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D. Auvergne, J. Camassel, and H. Mathieu

M. Cardona
Max-Planck-Institut fiir Festkorperforschung, Stuttgart, Federal Republic of Germany

(Received 27 June 1973)

The top valence bands are known to vary little throughout the Ge-zinc-blende family of
semiconductors (Ge, III-V, and II-VI compounds). We present in this paper, theoretical (Yu-Brooks
calculations) and experimental evidence (piezoreflectance measurements) which suggests that these
valence bands vary rigidly with temperature, in contrast to the behavior of the conduction bands. It is
possible to combine this conclusion with the experimental temperature coefficients of the Eo, E„and
E, energy gaps to predict the temperature coefficient of the separation between the I, L, and X-4
conduction-band triinima.

INTRODUCTION

The invariance of the width of the two top P-like
valence bands for all germanium-type, III-V, and
II-VI semiconductors was conjectured some time
ago. ' This invariance referred, in particular,
to the relative energies of the &4, I'». , and L, ,
point (germanium notation). Local pseudopotential
and other band calculations, however, indicated
that these valence bands become flatter with in-
creasing ionicity through the Ge, GI-V, and II-VI
sequence. Recent photoelectron spectroscopy
measurements have made clear that the bands are
indeed more rigid, independent of ionicity, than
the semiempirical and non-self -consistent band cal-
culations led us to believe. Such invariance of the
width of the top valence bands is well reproduced,
however, by self -consistent orthogonalized-plane-
wave calculations and by pseudopotential calcula-
tions with allowance for nonlocality in the choice
of an effective mass instead of a free-electron
ms, ss. ' Thus, the rigidity of the top P-like valence
bands of Ge, III-V, and 0-VI compounds must be
regarded as an established fact. In contrast to it,
the conduction bands deform considerably from one
material of the family to another, a situation which
results in the well-known switching of the various
lowest conduction valleys and the transition from
direct to various sorts (X, L) of indirect edges.

At this point, the question arises naturally as to
whether the rigidity of the top valence bands is
also preserved under the application of two stan-
dard symmetry-preserving perturbations: hydro-
static pressure and temperature. For instance,
the pressure dependence of the E, gap (see Fig. 1)
is 7. 5x 10 eV/bar, ' while that of the indirect
gap E&(L) is only 5x10 ' eV/bar. " A look at Fig.
1 thus shows that the valence bands deform slightly
with hydrostatic pressure, the I'». —L,. energy
difference increases with increasing pressure at

the rate of 2. 5x10~ eV/bar. We show in this pa-
per that this small pressure effect contributes to
make the valence bands nearly independent of tem-
pereture. The explicit temperature dependence
calculated with the Yu-Brooks theory' ' produces
also a slight change in the F2,. —L,. energy separa-
tion which is mostly cancelled by the effect of the
thermal expansion as obtained from the pressure
coefficients discussed above.

Similar conclusions apply at the X'point. The
pressure coefficient of the indirect gap of Si
(F». —&„whereby 4, is very close to X,) is —1.5
x10~ eV/bar, "while that of the E2 gap, which in-
volves a large region of the Brillouin zone but
which we assume, in view of considerable evi-
dence, to be tied to the Q-X, gap, is + 3x 10 '
eV/bar. " The differences between these two
pressure coefficients, which results in a slight
deformation of the top valence bands along 4, is
compensated by the explicit temperature effects
and yields nearly temperature independent bands
along 4.

The Yu-Brooks calculation, consisting simply
in the multiplication of all pseudopote~tial form
factors by the appropriate Debye-Wailer param-
eters, are performed in a simple way by calculat-
ing the temperature dependence (diagonal matrix
element) of the 15 I' states which were used pre-
viously for the full zone k. p representation, and
the off-diagonal elements between states of the
same symmetry. Using the projections of the
Bloch functions of any state in the Brillouin zone
on those at l given in Ref. 16, it is possible to
calculate from the temperature dependence of the
basis states at k=0 that at any other point of the
Brillouin zone. Calculations are presented for Ge
and GaAs.

In order to find experimental evidence for the
rigidity of the valence bands as a function of tem-
perature, we have performed piezotransmission
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FIG. 1. Schematic band
structures around the gap
of a direct and an indirect
gap semiconductor.
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measurements of the indirect gaps of Ge and Si
and piezoreflectance measurements of the E& and
Ea gaps as a function of temperature. This result
enables us to conclude that to a high degree of ac-
curacy the top valence bands of Ge along hand
those of Si along 4 change rigidly with temperature.
In view of the homology of both materials, we infer
that these valence bands of Ge and. Si change also
rigidly along b and A, respectively.

A number of III-V semiconductors (GaAs, GaSb,
Gap, A1Sb) have conduction band minima within a
small energy range. The temperature dependence
of their energy separations is of importance in a
number of technological applications (Gunn effect,
semiconductor laser}. It is not always possible to
obtain directly these temperature coefficients since
indirect gaps cannot be observed once they occur
above a direct one. We therefore suggest to use
the rigidity of the valence bands and to determine
the relative temperature shifts of the I.» X» and
I'o (I",}minima from the temperature coefficients
of the corresponding direct gaps E„E2, and Eo.
Some examples are presented.

of plane waves of wave vectors (2v/a) (1, 1, 1.) and
(2v/a) (2, 0, 0)." The states I'». and I'» do not
have any mate in the basis above. They are there-
fore pure, properly symmetrized [200] and [ill]
plane waves, respectively [we represent by [ijk]
the normalized plane wave of wave vector (2v/a)
(i, j, k)]. We list in Table I the [ill] and [200]
waves properly symmetrized to have the symme-
tries of our basis states.

We use for Ge, the symmetric pseudopotential':
V V3 + Ve + V$l y

where the subindex represents the
sum of the squares of the indices j, 0, I which de-
termine the corresponding Fourier-component
plane wave exp [(2v/a) (jx+ ky+ fz)] = [jkf]. The
symmetrized partial pseudopotentials are

p, oo p = v, cosov (I+j+0),

where n; is the atomic form factor and the cosine
gives the corresponding structure factor. Within
the bases of Table I, the eigenvalues and pseudo-
eigenvectors are trivial for the "lone" I'&z and I'&2.

states:

THEORY

Ger mamum

The full zone k ~ p representation of the band
structure of germanium and zinc-blende-type ma-
terials' uses as a basis the following Bloch states
at I' [listed by order of increasing energy for Ge]:
I",, I'oo. , (threefold), I'Q. , I',o (threefold), I'».
(twofold), I',", I'oo. (threefold). The eigenvalues
and eigenfunctions of these states can be deter-
mined in the pseudopotential formalism as mixtures

eigenvalue SQ-va
eigenvector, see (111)combination,

Table I;
I yao. eigenvalue 4A —288 ~

eigenvector, see (200) combination, (2)
Table I;

A = (2v/a)'

In Eq. (2), all energies are in rydbergs and the
lattice constant a in Bohr radii.
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TABLE I. Symmetrized combinations of [000),. (111)and (200) plane waves to be used in the pseudopotential analysis
of the k=0 states. For the doubly (I'&2.) and triply degenerate states (I'25. , I'&g we have given only one of the degenerate
combinations.

&000)

[ooo] —{[111)—[111)—[111I
—[111I + [111I

—[111I
—[111I

—[111I }
&8—([111]—[111]+ [111)+ [111I

—[111]—[111]& [1Y1]+ [111I}

([ill) —[ill) —[ill) —[ill I
—[ill) + [ill)" [111)+[111)„'

—([111]—[111I
- [111) [111I

—[711)~ [711I
—[111I

—[111I}le

(200)

1= ([200)+ [200]}

([200]+ [020] + [002) —[200]—[020]—[002]}

~ ([200I —[020 I
—[200I+ [020)}

The eigenvalues and vectors of the pairs of
states (I',",r,'), (rf,., rq, ), (I"f, rz ) are obtained
by diagonalization of 2x 2 matrices. The matrix
for the I'& states is

(
0 —2V3

2V3 3+ 3VS
(3)

1" E=1.405 Ry,

I

I'") =0.935(111} +0.356(000}„

lir. E -0.205Ry,

~
r,') =+ 0.356(111} —0.935(000}„

(4)

where (111}r and (000}r, are the symmetrized
plane waves of Table I. The matrices for the
(I'2, , rz, .) and the (r,"., r,'.) pairs can be found in
Ref. 17. The eigenvectors are

I
I'2 ) = 0. 582 (111}r,—0.812(200}r,

I
r,', ) =o. 812(111},, +0. 582{200},,

I

I'"
~ ) =0. 540(111},—0.845(200}

I r,',.) = o. 845&111},„,+ o. 540(200},„,

(5)

which yields for the form factors and lattice con-
stant used in Ref. 9 (v, = —0. 269, vs=0. 038, v„
=0.035 Ry, a=5. 65 A) the eigenvalues and eigen-
vectors

Once these wave functions are available for all
the States at 1", it is possible to obtain their ex-
plicit temperature dependence by using the Yu-
Brooks method of Debye-Wailer factors. To
this explicit temperature dependence one must add
the effect of thermal expansion, obtained either
from the experimental pressure coefficients or
from a pseudopotential calculation. '7

The idea of the Yu-Brooks method is to describe
the temperature dependence of the band structure
by multiplying the pseudopotential form factors by
the amplitude Debye-Wailer factors

exp[-+~ A(u ) (j + k + l )j

=1 —+ Q(u2)(j2+k +I )

where (u ) is the mean-square average of the
atomic displacements due to the lattice vibrations.
In the region of interest between 100 and 300 K, it
is justified to use only the two terms in the power
series expansion of Eq. (6). Since the eigenvalues
of the unperturbed (-=no lattice vibrations) system
are known, it is reasonable to calculate the effect
of the Debye-Wailer factor in first-order perturba-
tion theory. The matrix elements of the perturba-
tion Hamiltonian between plane waves are obtained
by replacing into Eq. (3) and the analogous equa-

TABLE II. Expectation values and off-diagonal matrix elements of
the Debye-Wailer temperature perturbation Hamiltonian for the 15 states
of the full-zone k p basis.

I'$s

I'$

r„
I,l

I'2s

rf

dE/d (N2)
(eV/bohr2~

—1.13
—1.63

0.497
—1.52

0.25
—0.028

1.37
0.778

(es/er)„
(eV/'C)

—2.24x10
—3.24 x10+

9.85x10 ~

—3x10
4.9x10 5

—5.5x10 6

2.71x10~
1.54x10~

&I'". ) &'I I' ~ )=-0.144(u') ey
&r; )a' IV&=-0.732&u2) ey

I g(r;,, Ia I r,', , )=-0.465 (&') ey
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~n
dT
dEO

dT

Calculated

4 4

-2.4

Experiment

—4.0~0.2~

—1.5 ~0.2b

Unpublished data.
D. E. Aspnes, Phys. Rev. Lett. ~28 913 (1972).

TABLE III. Temperature coefficients of the &0 and
Eo gaps (in units of 10 eV/'C).

We find

(9)

a value slightly smaller than that of the I'». states.
The volume coefficients of these states, however,
are known to be different: this difference can be
obtained from the difference between the volume
coefficient of the indirect gap (- 3.7 eV") and that
of the E& gap (- 5. 6 eV"") (see Fig. 1). This
difference contributes a term

tions for other states the form factors v by = —3 10 ' V/KdT (10)

H'„=- —,
' Am(u') v (7)

A trivial calculation yields for the 15 basis states
the temperature shifts (in e V and per unit (u ))
listed in Table II. We reiterate that this calcula-
tion was done for Ge by using the new pseudopoten-
tial parameters of Chelikowsky et al. , given above,
which include nonlocality of the vo pseudopotential
as required by recent photoemission measure-
ments. Using the temperature dependence of (u )
obtained from x-ray data and from lattice-dynami-
cal calculations by Jex'

' =1.98x10 bohr /KdT

one finds the temperature coefficients of the basis
states given also in Table II.

From Table II we can find the explicit tempera-
ture dependence of the E,(r5. —r55. ) and the E5(r„
—I'5, ) gaps. In order to obtain the total tempera-
ture coefficients of these and other gaps one must
add the effect of the thermal expansion obtained
from the volume dependence of the gap and the lin-
ear expansion coefficient n (n = 5. 7x10~ K ' for
Ge). The volume coefficient dE5/dlnv equals —9.8
eV, ' and dE5/dlnv equals —0. 9 eV, '5 for Ge. Us-
ing these values we find the total temperature co-
efficients of Table III which compare well with the
experimental results also listed in this table. A

slight decrease in the value used for d(u )/dT
would suffice for bringing the calculated values in-
to even better agreement with experiment. -

In order to analyze the rigidity of the top valence
band with varying temperature we now calculate
the temperature coefficient of the L,. and Q va-
lence states. The corresponding periodic Bloch
functions are linear combinations of the 15 k =0
basis states. ' From Ref. 16, we find

~
L,.) =0. 827

~

I'5,.)+0.402
~

r&5)

+0.098 ~r" .) —0. 381
~

r~5 ) . (8)

The expectation value of the perturbation Hamil-
tonian H' in the state I L; ) of Eq. (8) can be cal-
culated by using the matrix elements of Table II.

to the temperature dependence of the valence-band
width I'». —L, Adding this term to the difference

= 7. 1x10 ' eV K

we find a nearly negligible temperature dependence
of the width of the top valence band along A (4. 1
x10 ' eV/K). One can perform a similar calcula-
tion for the Q valence state

x')=0. 716
I

r5 ') 0 6721r 5)

-0.193
~
r,",, ) . (12)

Using the matrix elements of Table II, one obtains

(13)

= —5. 9 x 10 ' eV/KdT (14)

Adding this term to explicit temperature effects
[Eq. (13) and Table II], we find

d( 25' 4) 2 x 10-5 V/KdT (15)

a very small temperature dependence, indeed.
For the sake of completeness, we have also cal-

a value considerably smaller than the explicit tem-
perature coefficient of the I'». state. We can
estimate the thermal expansion contribution to the
temperature coefficient of the r55. —Q width by
looking at the difference between the pressure co-
efficients of the E5 gap of silicon (+ 3x10 5 eV/bar)
and the corresponding r». —X, indirect gap (-1.5
x10 eV/bar): Pressure coefficients of the same
gap are known to be nearly the same for a given
family of materials. " These coefficients could
also be calculated from the corresponding wave
functions and the derivatives of the pseudopotential
with respect to the wavevector. ' We prefer, how-
ever, to use experimental values because of the
inaccuracies involved in estimating the derivatives
of the pseudopotentials. We thus find, for the vol-
ume contribution,
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TABLE IV. Calculated values of the explicit temperature coefficients
of the I ~ and X~ states of Ge, together with the experimental and calcu-
lated values of the total temperature coefficients of the E~ and E2 gaps
(in units of 10 4 eV/K).

Calculated
Experimental

—0, 72

de
dT

3s 7
—4.1y 0.2~
—4.2y 0.4"

4 2~0 4c

(Ix,)
—0.54

d~E

dT

—2. 85
—3.9 y0. 9~
—2.4y0 4"
—1.Sy0 5

'This work. 'Reference 28. %,eference 1.

culated the explicit temperature coefficients of the
A& and X& conduction states. They are listed in
Table IV together with the total temperature co-
efficients of the Ej and E& gaps obtained from them
and also with the experimental values.

GaAs

The calculations are made under the standard
assumptions that the potential of GaAs is the sum
of that of Ge plus an antisymmetric potential

V =iv Z sin —,'II(1+j+k) e' " "'""I"'
~

1s jtk (16)
m —$2+g~+ P~

We take, as usual, only the three antisymmetric
form factors v3=0. 068, v4-—0.066, v,&=0.012 Ry.
Through the antisymmetric potential the I'&5. state
of germanium becomes mixed with I'&z and I"2&..
We take the admixture coefficients from k ~ p cal-
culations

I
r Is ) ~ = 0. 81

I
r s. ) + 0. 083

I
r,",. )

-0.464 iI r„) (17)

For evaluating the expectation value of the Debye-
Waller perturbation Hamiltonian, we need the ex-
pectation values and matrix elements of Table II
plus the antisymmetric coupling between I &5.

" and
1 „. Using the wave functions of Eq. (5) and Table
I, we find

(r,',. I

a'
I
r„)= i&&0. 228(u') ev

(r,",
I
&'Ir„)=i&&0.047(u ) ev

We have implicitly assumed that (u o,) = (u ~ )
=(u ). The work of Vetelino et al. ' shows that
this assumption holds to within 1% for GaAs. It
holds rather well (- 10/p) even in materials with

1$

ha (a.u. )

LA TO~ 2.

Ge
T= 140 K

10

0 .

a (p)
1.4

I

1.4$
I

FIG. 2. Piezotransmission spectrum of Ge at 180 K.
FIG. 3. Temperature dependence of the indirect and

the E& gap of Ge.
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—0.5 FIG. 4. Piezoreflec-
tance spectrum of the E1,
Eg + + Ep and E2 transi-
tions of Ge at 80 K.

Ge
T=SO K

E1 E +h
1

E(eV)

E eV

very different masses such as InP. From Ref. 21
we find, between 100 and 300 K for GaAs, d(u )/
dT=1. 67x10 4 bohr /K. The explicit temperature
dependence of the I'» state of GaAs thus becomes

EeV
= l. 82x10~ eV/K(

er„
8T (19)

e 2.25

4.25

It is also possible using the same method to calcu-
late the explicit temperature dependence of the L3
and X, top valence states. We have

~

I.s) = (0.688 —0. 355i)
~
r,', .) + (0. 198 —0. 480i)

~

1' ),
+ (0.200 —0.042i)

~

r" )

+ (- 0.377+ 0. 106i)
~

r .), (20)

~
X,) =(0.710 —0.0789)(r', ,)+( —0. 666 —0. 077i) (r, )

+ (-0. 175 —0. 103i)~r,",.) .
A straightforward calculation yields, for the ex-
plicit temperature dependence of L, and X5,

S 2 ~ 2

~ Eq

e a)+4,
a E2

=1.62x10~ eV/K
BT

~ ~= l. 22x10~ eV/K
a

(21)

ToK

FIG. 5. Temperature dependence of the E~, E1+Q,
and E2 transitions of Ge.

The coefficients of Eq. (21}become nearly the
same as those of Eq. (19) (r») after the contribu-
tion of the thermal expansion, assumed to be the
same as that obtained from experimental data for
germanium, is added.
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FIG. 6. Temperature
dependence of the E&-Eo
and the E2 transitions of
Si.
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The calculations just presented show that the top
valence band changes rigidly with temperature for
Ge and GaAs. We have also found similar results
for silicon. The homology of the germanium-zinc-
blende family enables us to expect similar results
for all group-IV and III-V compounds, and possibly
also for the II-VI compounds, except maybe those
of very large band gap.

EXPERMENTS

In order to confirm the rigidity of the top valence
bands of germanium and silicon, we have per-
formed piezotransmission measurements of the
temperature dependence of the indirect gaps of
these materials and piezoreflectance measurements
of the temperature dependence of the E~ and Ea
gaps. From the indirect and the Ej gaps of ger-
manium we obtain information about the top valence
band along A. Prom the indirect and E2 gaps of

silicon, the rigidity along 6 is confirmed (see Fig.
1). We should point out that recent measurements
of the indirect gap of Gap (Ref. 22) yield a tem-
perature coefficient of —3.6x 10~ eV/'C, very
close to that obtained by Varea eI; al. ' for the E~
gap [(-3.5+ 0.4) x10~ eV/K]. This confirms ex-
perimentally the rigidity of the top valence bands
along 6 for at least one III-V compound.

The piezotransmission spectrum of the indirect
edge of Ge at 180 K is shown in Fig. 2; Three
phonon-emission-induced transitions (TA„LA„
TO, ) and one phonon-absorption-induced (TA, ) are
observed. We take for the determination of the
temperature dependence of the indirect edge the
shift of the most prominent I A, peak with AQL+
=27.6 meV. The results are shown in Pig. 3 to-
gether with the indirect gap data of Ref. 24. Both
sets of data agree and give through a least-squares
fit a temperature coefficient
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(QR)x 1p (~-R)x $p
R

2
Ga$b

FIG. 7, Piezoreflec-
tance spectrum of the Ep,
E,, and E, transitions of
GaSb at 80 K.

3

p.s
I

p 9
lI

E {eV)

E 0V GPSS
= —(3.7+0.2)x10 eV/K

We have also plotted in Fig. 3 the shift of the E&

gap (see Fig. 5) in order to exhibit its similarity
to that of the indirect edge and thus illustrate the

rigidity of the valence band (see Fig. 1). A least-
squares fit to the E& data gives a coefficient

' = —(4. 1+0.2)x10~ eV/K (23)

EeV

3oo
I

1,0

which agrees reasonable with the calculated one

(see Table lV).
The shift of the E„E,+b,, [-(4.1~0.2)x10~

eV/K] and that of the Ea [-(3.9+0.2)x10~ eV/K]
gaps of germanium were obtained from piezore-
flectance spectra like that of Fig. 4. The corre-
sponding tempexature shifts are illustrated for the

E&, E, + 6&, and E3 gaps of Ge in Fig. 5. The
shifts of the E& —E0 [-(2. 2 + 0. 3)x 10~ eV/K], and

the E2 [-(2.3+0.1)x10 eV/K] gaps of Si are il-
lustrated in Fig. 6.

Once the rigidity of the valence bands has been

TABLE V. Measured temperature coefficients of the

Ep and E& gaps of GaSb and InSb, together with the esti-
mated coefficient of the I-~~- I'~~ separation Cin eV/K).

100
I

200
I

300
I

dEp
dT

&aim- I'iP
dT

FIG. S. Tempexature dependence of the Ep and E&

gaps of GaSb and InSb.

GaSb
InSb

—3.7+0.1
—2.75+ 0.1

—5.4+0.3
-4, 7+ 0.2

-1.7+0.4
-2.1+0.3
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TABLE VI. Summary of experimental values of D~=E(L&) -E(I &) and its temperature coefficient obtained for GaSb

by various techniques. The fourth column lists the density-of-states mass nz2& (including degeneracy factor) used for
processing the data or obtained from experiment.

Experiment

Hall effect, resistivity with hydrostat-
ic and uniaxial pressure
Infrared ref lectivity"
Hall effect, magnetoresistance'
Faraday rotation
Magnetores istance'
Hall effect, Faraday rotation
Magnetoresistance, Faraday rotationg

Hall effect"
Faraday rotation, reflectivity~
Resistivity with hydrostatic and uni-
axial pressure~
Magneto resistance"
Tunnel effect

(me V)

74 (300 K)

80 (300 K)
80 (4 K)

84 (4 K)

70
72 (90 K)

120 (300 K)

77 (4 K)
80 (4 K)

~~' (eV/K)

—3x10

1 x10+

1.1x10
0. 8 x10+
0.59 x10
0 to 2 x 10 5 doping
dependent
0
5.5x10 ~

2 xl0+

-2& 10~
—2.1 x10+

0.55

0.55
0.9
0.7
0.43
0.74
0. 57

0.72
0.815

0.24
0.25

A. Sagar, Phys. Rev. 117, 93 (1960).
M. Cardona, J. Phys. Chem. Solids 17, 336 (1961).

%f. M. Becker, A. K. Ramdas, and H. Y. Fau, J. Appl. Phys. Suppl. 32, 2094 (1961).
H. Piller, J. Phys. Chem. Solids, 24, 425 (1963).

'H. B. Harland and J. C. Woolley, Can. J. Phys. 44, 2715 (1966).
C. Y. Liang, J. Appl. Phys. 39, 3866 (1968).

~E-H. Van Tongerloo and J. C. Woolley, Can. J. Phys. 47, 241 (1969).
"A. Y. Vul', L. V. Gobulev, T. A. Polyanskaya, and Yu. V. Shmartsev, Sov. Phys. -Semicond. 3, 256 (1969).
G. , Bordure, These (d'stat Montpellier, 1969) (unpublished).

'M. Averous, G. Bougnot, J. Calas, and J. Chevrier, phys. Status Solidi 37, 807 (1970).
"J. L. Robert and D. Barjon, Phys. Status Solidi 3, 421 (1970).
G. Bastide, B. Pistoulet, J. L. Robert, and C. Roustan, Solid State Commun. 11, 835 (1972).

established it is possible to use the measured tem-
perature coefficients of the Eo, E» and E2 gaps to
obtain experimental information about the relative
shifts of the three main conduction minima (I', L,
X- 6) with temperature. Figure 7 shows a typical
piezoreflectance spectrum from which the tempera-
ture shifts of the Eo, E» and E2 gaps can be ob-
tained. The Eo and E& shifts are shown in Fig. 8
for InSb and GaSb and the corresponding tempera-
ture coefficients listed in Table V. Assuming the
rigidity of the top valence band along A, we find
for the temperature coefficient of the separation
between the L, and the 1"j conduction minima the
values listed in Table V.

DISCUSSION

We show in Table VI the temperature dependence
of the nE, = E(L~) —E(I'~) gap obtained for GaSb by
a number of different authors and experimental
techniques. Enormous discrepancies appear in the
sign and magnitude of these coefficients. Our as-
sumption of a rigid valence band yields, using the
temperature coefficients of Table V, a coefficient
dnE, /dT=(- l. 7+0.4) &(10 ~, which tends to sup-
port the values of footnotes a, k, and l of Table VI.

The density of states mass nz&„of the L& minima
(including valley degeneracy factor) used for or ob-
tained in the experiments is also listed in Table
VI. This mass is expected to have a value very
similar to that of Ge, namely, 0. 55rno. This
mass agrees with that of footnote a but those of
footnotes k and l are significantly smaller. We do
not find an explanation for this discrepancy but we
believe that the present work supports indeed a
negative temperature coefficient, of the order of
—2X10 eV/K for rE,. A similar coefficient is
expected for InSb according to Table V. These co-
efficients are of particular interest since they de-
scribe the variation with temperature of the valley
separation which determines the Gunn effect.

The postulated rigidity of the valence bands can
also be used to predict the temperature coefficient
of the separation between the I'& minimum and the
X& minima in GaAs, which are at low temperature
(2 K), 483+ 15 meV above I'„and play a dominant
role in the Gunn effect. The temperature coeffi-
cient of the Eo gap of GaAs is —3.6 eV/K, that of
the E2 gap is also —(3.6+ 0.4) eV/K, ' and there
fore the E(I',) —E(X,) gap should have a nearly
zero-temperature coefficient, a result which de-
viates from the coefficient —2.4x10 eV/K pro-
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posed by Pitt '
by interpolating between data ob-

tained in different experiments.
In InP, the I.j minima lie between the X& and I"&

minima and they all are involved in the Gunn ef-
fect. The X, —1"~ separation is 960 meV a,t low

temperatures while the I.&
—I'& separation is 610

meV at 300 K. s' Using for the Eo gap the coeffi-
cient —(2.9 + 0.2}x 10~ eV/K, ' for that of E,
—(4.2+0.4)xl0 eV/K, snd for that of Ea —(S.1
+ 0.4) x10~ eV/K, '3 we find for the temperature
coefficient of the I j —I'& gap —1.Sx10 eV/K and

for that of the X, —I', gap —0.2x10 eV/K.
Our procedure to obtain temperature coefficients

of separations between conduction minima is based
on two assumptions. The first one, the rigidity
of the valence bands, has been discussed in detail
and can be assumed to hold on the basis of the theo-
retical and experimental data to better than
+ 5x 10 ' eV/K. The other assumption is that the

E, and Ea gaps are indeed representative of transi-
tions ending at the 1.& and Xz conduction minima, .

The E& gap is known to be due to tra, nsitions along
most of the (111)lines, including the I.point. The
exact parallelism of valence and conduction bands

along the region of these transitions for all zinc-
blende- and germanium-type materials suggests
that the temperature coefficient of the gay is the
s".me regardless of the position of the A point. A

Debye-%aller ca,lculation a.long A should be per-
formed to confirm this conjecture.

The situation is somewhat more complex with

regards to the Ea gap, to which the transitions at
X contribute rathex little in spite of occurring at
about the same energy. It has been suggested in a
recent paper that the E2 transitions occur in a,

region rather localized around (2m/a) (-,', —,', —,', )
certainly not too far from the Xpoint (2m/a}

(1,0, 0}. One may therefore argue, by continuity,
that the Ea gay has indeed the same temperature
coefficient as the Xz-X& gap. This conjecture
seems confirmed by the analysis of the pressure
dependence of refractive indices. '4
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