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Starting with the density-matrix equation, we obtain the transport equation for the photon-drag effect

arising from an optical interband transition. Using this transport equation, the current induced by the

photon-drag effect is derived. The temperature dependence of the photon-drag current predicted by the

theory agrees quite well with the experimental result in tellurium crystal.

INTRODUCTION

When a light beam impinges on a crystalline sol-
id, a transfer of momentum takes place between
the yhotons of the light beam and the electrons and
holes of the solid. If the intensity of the light beam
is high enough (e.g. , in the megawatt range), this
momentum transfer mill induce an observable cur-
rent or voltage in the solid. This phenomenon is
called the photon-drag effect.

The first experimental observation of the photon-
drag effect mas by Danishevskii et al. ' and Gibson
et a/. in germanium crystal. The theoretical ba-
sis for this effect mas considered by Grinberg,
based on the electron-acoustic-yhonon interac-
tion. More recently, the theory of the photon-drag
effect was extended to polar and piezoelectric crys-
tals.

Previous theoretical work on the photon-drag ef-
fect began with the Boltzmann txansyort equation.
The purpose of this paper is to consider the photon-
drag effect starting from the density matrix equa-
tion of quantum mechanics and then to derive the
Boltzmann transport equation. In addition, we will
consider band structures that differ from that of
the germanium crystal.

CALCULATION

The Hamiltonian for the interaction of the photon-
electron-phonon system can be written as folloms:

where

JIe -~Eg g ~gfg &g g

H~ = Q E(f); E = —eE„x„,

H, , H~, and H„are the Hamiltonians of the elec-
trons, the photons, and the phonons in the second
quantization representation. The terms H„and
H, are the perturbed parts of the Hamiltonian re-
sulting from the interaction of the electrons with
the photons and the interaction of the electrons with
the phonons, respectively. e„, (&»), b~ (h„,), and

e~ (a~) are the creation (amnhilation) operators of
the electrons, the yhotons, and the phonons, xe-
spectively. The quantum number (/, k) designates
the band index and the momentum of the electrons
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I 1Iwhere H» „,. (or F7» a, , ~ ) and Ifar a, r ~ (or If» a', )
are the matrix elements between the bands L with
momentum 0 and band /' with momentum 0' arising
from the interaction of the electrons with yhonon
and photons, respectively.

In the present work, we mill only consider the
photon-drag effect arising from the interband tran-
sition of the simple band structure of conduction
bands and the valence bands such as shown in Figs.
1 and 2.

According to the quantum theory, the density
matrix of the total system given in Eq. (l) satis-
fies the following operator equation:
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The steady-state solution of Eq. (1Q) is accurate
to the first order in the electric field and can be
obtained by studying the I aylace transform

E(e)=e J e "p(t)dt

for s~O .
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p(0} =p. p& p. ,

where p, , p~, and p„are the density matrices of the
electrons, the photons, and the phonons, respec-
tively, before the interaction was turned on.

In the occupation-number presentation, the wave
function of the total system can be written in the
following form:

IK) = ln, ) In ) ln„) (14)

Applying Eq. (11) to both sides of Eq. (10), we
obtain

g Ks[E(s) —p(0)] = [(H +H„+H, ), F(s)]+[H, p(0)]

(»)
where H()=H, +H„+Ha, and p(0) is the density ma-
trix of the total system at t=0, which we assume
can be written

where

n ng np n3

np = nl, n2, n3, ~ ~ ~

n ng np n3 ~ ~ ~

are the wave functions of the electrons, the photons,
and the phonons in occupation representation, re-
spectively. In the present work, the capital letter
will be used to designate the energy state of the
total system.

Using the approximation Eq. (12) and the wave
function given in Eq. (14), one can show, by fol-
lowing the same procedure of Argyres, and Kohn
and Luttinger, ' that the transport equation for the
band l with momentum k can be obtained from the
following equation:
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g I +2(gip fbi(1 fkr)(N«. -k)-

kl

"IHar
~ ai I' B-(Ear+Ega- I+ k k)+2gggZ frk(1-fai} (Na a+1} IHar ~

ail' t)(-Ear+Ear+»T «}

]p—2)gip fa, (1-fv) IH;;;, I Pg k &(Ekr Ea i
——k(da-k }—»&g fa i ~

I I'r'

x (1 fkl} I Hag;; I' (P«.B'+ 1}t)(E«r Ea g
~ + fg(da-k ) + 2((i+fki(1 fai} IH», kt I'

OS

"LaB(E«r - Ekr - fg&a k)+»i/far(1 -fg g) IH" —I'(&k+1) B(E«g Eat+ fg(-dk.k},
Al

where N~~ and P~k, are the average number of the phonon and photons with wave vector (k- k) and (k- k ),
respectively, where the phonon and the photon system is characterized by the distribution functions p„and
pk . Using Wick's theorem in field theory, it can be shown that the first terms in Eq. (18) can be written

Bfi, e Bfar,
&t h "ek„'

Equation (18) is very general and is difficult to solve. As a result we will simplify this equation for a prac-
tical case in which only one laser beam was used in the experiment. For this case it can be shown that the
transport equation for band l& and band lz takes the following form:
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Equations (23} and (24) are still difficult to solve.
Hence, we will make the relaxation approximation

sf.& f; -f';
d

sf 3 f~-fx
9t T~ ~t Ty

(28)

e E sfp«efp& f& f;-0 0

(27)

&tf p&2 sfpp. fy fy-
~k„&t (28)

Now if we let f; f;' = (f') (o =1) a-nd fp f& = (f)-
(o =2), Eqs. (27) and (28) have exactly the same
form as that of Eq. (2) of Valov et al , and the.
equations of Grinberg (Ref. 3, p. 532) for zero
magnetic field. The difference between Eqs. (27)

where f, and f& are the equilibrium distribution
function of the electrons in the first and second
conduction band, respectively. In this approxima-
tion, the transport equation takes the form:

and (28) and that of Grinberg and of Valov et al is.
the sign in the first terms of Eqs. (27) and (28).
The reason for this is that the equations of Grin-
berg and of Valov et al. are for holes, whereas
Eqs. (27) and (28} are for electrons. It should be
pointed out that Eq. (1) of Grinberg snd Eq. (4)
used by the author ' are for the photon-drag effect
arising from intraband transition. On the other
hand, Eqs. (27) and (28) are for the photon-drag
effect due to interband transition. Now let us use
Eqs. (27) and (28) to derive an equation for the
current induced by the photon-drag phenomena for
the band model as shown in Fig. 1.

For the case in which no external electric field
is applied, E —= 0 (short-circuit current), we can
write the total induced current as follows:

—2e Sfp, - ~fp, -
clg =

(
,3 v ~ g T& dk& + vy f Ty Ccy

Bmoc
- ' at Bt

Now if we use equations (22) and (24), the equation
can be written as follows:

(2v)s 8 v& ' 0 & ~& (I &i&+i)&p, p«& I (f2&+i, &3 fk&&&) 5( t +i~ &g Ei&l& 8~)1
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C2, m2
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momentum. They are, in general, very compli-
cated to calculate. Therefore, as a first-order ap-
proximation, we will use a procedure to average the
polarization, and the momentum of the photons to
obtain an average value of the matrix elements.
These averages can be written as follows':

0 IK

(31)

h
V), m)

h
V2, m2

- FIG. 1. Simple energy diagram of the electrons and

the holes used in the present calculation.

where the subscripts i and f of v, 7., and f in Eqs.
(26)-(30) represent the subscripts k, I, and k& l~,
respectively, and g is the unit vector of the photon,
e.g. , q/ l q I .

In general, the matrix elements in Eq. (30) are
functions of direction of polarization and of photon

(32)

To simplify the notation, we write Hggg~ Hgf EQ g

=E,(k ), E~., =Ez(k ) and f. ..=f&(k ), etc. If we
use the matrix elements given in Eqs. (31) and (32}
and make a Taylor expansion of all the functions
under the integral sign of Eq. (30) in terms of the
photon wave vector q, and then make an expansion
around the electron wave vector Q, where Q sat-
isfies the equation E&(ko) —E, (ko) = if(d, we obtain an
explicit formula for the current induced by the pho-
ton-drag effect. Because the steps involved in the
expansion are straightforward, we only present the
result here:

5[E~(k,.+q) -Eg(kg) —S(d]= 6(k, —Bkg —k, )
Bk

—
Bk

1 —
Bk

—
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(34)
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I
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[f,(k; - q) -f,(k,)] = [f,.(E, —ff~) f,(E,)]+Bk,-I
&Bf (Ef k(d) ~ff(@f) (ss)

p p

where the functions f, , f&, E&(k) and Ez(k) on the
left-hand side of Eqs. (33) to (38) are evaluated at
k = kp and the derivations in these equations have
the following meaning:

BE;(k) BE,
ek I,.I„&kp

Using the fact that

[Ez(Q) —E, (Q —q) —R&u] = 0

[Eg(kg + q) —Eg (k)) —8(()] = 0

we obtain

)
BE~ BEy BEg"f= q' f Bk-, Bk, Bk,

(39)

(40}

(41)

Bfy(E, + 5&()) &fy(E, + if(())

&k g„g Bkp

&E ~E
ok' ak'

&gfp P

-i
Bkq = —(q ~ kq) (42)

where k is the unit vector of the wave vector of the
electron. After substituting Eqs. (33)-(42) into



QUANTUM THEORY OF P HOTON-DRAG TRANSPORT. . . 5213

Eq. (30) and simplifying, we obtain the following equation for the current:

J=J,+J, ,

where

4e qI 1 1 SE& BEy
Jr =3 2 1/2 i~io Bk Bk

(Tr)(kp)[f/(Er+ R(d) —fr(E, )]

QE 2

-Fko C +8k lnG, H +A, 5 ko+2k 8 A, .

0 0 0
(43)
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0
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(44}

(45)

(48)

(47)
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where in Eqs. (45) and (47), I is the intensity of the light, m is free electron mass, c is the velocity of the
light in free space, co is frequency of the incident light, e is the charge of the electron, q is the wave vector
of the photon, and r&, E&, E& and ~, are functions of ko.

Now in the case in which the zero-order matrix elements JJH,& I c0, we can ignore the terms associated
with A,2. In this case Eqs. (43)-(47) can be simplified as follows:

4&e qI 1 1 BE, BE/ pe gE,
(Tr)(ko)[f/(Er + }I((r)-fr(E(}]

Bk Bk
' F(ko) C +

Bk
lnG1 IH/( I

(48}
0 0 0

Jg =—(, ) „g,( )( ') (
— ')(vg((off g(Ep —IRa) fp(E()]

~ Bgg i('(-E-(P)'+ InGg)

f,"„=f",(k) = [I -f,(k)], (50)

ftro=f/(k) = [1-f/(k)]

where ~& and ~& are functions of ko .
Now let us apply the present theory to the valence

band structure as shown in Fig. 1. To obtain the
current for this case, we need the distribution of
the holes rather than the distribution of the elec-
trons. The hole distribution can be obtained from
Eqs. (20) and (21) by making the substitutions into
Eq. (18) of

After making the substitutions of Eqs. (50) and

(51) into Eq. (18) and carrying out the same analysis
as for electrons, we can obtain the hole current due
to the photon-drag effect simply by changing the
sign of Eqs. (43) to (47a) and replacing fr(Er + h(d)

by f",(E", +(d), f, (E,) by f,"(E",), E, by E", , E/ by E/,
and the electron relaxation time by the hole relaxa-
tion time.

For crystals with center-of-inversion symmetry,
the zero-order matrix elements vanish. Therefore,
the equation for the photon-drag for hole current can
be written as in the spherical-band approximation
as follows:

J=J)+J), (52)

(Il 3 2 1/2 g 2 Tl kp }r Ar/ [f/(Er + R(d) -fr(E()] 1 +
2 Bk

lnG,
8eqI 1 1 (m, ) 33 2 ~k

3 m c 4 SQ7 my mg 0
(53)



5214 JICK H. YE E

~2 & 1/& 2 Tf k [f (E/ —jgd) -f/(E/)] A~I k 8 1 + lnG2
8 e qI 1 1 (m~) h ~k 9
3 apl c e 8(d tpE) mp 2 Bkp

(54)

where 1/m~ =1/m3" —1/m", and m," and mz" are the effective masses of the holes in the valence bands V, and
V2, respectively.

For the case where the zero-order matrix elements for intervalence transition does not vanish (e.g. ,
IH« I' xO), we can write the total current as

gh gh+gh
g 1 2 (55)

3 3 1/3 k 3 sk s
' ~((ko) [f/(E'+ @&) fg(Eg)] sk Bk I H« I

—Egg(kp) Cjg +
k

1nG)
4 ~ qI 1 1 BE", 8E~ h 2 h h BE l+ h

3 m c E Ice 8kp Bkp 0 0 0

(55a)

x [f&(Ef" —g&c&) ff(Ef)] I&/I' —&~(ko) (C„,)-'+ lnG",
0

where G", , Gf, F„,(C„,) ' and F„3(C&) ', which occur in Eqs. (54)-(57), are given as follows:

8Eh
G, [f,(E, + e-~) -f,.(E,.)]k, 2

p

82 Eh gEh 8Eh gEh 1 g2 Eh 82 Eh gEh 1

(55b)

Gp kQ Tf [fg (E/ S(0) ff(Ef)]
kp

E 8E~ ~E~ 8E,. ~E~ ~ E

As a test of Eq. (55), we apply it to the photon-
drag effect in tellurium. This effect was observed
by Panyakeow et al. " The band structure of the
tellurium was quite complicated and the effective
mass of the holes are not scalars. ' ' Based upon
the k. p perturbation theory, together with experi-
mental data obtained from experiments, the dis-
persion of the holes in valences band can be written
as follows':

dispersion in the following way:

where

2m&, 2m» '
2m2~ 2m, 2

(56)

h h= —a(1 —to), = —a(1 + to), = = —b.
2mg] 2mg2 2mgg 2m2g

(59)

where

a=-3. 5x10" eVcm, A, —= 62. 5 meV,

b =3.45+10 eVcm, ~o =1.30

E,,2(k) = —ak, —bk +(X 2a+kt k, )o'/ (56)

(57) V
1k

I[E

The energy band of the holes with the energy dis-
persion given in Eq. (56) is shown in Fig. 2.

In the experiment of Panyakeow et ck. ,
" the ex-

citation source was a 10.6- p. C02 laser. The en-
ergy of the photon was approximately equal to that
of the band gap between the two valence bands,
e.g. , he =-2A. = 4E. This means that all the ab-
sorption will take place around k = 0. Hence in the
first-order approximation, we can expand the third
term in Eq. (56) in a Taylor series, and write the

V2

(b)

FIG. 2. Energy diagram for the tellurium crystal.
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Theoretical curve of Eq. (54)
for m /m = 3 and & E = 0. 1 eV
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It must be pointed out that the theoretical curve
given in Fig. 3 was based upon the assumption that
all the acceptors in the crystal were ionized. This
assumption can be seen to be a sound one by con-
sidering the following. The ionization of the ac-
ceptors is approximately in the 1-2-meV range.
Within the temperature range given in Fig. 3,
practically all acceptors are ionized. The impurity
absorption due to acceptors will have no effect on
photon drag. We have also made the approximation
that the dominant scattering mechanism in the tem-
perature range of interest is acoustic phonon scat-
tering.

Since the average effective mass of the upper
valence band is three times larger than that of the
lower valence band, most of the photon-drag cur-
rent arises from the lower band —a fact first
pointed out by Panyakeow et al. " Mathematically,
this is also true if one substitutes the effective
mass given in Eris. (61) and (62) into Eqs. (48) and

(49). The terms with the effective mass me domi-
nate. This means that the band structure of the

upper valence has very little effect on photon drag.

0.013 I I

5 6

1000jT K

10
CONCLUSIONS AND DISCUSSION

FIG. 3. Temperature dependence of the theoretical
curve and the experimental curve of the photon drag cur-
rent in p-type tellurium.

The theory developed in the present paper is not
capable of handling crystal with the form of energy
dispersion of that given in Eg. (56). Therefore,
as a first-order approximation, we will use an
average effective mass defined as the following:

(60)

Using the parameter from Eq. (56), we obtain

mq ——0.29mo

m~ =0.1mo

(61)

(62)

Using the effective masses given in Eris. (61) and

(62) together with values of the energy gap (nE)
between the two valence bands, we obtain the cur-
rent as a function of temperature as shown in Fig.
3. The experimental and theoretical curves were
normalized at T =150 'K. As one can see from the
comparison of the two curves, the theoretical
curves agree quite well with the experimental
curve. Actually, 4E is a function of the tempera-
ture. At VV 'K, ~ is about 0.11 eV; however,
4E decreases with increasing temperature. There-
fore, the value of 4E in the temperature range of
interest is less than 0.11 eV and we actually used
0. 10 eV.

In this paper we have derived the transport equa-
tion for the photon-drag effect arising from inter-
band transition. In this derivation we make the ap-
proximation that in the steady state, the density
matrix for the system can be written as a product.
Furthermore, we assume that the phonon and the
photon system density matrix was the same as be-
fore the interaction was turned on. This approxi-
mation has also been used by others in related
work. In deriving the current induced by the pho-
ton-drag effect, we also used the relaxation ap-
proximation for the terms in the transport equation
arising from the electron-phonon interaction. For
a polar crystal, the relaxation approximation is not
meaningful in the temperature range in which the
polar phonon energy is greater than the Ke T (e.g. ,
ff&u& & KeT). For hard& ( KeT, the approximation is
meaningful.

In a photon-drag experiment, the light intensity
is very high. Therefore, in the calculation of the
photon-drag current (or voltage), the terms arising
from spontaneous emission processes have been
neglected.

The average matrix element [Eris. (31) and (32)]
was obtained by first expanding the Bloch wave
function in a Taylor expansion in terms of the wave
vector of the photon, and then averaging over the
angle of the polarization of the photon and the mo-
mentum of the photons. In the averaging process
the wave vector q was eliminated from the matrix
elements. This explains why the matrix element
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given in Eels. (31) and (32) is independent of the
wave vector of the photons.

In developing Egs. (23) and (25), we neglected
the terms in Eq. (18) associated with interband
transitions due to phonon scattering. This assump-
tion is good if the gap between the valence bands or
the conduction bands is greater than the phonon en-
ergy. Hence, for germaniumlike crystals in which
the two valence bands touch at k =0, one must take
into consideration all terms in Eg. (18) involving
the phonon interaction.

In order to use Eqs. (43)—(55b) we must replace
the steady-state function (f) with the thermal dis-

tribution function (f ) because, in the present
formulation, the steady-state distribution cazmot
be determined. However, the effect of replacing
f by f in these equations is the same as neglecting
the second-order effect introduced by the terms
5f, where f=f'+5f. Therefore, replacing f in Eqs.
(43)-(55b) by the thermaldistributionfunction should
be a good approximation. This approximation has
also been used by others in photon-drag work.

Comparing the experimental and theoretical
curves of Fig. 3, the theory seems to match the
temperature dependence of the photon-drag effect
in tellurium quite well.

*Work performed under the auspices of the U. S. Atomic
Energy Commission.
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