

of the intuitive feeling that integrals involving
weak charge distributions with weak charge dis-
tributions should be negligible. We thus zero all
integrals where the product of the two pseudo-
charges is less than some tolerance (10~). We

. must now restore the lost charge balance. During
the self-consistent cycle, w'e consider each charge
distribution of local basis function pairs in turn.
We add up the total true charge that this distribu-
tion "sees"; i.e., the charge associated with dis-
tributions for which the pseudocharge product ex-
ceeds the tolerance. We then multiply all nuclear
integrals involving this charge distribution by the
ratio of the charge observed per cell to the total
electronic charge per cell. This scaling of the
nuclear integrals again ensures the all-important
char ge balance.
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