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One-dimensional Onsager theory for carrier injection in metal-inso&ator systems
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A one-dimensional Onsager theory is developed to explain the field and temperature dependence of
internal photoemission in metal-insulator systems.

Internal photoemission has been used largely for
determination of barrier heights for carrier in-
jection in metal-insulator systems. '" The tech-
nique is very similar to photoemission from
metals into vacuum, except that the hot carriers
(electrons and holes) are injected from the metal
directly into the transport bands of the insulator.
In the absence of Fermi-level stabilization at the
surface, ' the photoemission threshold is a direct
measure of the energy separation of the Fermi
level in the metal and the bottom (top) of the con-
duction (valence) band. Since the main emphasis
has been on the spectroscopic location of injection
barriers, only a few investigators" have studied
the details of the field and temperature dependence
of the injection currents. Since the hot carriers
are injected into a solid, instead of vacuum, they
can lose energy through scattering events. ' '
Through backscattering, diffusion, or the attrac-
tive force of the image potential, some of the in-
jected carriers will be returned to metal and will
not be collected. 4 The collection efficiency will be
field dependent' and should saturate at a field
determined by the microscopic mobility of the
injected carrier in the solid. ' Only at very high
fields are barrier-lowering effects observed' and
can tunneling effects be important as is the case
in field-emission spectroscopy. ' In this paper we

propose to develop a theory that describes the
field and temperature dependence of the collection
efficiency for injected carriers in metal-insulator
systems and to show that this theory is in good
agreement with internal photoemission experi-
ments. We will also discuss the implications of
these results on barrier determinations.

The general features of the injection process
are shown schematically in Fig. 1 for the case
of electron injection. After the hot carrier is
injected into the solid, it will give up energy to
the lattice and become thermalized at some dis-
tance from the metal surface. The thermalized
carrier can then drift under the inQuence of dif-
fusion, its own image field, and the applied field
with the ultimate fate of either returning to the
metal or being collected. The problem thus
divides naturally into (a) a description of the

thermalization process and (b) collection of the
thermalized carriers. The thermalization of hot
carriers will be described in a phenomenological
fashion, incorporating the microscopic mobility,
whereas the motion after thermalization will be
treated exactly. We will see that the microscopic
mobility determines the thermalization length in
the solid and that the collection efficiency is re-
lated to the microscopic mobility through the
thermalization length. The carrier motion after
thermalization will be treated first.

When one wishes to describe thermal-carrier
motion in a combined Coulombic-plus-electric-
field potential, the description is generally formed
in the context of a Poole-Frenkel-' or Onsager'-
type formalism. The description of quantum-
mechanical particles is, of course, quite differ-
ent. " In comparing the Poole-Frenkel and On-
sager treatments, one must conclude that the
Onsager treatment is the correct first-principles
treatment of this problem, whereas the Poole-
Frenkel is, at best, superficial. The Poole-
Frenkel treatment has been popularized mainly
because of the simplicity of the resulting ex-
pression. This conclusion is further supported by
the recent successes of the Onsager theory in ex-
plaining the field dependence of carrier photo-
generation in such diverse solids as anthracene, "
polymeric poly-N-vinylcarbazole-trinitro-
fluorenone (PVK- TNF) l: l complex, crystalline
As,S„"and amorphous Se." The description of
the carrier injection process is simply a one-di-
mensional analog to the carrier generation pro-
cess in the bulk in which the thermalized carrier
pair starts with an initial separation (thermaliza-
tion length) and has the ultimate fate of either re-
combination or dissocj. ation.

To describe the motion of thermal carriers, we
will start with the continuity equation which, for
steady-state currents, is given by

G(~) + —(nv) = 0,d (i)

where G(x) defines the rate and position at which
the hot injected carriers are thermalized and acts
as a source term for the thermal carriers; n is
the thermal-carrier density and v is their velocity.
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The velocity of the thermal carriers is governed
by diffusion, the image force, and the applied
field and is given by

D ds dPV= ———-P
n dx dx

(2)

where D = p kT/e is the diffusion coefficient, p, is
the carrier mobility, and the potential eQ is given
by

eP = -(e'/4&x)-ehx, (3)

the first term being the image-force potential and
the second the applied-field potential. Combining
(I) and (2) we have that

G(x) = —"

I
exy (— ) —" n exp )

(4)

If there are sinks at both the origin (emitter) and
infinity (collector} and if the potential eQ becomes
large negative at these points, the collected cur-
rent will have the form

the escape probability for a thermal carrier with
initial position x and is given by

10 dx exp(eP/kT}
fo dx exp(eP/kT)

The function P(x) has the correct limiting values
of P = 1 for an initial position of infinity and P =0
for an initial position at s= 0. For the potential
given in (3}the definite integral can be evaluated
as

-e' e8x
dx exp —„=2x~k, (g),

0 4exkT kT

where x~ = —,
' (e/eh)'~' is the position of the max-

imum in eQ, k, is a first-order modified Bessel
function, and $ = (e'h/ek'T')'I'. The escape proba-
bility P is shown as a function of dimensionless
field at constant temperature in Fig. 2 for a series
of initial dimensionless starting positions. A
typical value of 8& at room temperature would be

IPO

J= dgeG xP x,
0

where Eq. (5) was obtained by integrating (4) twice,
changing variables, and calculating the current
J=seu at infinity. " The function P(x) is simply
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FIG. 1. Schematic of collection process for injected
hot electrons in metal-insulator system.

FIG. 2. Constant-temperature escape probabilities
of thermal carriers from tneir own image potential as
a function of dimensionless electric field for a series
of initial positions.



ONE -DIMENSIONAL ONSAGE R THEORY FOR CARRIER IN JE CT ION IN. . . 5185

10'-10' V/cm for most solids, a typical value for
x& mould be 10-100 A. The fact that P goes linear-
ly to zero with field is strictly a result of the
dimensionality of the potential. For a three-di-
mensional potential, P approaches a nonzero value
at zero field, a result which has been substantiated
experimentally. " Mathematically, it is significant
that the three-dimensional potential is divergence
free, whereas the one-dimensional potential is

not. A divergence-free potential allows n =(const)
to be a solution of (4) everywhere. This is a field-
independent solution, whereas for the potential
given in (3) there are no field-independent solu-
tions. The superlinear field behavior of P at high
fields and short thermalization lengths is due to
barrier lowering. The linear-field term and
barrier lomering both come from different
asymptotic forms of (V},

2xek, (()-kT/eS, small 8, large T,

n O'T' ' ' &- (e'8/ )' '
exp~, large 8, small T.4&eS

It is important to point out that the saturation
field (the field at which P 1) is not a direct func-
tion of the mobility but instead depends on the
thermalization length which, in turn, is dependent
on the microscopic mobility. The temperature
dependence of P is shown on Fig. 3 at constant
field. For small thermalization lengths, x& xz,
P is thermally activated. At very high tempera-
tures, rapid back diffusion causes P to decrease,
which is ob'served experimentally.

To calculate thermalization lengths let us start
with the equation of motion for an injected hot
carrier,

imation is

kT
p. mvo

This expression has meaning only for high-mo-
bility materials (p, & 100 cm'/V sec) and is different
from the standard expression for the saturation
field. ' The temperature dependence and the field
magnitude are both in agreement with observation. '

To calculate the injection current J we must
map the energy distribution of injected hot carriers

)po

dv dp
m —=nkv —=—

d t dx
ev

(8)

mhere we take the velocity of the particle to be an
explicit function of x and the energy-loss scatter-
ing process is included phenomenologically as a
mobility-dependent drag term. " Upon thermal-
ization the acceleration term is negligible and (8)
reduces to (2) without the diffusion term We ha. ve
assumed in (8) that the main forces in the de-
celeration of the hot carriers are the potential
and drag terms and have neglected diffusion. The
condition for thermalization is taken to be when
the carrier's kinetic energy, —,'mv', equals ~kT
(one degree of freedom). The above equation is
nonlinear and has to be solved numerically. For
very hot carriers (E„»E,+Ez), the thermaliza-
tion length x is given by

x= ii (m/e)v, .
The kinetic energy 2mv~ is measured from the

bottom of the conduction band where vo is the
initial velocity of the injected carrier. Thus, the
higher the microscopic mobility, the farther the
carriers travel before thermalization. For small
to medium fields and large x,

P(z)= 1 exp(e8x/kT), -
which means that the saturation field in this approx-
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FIG. 3. Constant-electric-field escape probabilities
of thermal carriers from their own image potential as
a function of dimensionless inverse temperature for a
se~es of initial positions. x is the position of the po-
tential maximum.
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into the source term G(x) in (5) by using (8). But
first we must calculate the kinetic-energy distri-
bution for the kinetic energy of hot carriers nor-
mal to the interface, E„. For internal photo-
emission, the primary step is the creation of hot
carriers in the metal. These hot carriers will
have an equal probability of traveling in all direc-
tions, whereby only a certain fraction of the
carriers will have enough kinetic energy normal
to the surface to get in. The standard assumption
for internal-photoemission calculations is that the
transition matrix element in the metal does not
change rapidly with photon energy over the region
of interest. ' This means that excitations between
0 and hv above the Fermi level are equally
probable. If this approximation is valid, it is
easy to show that the differential yield [(carriers
injected per photon) per normal kinetic energy] is
given by

Y 1 hv+EJ, zg2 -1, Ep E„hv+EJ"
n v- En

(9)

in arbitrary units. The above theory allows for a
much higher microscopic mobility for Se than is
required in simpler theories. For low-mobility
solids (p «100 cm'/V sec) saturation will occur
above 10' V/cm, "a field region where barrier-
lowering effects are also important. ' The field
dependencies shown in Fig. 4 are largely deter-
mined by which curve in Fig. 2 the hottest car-
riers fall onto.

For high-mobility materials at low fields, we

can approximate

30
I

(o) Cu '. CdS

20

IO

If the injection barrier (relative to Ez) is E, and

scattering is neglected, integration of (9) between

Ez +Eo and E~ + hv gives the standard field-inde-
pendent result for the photoemission yield,

0 0 2
6 (IQ4 V/cm)

Y=1- 1 hI -Eo
1

hv-Eo

8 hv+Ez
(10) )0

I I I

Equation (10) has been used as the basis for
barrier determination in that, by plotting the
square root of the photoemission current vs pho-
ton energy near threshold; the threshold is de-
termined by linear extrapolation of the curve to
zero. To calculate the yield with scattering we
combine (9), (8), and (5). Through (8) we calcu-
late the thermalization length x =x(E„)as a func-
tion of the normal kinetic energy E„. The yield
Y=J/eF, where F is the photon flux, is defined as

hv+p dy f [x(E„)],
EJI n

where we have described the source term as
G(x) = (dY/dE„)(dE, /dx) and inserted this into (5).

This equation must be solved numerically. Com-
parison between theory and experiment' is shown
for electron injection in Cu:Cds system in Fig.
4a and for hole injection in Au:Se system in Fig.
4b. The microscopic mobilities of 300 cm'/V sec
for CdS and 20 cm'/V sec were chosen for best
fits and agree quite well with crystalline values
for both CdS and Se." The collected charge was

I I I I I I II
)p4

g (v/cm)

I I I I IIII
)0'

FIG. 4. Comparison of theory and experiment (after
Mort, Schmidlin, Lakatos, Ref. 5) for (a) electron in-
jection in Cu:CdS system and (b) hole injection in
Au;Se system. The collected charge, Q, and Qh, are in
arbitrary units and the microscopic mobilities, 300 cm2/
V sec for CdS and 20 cm2/Vsec for amorphous Se, are
chosen to fit the data.
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P[x(E„)]=0,E„&E,+E,
= (p h /kT) [2m (E„-E,-Er)] "',

~E +E
whereby the yield may be calculated to be

pg (2m)"' (E,+Er)" hv E,-
kT 15 hv hv+Ez

(12)

For 8& 8„t, the photoemission yield is given by
(10). Equation (12), even though it is limited to
high-mobility solids (p & 100 cm'/V sec), demon-
strates that bulk scattering can cause a change in
the threshold power law (2-—,). In the absence of

a known power law, it is suggested that peaks in
the wavelength-modulation spectrum, plotting
(I/J)[C'T/d(is@)], should give the most precise
measure of barrier heights.

In summary, we have shown how field and tem-
perature dependencies can arise in internal photo-
emission and have obtained quantitative agreement
with experiment. We evaluate explicitly the es-
cape probability of a thermal carrier from its
image potential and show how the microscopic
mobility can be incorporated into the theory. We
argue that scattering causes changes in the thresh-
old power law and suggest wavelength-modulation
spectroscopy as the recommended method for
precise barrier determination.
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