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The method of lattice statics has been used to obtain a general formalism for determining atomic
relaxations near surfaces of any given orientation in monatomic fcc or bec lattices. Numerical results
have been obtained for (100), (110), and (111) surfaces for semi-infinite slabs of a-iron and for the
(100) surface of a “modified” Cu lattice. For these high-symmetry directions the three-dimensional
equilibrium equations reduce to one dimension and the atomic relaxations are entirely normal to the

surface.

I. INTRODUCTION

Recent advances in low-energy-electron diffrac-
tion (LEED) and Auger spectroscopy have given
rise to increased efforts to calculate, from a the-
oretical standpoint, the effects of surface forces on
defects within a crystal as well as formation and
migration energies of defects on the crystal sur-
faces.'™ Fundamental to the calculation of sur-
face properties in any crystal is a knowledge of the
relaxed positions of the atomic layers in the vicinity
of the surface, since formation energies and inter-
actions occurring near a surface will be modified
by relative displacements between the atoms of the
host lattice in the region. The methods of calcula-
tion by which atomic displacements near a surface
may be obtained do not differ greatly in principle
from those used to calculate atomic displacements
in the vicinity of point defects in bulk crystals and
may be generally placed in one of two categories;
direct-space techniques and Green’s-function tech-
niques. In direct-space techniques, one sets up a
“computer model” of the lattice composed of per-
haps a few thousand atoms and having a surface of
the proper orientation on one boundary. Assuming
a reliable pairwise potential is available to repre-
sent the interactions between pairs of host atoms,
the direct-space force equations for the crystallite
can be written and, starting with the host atoms at
perfect lattice separation distances, the atoms in
the lattice can be relaxed by an iterative process
until the net force on each atom is zero, or at least
smaller than some specified tolerance. This is the
approach used by Wynblatt and Gjostein in their cal-
culations for migration and formation energies for
surface defects in copper® and tungsten, * and by
Bonneton and Drechsler in their calculation of
atomic relaxations near a (112) surface in W, Mo,
and Ta.® It is, in essence, also the method applied
by Jackson® in investigating relaxations of atoms at
high-symmetry surfaces in a number of fcc and bece
metals.

In the Green’s-function techniques, such as the

9

method of lattice statics, used is made of transla-
tional symmetry to divide an infinite lattice into a
number of “supercells” each containing a defect
surrounded by a large number, N, of host atoms.
The 3N X 3N direct-space force equations for the
atoms in a supercell are then Fourier transformed
to reciprocal space, resulting in a set of N 3X3
decoupled force equations. Each of these 3X3 ma-~
trix equations can be solved by a straightforward
matrix inversion, and the atomic displacements
can then be found by a back transformation to direct
space. A comprehensive formalism for determin-
ing atomic displacements at crystal surfaces using
Green’s functions has been developed by Feucht-
wang.” The Green’s-function approach has also
been employed by Corciovei, Croitoru, and Grecu®
in an attempt to determine the general character-
istics of atomic displacements near surfaces in a
fcc lattice and was earlier used by Gazis and
Wallis® in their discussion of the properties of de-
fects near a “surface” in a one-dimensional chain.
The direct-space calculations have the advantage
that all of the forces on each atom in the model
crystallite can be evaluated explicitly from an in-
teratomic potential, whereas the Fourier trans-
formation used in the Green’s-function techniques
is only applicable in the harmonic approximation.
However, the computer “models” used in the di-
rect-space approach are cumbersome and the num-
ber and complexity of the equilibrium equations in-
creases rapidly with the size of the model crys-
tallite. Moreover, crystallite size can be of crit-
ical importance if a very-long-range potential,
such as a Morse potential or a Coulomb potential
is being used. On the other hand, the supercell
used in the lattice-statics approach can be made
extremely large; in fact, by converting the Fourier
sums to integrals, the supercell boundaries can be
removed to infinity. In addition, the symmetry of
the reciprocal lattice can be used to decrease sig-
nificantly the length of the computations necessary
in the lattice-statics approach. The present paper
represents an application of the lattice-statics for-
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malism developed previously!®!? to determine the
displacements of layers of host atoms induced by
the formation of surfaces in bce and fcc semi-in-
finite lattices. The theoretical approach presented
is similar to that developed by Feuchtwang’ but is
greatly simplified and lends itself more readily to
practical computations. The present development
differs from that of Feuchtwang in the conversion
of Fourier-space sums to integrals to obtain the
relaxations associated with a semi-infinite slab and
in the use of a surface layer placed symmetrically
in the supercell, rather than an actual removal of
half of the lattice. Because of the high symmetry
of the (100), (110), and (111) surfaces for which
lattice-statics calculations have been done, the
three~dimensional equilibrium equations become
one dimensional for these cases. However, the
general theory presented in Sec. II is applicable

to any surface orientation.

In carrying out numerical calculations of atomic
relaxations, it is vital to have available an inter-
atomic potential that correctly describes the
changes in force constants which must occur during
the formation of a surface. Unfortunately, the only
potentials available currently for metals are in-
tended to reflect the properties of the bulk mate-
rial and cannot be expected to represent the
changes brought about by the redistribution of va-
lence electrons in the vicinity of a surface of a
metal crystal. Nevertheless, some numerical cal-
culations are presented in this paper using a bulk
potential for a-iron in order to demonstrate, in a
general way, the fype of results one might obtain
for high-symmetry surfaces in a bcc lattice. Dif-
ficulty was encountered in attemption to perform
a similar set of calculations for a fcc metal such
as Cu or Ni. The short-range potentials currently
available for these materials give rise to nearest-
neighbor force constants which are quite large com-
pared to those of more distant neighbors. In at-
tempting to use these potentials in the type of sur-
face calculations described here, one encounters
atomic relaxations which are much too large to be
treated in the harmonic approximation. A calcula-
tion has been included in this paper which makes
use of a set of force constants for Cu which have
been “modified” to reduce the forces on the first
two layers of atoms near the (100) surface, again,
simply to demonstrate the application of the lattice
statics equations to a specific case for a fcc lattice.
None of the numerical results presented are in-
tended to describe any actual surface properties.

Finally, emphasis is placed, in this paper; on
the development of a purely lattice-statics approach
to treating surface relaxations, and anharmonic
effects have therefore been neglected completely.
Anharmonic contributions could, in principle, be
handled by applying the modified lattice-statics ap-
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proach described in a previous paper.!® This work
is presently under way.

The general lattice-statics theory and its appli-
cation to surfaces is presented in Sec. II. Section
III is a description of the calculations carried out
for the (100), (110), and (111) surfaces for a-iron,
and the (100) surface of the “modified” Cu lattice.
Section IV is a discussion of the results of those
calculations, and Sec. V consists of a general
summary of the work presented in this paper.

II. GENERAL THEORY

The method of lattice statics as applied to screw
dislocations and to point defects in bulk crystals
has been discussed fully elsewhere!®!%; hence only
a brief outline.of the technique will be given here.
The first step in this type of calculation is the ap-
plication of periodic boundary conditions by sub-
dividing the lattice into an infinite number of “su-
percells” each containing a large number, N, of
host atoms with a defect at the center of the super-
cell. It is assumed that the interatomic interac-
tions in the lattice can be described by means of a
pairwise potential, ¢(r). In the harmonic approx-
imation, the direct-space force equations can be
expressed by

Fo=Z2iouy (1)

where

¥ (17 +E')
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represents the direct-space force on the /th atom
due to the defect. T is the position vector of the
Ith atom in the perfect lattice, E is the displace-
ment of the /th atom after it relaxes in the presence
of the defect, and ®!% is the 3NX 3N direct-space
force-constant matrix for the lattice. The indices

a and B refer to components in a Cartesian coor-
dinate system in the lattice. ¥(r) represents the
interatomic bonds broken (or formed) in the crea-
tion of the defect.

The direct-space equations in Eq. (1) are not
very useful because of their complexity. Hence, in
the lattice statics approach the direct-space dis-
placements E' are replaced by a Fourier transfor-
mation to reciprocal space,

Fg= (2)

E’=%Z}6“‘e‘“' , 3)
q

where the 67‘ represents the Fourier amplitudes of
the direct-space displacements and the d are the N
allowed wave vectors in the first Brillouin zone
(FBZ) of the superlattice. This transformation re-
sults in a set of decoupled equilibrium equations in
reciprocal space, which may be written
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Fi=2 V36l @)
where the Fourier-transformed force array Fiis
Fi=) Flemiv¥ (5)
1

and the reciprocal-space force-constant matrix
V23 is related to !4 by the expression

-1 ' aigent!
Vai= 2 dg e (6)

The Fourier amplitudes 63 can be obtained from
Eq. (4) by direct matrix inversion and the direct-
space displacements £’ can then be found by a back
transformation to direct space as indicated in Eq.
(3.

In applying a method of lattice statics to deter-
mine atomic relaxations near high-symmetry sur-
faces in fcc and bece lattices the supercells are
chosen to be parallelepipeds built up of N, layers
in the desired orientation, each containing the same
number of atoms. The Cartesian coordinates for
the supercell are chosen with the x and y axes in the
plane of the layer at the middle of the supercell and
the z axis is perpendicular to the planes formed by
the layers. The analytic model of the surface is
created by applying forces to the atoms on either
side of the atomic layer at z =0 in such a way as to
cancel all interactions with the atoms in the 2=0
plane and all interactions extending across the
z=0 plane. Hence, if p is the interlayer spacing,
the layers at 2z =+p are surface planes. The entire
lattice then resembles a continuum of slabs each
having a thickness equal to the z dimension of a su-
percell.

It is important to note that the atoms in the 2=0
plane and the atomic bonds which cross that plane
still contribute to the dynamical matrix V=% The
presence of the surface (or any other defect in the
lattice-statics formalism) is reflected entirely in
the form of the force-array function _I':"‘, which con-
tains contributions from all of the direct-space
“external” forces which are applied to nullify the
actual forces exerted between pairs of atoms whose
bonds are altered in the formation of the surface.

The force array F? can be found by separately
summing the x, y, and 2z components of the surface-
induced forces exerted on each of the atoms in the
z =1 plane, the z=2 plane, etc. as indicated in Eq.
(5), and adding the results of the various sums. If
the x and y components of the interatomic spacings
in the lattice are assumed constant, it is not dif- -
ficult to show that for the high-symmetry cases to
be considered here, the x and y contributions of
the external forces cancel completely so that the
interaction between the “surface” and the atoms
of the bulk crystal takes place only along the z di-
rection. -

The remaining F* component of the force array
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can be found by expressing the total surface-in-
duced force on each atom in the z =1 layer, and if
necessary, on each atom in the z =2 layers, z2=3
layer, etc. in terms of the first- and second-neigh-
bor forces exerted by atoms in and beyond the sur-
face layer and Fourier transforming these forces,
again using Eq. (5). In so doing, one must sum
over atoms on both sides of the z =0 plane, i.e.,
atoms in the “phantom lattice” referred to by Gazis
and Wallis.® If T, and T, are the total forces on
atoms in the z2=1 and z =2 layers, respectively,
and p is the interlayer spacing in the z direction,
for atoms in the first plane.

(F§)1= T e™i% ) e-i(iu-?,’l)
[
- Tyei%’ > e- i@ T
1
= - 2T, sin(g,p) ; et GrEh )

Following the same procedure for the remaining
layers, one finds, in general, that

io 9 ;} T,sin(jgp) 2 e~&i | (8)
4

where q, and r, refer to components of the wave
vectors and position vectors in the XY plane and j
is summed over all layers of atoms having a di-
rect interaction with the surface. Explicit ex-
pressions for the T; in terms of interatomic forces
depends upon the geometry of the surface and are
given in Sec. I for the six cases considered there.
If one allows the supercell boundaries in the x and
y directions to go to infinity, the direct-space sum
over I becomes an integral,

'Ee-i?u,-?.’...f_[” exp[-ilgri+qol)ldl,dl, . (9)
Letting T} =(a,,,a,,), Eq. (9) may be expressed as

E e'all';tll = [(ZW)Z/llxay]

1

xf fexp[- ilgrtvqod)ldriary
-T (10)
where a, and a, are Cartesian components of the
nearest-neighbor separation in the plane of the sur-
face. The integral on the right-hand side of Eq.
(10) is merely the definition of the Dirac & function,
8(g.,q,). Hence, Eq. (8) can simply be written for
the first- and second-neighbor inferlayer forces

~ 2i(T, sing,p + T, sin2q,p) (2m)%(g,, q,)
a,a,

. (1)

q
F;=

In order to determine the direct-space displace-
ments, E’, using the force array given by Eq. (11)
it is necéssary to convert the wave-vector sum in
Eq. (3) to an integral. Equation (3) then becomes
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where the integral is over the first Brillouin zone
of the supercell. By choosing proper supercells

in the form of rectangular parallelepipeds, the
limits of the integrals are greatly simplified. How-
ever, the fact must be accounted for that the lattice
symmetry, even for a set of coordinates that does
not coincide with the [100] axes of the lattice, will
not be simple tetragonal or orthorhombic, for ex-
ample, but will be body-centered or face-centered
tetragonal or orthorhombic. In order to properly
account for the weighting of the wave vectors, the
integral in Eq. (12) must be multiplied by an ap-
propriate weighting index 0. The expression for

£! then becomes

3 UVa fff Q" iat dq (13)

The conversion of the wave-vector sums to inte-
grals can be interpreted as increasing the super-
cell size to infinity so that the resulting atomic dis-
placements are actually those for a semi-infinite
slab.

The Fourier amplitudes Q%, obtained from the
matrix inversion of Eq. (4) have three components;

Q= [FVIL FvdL RV . e

However, in each of the high-symmetry cases con-
sidered here, the expressions for (V'q ! and
(V"‘)'1 contain multipliers which become zero when
the integrals over ¢, or g, are performed, because
of the Dirac 6 function in the force array. This
means that for, atleast, the (100), (110), and (111)
surfaces in monatomic materials with cubic sym-
metry, there should be no tangential components of
surface relaxation, a result which has been ob-
tained more generally by Bonneton and Drechsler®
and by Jackson. ¢

The final expression for the atomic displace-
ments in the vicinity of a surface of high symmetry
in a monatomic lattice with cubic symmetry is

1 _oVa(=27) fff .

£ ““Zma.a, (T, singp + T, sin2q,p)
-2l

X6(2y,9[V@y,ay,q) e " d® . (15)

The 6 function in the force array allows the x and y
integrations to be performed immediately, result-
ing in a z integral, the evaluation of which depends
only on wave vectors lying on the z axis:

¥/
gt =_ﬂ_ f g (- 2i)

2na.ay, Ly,
X (T, sing,p + T, sin2q,p)
x[v(0,0,q,) et %"’ dgq, ,  (16)
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where I may be regarded as indicating a given lay-
er of atoms since ¢! is obviously the same for all
atoms in the same layer. For each of the high-
symmetry surfaces in a monatomic lattice, except
for the (111) surface in a bece lattice, it can be
shown that

[v(0,0,¢,) ' =K,(1 - cospg,) + K,(1 - cos2pq,) ,

(17)
where K, and K, are functions of the radial and
tangential force constants evaluated at first- and
second-nearest-neighbor perfect lattice separa-
tions.

Equation (16) cannot be evaluated in closed form,
but can be obtained by numerical techniques using
a computer. The method used in the calculations
discussed in Sec. III is the method of Gaussian
quadratures which has been described in previous

papers'**? and can be found in texts on numerical
analysis. For simplicity, define 2,=¢g,. Then
Eq. (16) becomes

1 -ikgd g

£= 2m a,p f Gk,)e (18)
where

G(k,) = - 2i(T, sink,+ T, sin2%,) [V(0,0,%,)]"' .  (19)

Using the method of Gaussian quadratures, the in-
tegral in Eq. (18) can now be obtained by evaluating
the sum

=2V EG(W

-itu.n
Sayap = Alu,) , (20)

where the u, are the zeroes of the Legendre poly-
nomial of degree M.

The force constants which appear in [V(0,0,%,)]™
can be found from the pairwise interatomic poten-
tial ¢(») or from the elastic constants of the bulk
crystal, but the interlayer forces T, and T, in the
force array F; are evaluated in the relaxed con-
figuration of the lattice and are therefore functions
of the relaxations of the first two or three layers
below the surface. In the harmonic approximation
the interatomic forces in the equilibrium configura-
tion can be written as

11 1 .1
F1=27’ Bl+2§rA1 3

21
Fooir B lEA, | @1)

where &L and £ are the radial dlsplacements of the
flrst and second-nearest-neighbor atoms, 7! and
72 are first- and second- -neighbor separatmn dis-
tances in the perfect lattice, and 4; and B, are de-
fined as follows:

=289 (22)
“ror "

The interlayer forces can be expressed as func-
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FIG. 1.
bic cell used for (100) surface calculations in a bece lattice,

tions of F; and F, and hence of £ and £ by proper
consideration of the lattice geometry. Inserting
these expressions into Eq. (20) one obtains a set of
simultaneous equations in the displacements of the
first and second layers of the surface which may be
solved for £! and £2. Once these displacements are
known, T, and T, are fixed and the displacements
of any of the remaining layers in the lattice may be
found. A similar procedure may be followed for
problems involving longer-range interlayer inter-
actions.

Since Eq. (16) depends only on wave vectors ly-
ing on the z axis, it becomes apparent that the
shape of the x and y supercell boundaries is really
immaterial as long as one accounts properly for
the number of atoms in each layer of the supercell.
If the symmetry of the two-dimensional lattice in
the xy plane is simple rectagonal (or simple cubic),
then a,a, is just the area per atom, A,, in the lay-
er and no correction need be made to the integral
in Eq. (16). However, if the symmetry is area-
centered rectagonal then a,a, is only half of the
area per atom, so that the wave vector sums or
integrals over ¢, and g, will “count” twice as many
wave vectors as actually exist and the integral in
Eq. (16) must be divided by 2. In general, then,
the weighting factor o can be expressed as

o=a.a,/A, (23)

III. APPLICATIONS

The general theory developed in the previous sec-
tions has been applied to six specific high-symmetry
surface orientations in bece and fcc monatomic lat-
tices; the (100) surface, the (110) surface, and the
(111) surface. In this section, the supercell con-
figurations most suitable for numerical calculations
for these six cases will be discussed and expres-
sions for the T; and K, appearing in Eq. (15) and
(16) will be given. Because of difficulties encoun-
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(o)

(a) Body-centered tetragonal cell and coordinate system for (100) surface calculations inafcc lattice. (b) Cu-

tered in attempting to use bulk crystal force con-
stants in a surface calculation, for “real” fcc lat-
tices, numerical results are presented only for the
bce lattice using an a-iron potential developed by
Johnson.* In order to present an example of the
application of lattice statics to a (100) surface in a
fcc metal and force constants for Cu described in
an earlier paper!? were modified to make them us-
able for surface calculations. The modification
procedure will be discussed later.

The basic cubic cell for a fcc lattice is shown in
Fig. 1(a). The Cartesian axes along the (100) di-
rections in the crystal would serve well as the co-
ordinate system for (100) surface calculations.
However, it is useful to rotate the system 45° about
the z axis, as shown in Fig. 1(a), so that the two-
dimensional matrix in the plane of the surface be-
comes a square with a,=v2a and a,=V2a, where
a is half the length of the cubic cell edge. The
interlayer separation p in this case is equal to a.
The supercell used for (100) surface calculations
is built up of L® of these tetragonal cells and has
dimensions V2 Laxv2Lax2La. Hence a,a,=A4,
and Eq. (20) becomes

£ =—;—Z_?1G(1ru,,) e ™n Al,) (24)

The expressions for T;, T,, K,, and K, for the (100)
surface in a fcc lattice are
Ty=(2B,+By)a+(A +A,)E
T,=Bza +Az§£ ,
K,=2(A,+B;) ,
Ky=A,

(25)

The basic unit cell for the bcc lattice is shown
in Fig. 1(b), along with the Cartesian axes used for
the (100) surface calculations. The supercell has
dimensions 2La x2Lax2La and contains 2L% atoms.
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FIG. 2.

(a) Body-centered tetragonal cell and Cartesian coordinates used for (110) surface calculations inafcc lattice.

(b) Face-centered orthorhombic cell and Cartesian coordinates used for (110) surface calculations in a fcc lattice.

Again, a,a,=A,, and the coefficients of the dis-
placement equations is therefore 3, just as for the
fcc case. Ty, T, Ky, and K, are

Ty=(2By+By)a+(3A,+A,) &
Tp=Bya+3As8%
Ky=$(4,+2B) ,

Ky=A,

(26)

The basic cell for calculating relaxations near a
(110) surface in a fcc lattice is a body-centered
tetragon, shown in Fig. 2(a). The supercell in this
case has dimensions 2LaxV2LaxV2 La, containing
L® atoms. Once more, a,a,=A, and 0=1. Sub-
stituting these values into Eq. (20), one finds that
the coefficients of the Gaussian sum is again 3.

For this case,

Ty=(3B,+2B,)V2a+(34,/2+4,)E)
T,=( By +BV3a+ (A, +4,)/28 |
Ky=A,+3B, ,

Ky=A;+A;+B, .

(27

The lattice cell used for (110) surface calcula-
tions for a bcc lattice is a face-centered tetragonal
lattice, as shown in Fig. 2(b). The dimensions of
the basic cell are 2ax2V2ax2V2a and the super-
cell, composed of L® basic cells has a volume of
16a® and contains 4L® atoms. Hence, o in this
case in 3, since a,ay=%Aa. The coefficient of the
Gaussian sum in Eq. (20) is again 3. For this sur-
face orientation, with only first- and second-neigh-
bor atomic interactions there are no interactions
across the surface boundary. The only bonds
which must be “broken” are with two nearest neigh-
bors and two next-nearest-neighbor atoms in the

surface plane. T,=0 and
Ty=(B,+B,)V2a+(3A,+34,)8%
K,=%(2A,+B,) , (28)
K;=A,+B; .

The coordinate system used in calculating atomic
displacements at (111) surfaces in a fcc lattice is
shown in Fig. 3(a). The dimensions of the basic
cell used in this case are V2aXxv6ax2vV3a. The
supercell, made up of L® such cells has a volume
12a° and contains 6L° atoms. In the coordinate
system given, a,a,=3A, and 0=3. Substituting
these constants into Eq. (20) gives a coefficient of
the Gaussian sum of 3. As in the case of the (110)
bce surface the assumption of first- and second-
neighbor atomic interaction means that there will
be no interactions between atoms in the second lay-
er and the “vacancy” layer at the z =0 boundary.
Hence T, is again zero. Atoms in the surface lay-
er itself interact with three nearest neighbors and
three next-nearest neighbors in the z =0 plane.
Again, there are no interatomic bonds extending
across the surface boundary.

T1 =(Bi+Bz)\/§a+(A1 +%Az)£i )
Kl = ZAI + Bl ) (29)
K,=A,+B,

The final case to be considered is that of the (111)
surface in a bec lattice. The basic cell for this
case is shown in Fig. 3(b) and has dimensions
2V2ax2V6aXv3a. The supercell made up of L?
such basic cells contains 6L% atoms. Again, a,a,
=3 A,, and the coefficient of the Gaussian sum in
Eq. (20) is 3, as it was for the fcc lattice. The
(111) surface calculation for bcc lattices is com-
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FIG. 3.

top plane of the cell is shaded and certain edges of the cubic cell are shown by solid lines for reference.
bic cell and Cartesian coordinates used for (111) surface calculations in a becc lattice.
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(b)

(a) Orthorhombic cell and Cartesian coordinates used for (111) surface calculations in a fcc lattice. The

(b) Orthorhom-
The top plane of the cell is

shaded and certain cubic cell edges are shown by solid lines for reference.

plicated by atomic interactions affecting the first
three layers of atoms near the surface. Each atom
in the first layer of the surface interacts with three
atoms in the “vacancy” plane which are first-near-
est neighbors and three second neighbors located in
the first layer across the boundary at z=0, and
finally, there is a direct “push” on a nearest-neigh-
bor atom located in the second layer of atoms be-
yond z=0. The complete expression for T, is

T,=V3a(B,+B,) + (3A, +A)EL +A,/28% . (30)

Each atom in the second layer of the surface inter-
acts with one nearest-neighbor atom in the first
layer across the boundary and three second-near-
est neighbors in the vacancy plane at z=0. The
resulting expression for T, is

T,=V3a(B,+3 B,) +A,(1 +1/V3)/28%+ A,/ 28}

(31)
Finally, each atom in the third layer interacts di-
rectly with one nearest-neighbor atom in the z=0

plane. Hence
Ty=V3a B;/2+A,/2E% (32)

There is also an additional term Ky(1 — cos3kz) in

the Fourier-inverted force-constant matrix, (V -9,
The constants K;, K, and K are

K1=(A1+BBI)/3 N

K;=A;+2B; , (33)

Ky=A,

Numerical calculations for the (100), (110), and
(111) surfaces of a-iron have been carried out using
the interatomic potential developed by Johnson.'* No

attempt was made to modify the potential to reflect
actual physical changes near the surface, such as
the redistribution of valence electrons. It was not
necessary to use the explicit analytic expression
for the potential in the surface calculations since
the mathematical model of the surface involves
breaking bonds only at perfect-lattice separations
between atoms. Hence, only the first and second
derivatives evaluated at perfect lattice positions
are needed, and these are expressed as the force
constants A,, A,, B, and B, [see Eq. (21)]. Nu-
merical values of these constants are shown for
a-iron in Table I.

Calculations were carried out to determine the
relaxations of the first 20 layers of the surface in
each case using a Legendre polynomial of order
40. The calculations were carried out partially on
the IBM 360/65 at the University of Nebraska at
Lincoln and partially using the KRONOS time-shar-
ing system (CDC-6400) at the University of Ne-
braska at Omaha.

Numerical results for the first nine layers in the
vicinity of the (100) surface of a-iron are shown
in Table II. The relative displacements of the lay-
ers appear superimposed on a “uniform” displace-
ment which occurs because the potential used gives
rise to surfaces with nonzero forces on the first
two layers. The atoms at the supercell boundaries
are fixed; hence the atoms which interact directly
with those in and across the z =0 plane relax until
the unbalanced forces on them are zero. If the
calculation were done with a fixed number of planes,
the “uniform” relaxation would appear as an in-
crease in lattice constant and would, in fact, be
indistinguishable from the relative displacements.
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TABLE I. Force-constant parameters for Cu and a-
iron (dyn/cm).
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TABLE IIl. Relaxation of atomic layers near a (111)
surface in a-iron (&),

Cu a-iron
Ay 6.6983 x10* 7.852343x10*
A, —0.1118x10* 3.143769 x10*
B, —-0.5662x10% —0.394742 x 10
B, 0.5662 x10* 0. 394743 x 10*

In the present case, however, there is an infinite
number of atomic layers and this component of the
relaxation appears as a uniform movement of the
entire surface region.

The first- and second-neighbor radial force con-
stants for a-iron are nearly equal and opposite,
so that the sum of T, and T, before relaxation is
very small, resulting in the extremely small dis-
placement of the surface layer itself. The rela-
tive displacements display the alternate expansion
and contraction characteristic of shells of atoms
in the vicinity of single vacancies in bec lat-
tices. ! The magnitudes of the relative displace-
ments are seen to drop off rather rapidly for the
first nine layers and beyond the ninth layer the uni-
form displacement is constant.

In the case of the (110) surface for a-iron, Egs.
(28) indicate that each atomic layer interacts only
with the nearest-neighboring layers on each side.
Hence, when the surface is formed each layer will
exert a similar repulsion or attraction on its neigh-
bors and only a uniform increase in lattice constant
can result; there can be no “relative” displace-
ments. Again, because By ~ - B,, T,~0 in the un-
relaxed position and the “uniform” displacement is
very small; 3.07%x10° A toward the surface.

The numerical results for the displacements of
the first 14 layers in the vicinity of the (111) sur-
face in a-iron are given in Table III. Since there
are interactions between first, second, and third

TABLE II. Relaxation of atomic layers near a (100)
surface in a-iron (),

Layer Displacement?® Relative displacement®
1 5.472x 106 +0. 0948
2 —0.094833 -0.0198
3 —-0.075019 +0,00414
4 —0.079159 - 0.00086
5 -0.078294 +0.00018
6 —0.078474 - 0.000037
7 —0.078437 +0, 000008
8 —0.078445 —0.000002
9 —0.078443

2Positive displacements are toward the surface.
Ppositive signs denote relative expansion, negative
signs denote relative contraction.

Layer Displacement® Relative displacement"
1 0.019445 +0.005712
2 0.013733 -0.011035
3 0.024768 +0. 005549
4 0.019219 +0, 00424
5 0.018795 - 0.00244
6 0.021280 +0.00159
7 0. 019690 - 0.000147
8 0.019837 - 0.000523
9 0.020360 +0. 000435

10 0.019925 —0,000112
11 0. 020037 —0.000097
12 0.020130 +0.000136
13 0. 019994 - 0,000016
14 0,020100 +0.000038

%Positive displacements are toward the surface,
YPositive signs denote relative expansion, negative
signs denote relative contraction,

layers, in this case neither the signs nor the mag-
nitudes of the relative separations vary in any spe-
cial pattern. It is interesting to note that relative
compression between the second and third layers
is larger in magnitude than the relative expansion
between the surface layer and the layer next to the
surface. The relative displacements appear to fall
off more slowly with distance from the surface,
reminiscent of the large displacement “spike” along
the {111) direction associated with single vacancies
in a bec lattice. *®

In attempting to perform a set of calculations for
a standard fcc metal such as Cu, Ni, or Al, similar
to those described for a-iron, it becomes apparent
that the relaxations encountered (on the order of
several angstroms) are meaningless in view of the
harmonic approximation imposed. The difficulty in
these cases is that the force constants associated
with the interatomic potentials for the bulk crystal
give rise to interactions between first-neighbor
layers which are strongly repulsive and generally
dominate the interactions between second-neighbor-
ing layers. This indicates that some drastic modi-
fications in the force constants would probably be
necessary in order to accurately represent the sur-
faces of such materials. Such modifications are be-
yond the scope of the present work, however, in
the interest of presenting a numerical example of a
lattice statics surface calculation for an fcc mate-
rial, a set of force constants for copper, used in a
previous calculation!® were modified so that the ra-
dial force constants A; and A, and the isotropy fac-
tor, 2C,,/(Cy; - Cy,) were left unchanged, but
B, =~ B,. The rationale for the last condition
stated is that the sum of the forces T, and T, on the
first two surface layers will be zero before relaxa-



9 LATTICE-STATICS APPROACH TO SURFACE CALCULATIONS...

TABLE IV. Relaxations of atomic layers near a (100)
surface in a modified Cu lattice.

Layer Displacement® Relative displacement®
1 3.813x108 +0.16821
2 —-0.16821 —0.00156
3 —-0.16977 +0, 00002
4 —0.16979 +0.0
5 - 0.16979

%Positive displacement are toward the surface.
PPositive signs denote relative expansion, negative
signs denote relative contraction.

tion takes place [see Eq. (25)]. The resulting force
constants given in Table I indicate that the nearest-
neighbor radial force constant A, is still 60 times
as strong as A,, just as in the bulk lattice, so that
the interactions between nearest-neighboring layers
are still dominant over those for the next-nearest-
neighboring layers. One would expect the displace-
ments to fall off fairly rapidly in this situation and
the results of the displacement calculations, given
in Table IV indicate that this is the case. Ata
“depth” of about three layers from the surface, the
“uniform” relaxation has become constant and there
is almost no relative displacement.

The set of modified force constants is not suit-
able for calculating displacements near the (110)
surface, since both first and second layer inter-
actions are strongly repulsive for that orientation.
In the case of the (111) surface T, is identically
zero and, as in the case of the (110) surface in a
bce material, only a uniform relaxation should oc-
cur. Numerical results were not obtained for this
case.

IV DISCUSSION

As emphasized earlier, the most important as-
pect of the present work is the development of a
general workable formalism for calculating atomic
displacements in the vicinity of surfaces on semi-
infinite slabs of monatomic materials in such a way
that all of the atoms of the lattice are allowed to re-
lax simultaneously. The interatomic potentials
employed in the calculations described in Sec. III
were not true surface potentials but pairwise inter-
actions derived from force constants suitable for
calculations in bulk lattices. Nevertheless, there
are certain general characteristics of the lattice
symmetry and surface orientation which appear in
the numerical results of these calculations.

It is significant, first of all, that while the for-
malism developed in Sec. II is capable of predicting
tangential components of displacement, the form of
the (V-9"! matrix for each of the high-symmetry
surface orientations considered makes possible only
normal components of relaxation, regardless of the
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atomic interaction used, as predicted by other au-
thors. *’® In the case of the (110) surface in a-iron
and the (111) surface in Cu, where there are only
surface-induced forces on the surface layer itself
(assuming only first- and second-neighbor atomic
interactions) there are no relative displacements
between adjacent layers near the surface, but only
a uniform “continuum” relaxation of the lattice.
The same effect is apparent in the results shown in
Table II for relaxations near a (100) surface in Cu.
In this case, the nearest-neighbor force constants
for Cu are so much stronger than those for the sec-
ond neighbor that the relative displacements of the
atomic layers are very small and die out rapidly
with increasing distance from the surface.

In the case of the (100) surface for a-iron, the
first- and second-neighbor force constants are
much closer in value and the forces induced on the
first and second planes of the surface are nearly
equal and opposite. As a result the “uniform” con-
tribution to the atomic relaxations is relatively
small. This is reasonable in light of the work done
by Gazis and Wallis® which shows that the uniform
relaxation is proportional to the sum of the surface-
induced forces on the atomic planes at the surface.
The relative displacements, however, are reason-
ably large for the first three layers, dying out rap-
idly, as before, with increasing distance from the
surface. An interesting characteristic of the rela-
tive displacements is the alternating sign of the dis-
placement, indicating that certain pairs of atomic
planes are closer together after relaxation than they
were before. The last case remaining to be dis-
cussed is that of the (111) surface for a bcc lattice,
which is unique in that there are surface-induced
forces on the first three layers of the surface.
These forces are much smaller in magnitude than
the forces on the first two layers of the (110) sur-
face in a-iron, possibly because of the relative
openness of the bcc lattice in the (111) directions.
Consequently the total displacements of the first 20
layers near the surface are small. The relative
displacements do not decrease in magnitude with
distance from the surface as rapidly as for other
surface orientations, a behavior very reminiscent
of atomic relaxations about a vacancy in bce ma-
terials for atoms along the (111) directions in the
lattice.

The “uniform” displacement encountered in the
present work is a direct consequence of using a
short-range bulk potential to describe surface con-
ditions and partially due to neglecting anharmonic
contributions to the lattice relaxation. The bulk
potentials, in general, impose an internal com-
pression or expansion of the bulk lattice, such that
the mathematical model of surface formation re-
sembles clipping a spring which is originally under
tension or compression. The ensuing relaxation
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involves a uniform increase in the separation be-
tween coils. If there are a large number of coils
closely spaced, the increase in the “inter-coil”
separation is small, but the over-all displacement
of first few coils near the “cut” may be large.
Such a “ uniform” displacement would not be en-
countered, per se, if a long-range potential, such
as a Morse potential, were used, especially if a
finite number of layers were relaxed, since there
would be no way of distinguishing between the “uni-
form” contribution and the remainder of the rela-
tive displacement. In the present case, it would
probably be unwise to attach much real signifi-
cance to the “uniform” component of the relaxa-

tion.
It is apparent, especially in the case of Cu, that

bulk potentials (or force constants) cannot accu-
rately describe the interactions of atoms near the
surfaces of a crystal, yet these potentials must
still be used to determine the relaxations of atoms
below the first few surface layers. The “exact”
lattice statics approach is inadequate to handle sur-
face calculations in which interatomic potentials
vary as a function of depth within the crystal, and
for which anharmonic effects are very likely im-
portant. However, the “modified” lattice-statics
approach, ! in which surface-induced forces on the
first few atomic layers of a surface can be treated
exactly and the remainder of the crystal relaxed
harmonically, can be used to give more reliable
numerical values of atomic relaxations, once suit-
able interatomic potentials for surfaces are avail -
able. Work is currently progressing on such modi-
fied lattice statics calculations.

As mentioned in Sec. I, the short-range poten-
tials used in this paper differ considerably from
the potentials used by others; the Morse potential
was used in Refs. 3,4, and 6 and the Mie potential
in Ref. 5. Both of these types of potential are long
range in nature and the Morse potential, in partic-
ular, is known to give large displacements for at-
oms in the vicinity of point defects in bulk lattices,
compared to those obtained from short-range poten-
tials. However, Jackson® has drawn some general
conclusions concerning the relative sizes of dis-
placements at high-symmetry surfaces for bcc and
fcc lattices, with which some comparison may be
made. Jackson found that for bcc lattices the great-
est relaxation occurred for the (111) surface and
the least for (110). For the fcc lattice the order
was (110) >(100) > (111). In the present a-iron re-
sults, the displacement of the (100) surface layer
is greater than that for the (111) layer, which is
exactly opposite to Jackson’s conclusion. This re-
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sult is not surprising, since the tangential force
constants B; and B, obtained from the Morse poten-
tial differ greatly in magnitude from each other,
while those for the Johnson potential are nearly
equal. The calculations performed for fcc metals
are insufficient to allow a similar comparison for
that case.

Considering the deficiencies in the potentials
used, the directions and magnitudes of both the to-
tal displacements and relative displacements seem
reasonable. More reliable results must await the
development of surface potentials which realisti-
cally reflect the redistribution of electrons in the
vicinity of the surface.

V. SUMMARY

The lattice-statics formalism employed previ-
ously in determining atomic relaxations near point
defects and dislocations in bulk lattices!®™!? has
been applied to determine atomic relaxations in the
vicinity of surfaces in bcc and fcc materials in the
form of semi-infinite slabs. The formalism de-
veloped has been used to calculate the displace-
ments of atomic layers in the vicinity of (100),
(110), and (111) surfaces in a-iron and Cu.

The lattice-statics approach allows all of the
atoms in the model lattice to relax simultaneously
in the presence of the surface, but is accurate,
strictly speaking, only within the limitations of the
harmonic approximation. However, anharmonic
effects can be accounted for by a simple modifica-
tion of the present formalism, as outlined in Ref.
13 for point-defect problems. In addition, the po-
tentials used in the present calculation are actually
intended for calculations in bulk crystals, since
reliable surface potentials for metals do not appear
to be available at present. The numerical results
obtained are only intended to demonstrate the ap-
plication of the lattice statics approach to practical
surface problems and are not to be compared to ex-
perimental or other theoretical results. However,
the atomic relaxations obtained seem reasonable
and appear to possess some of the general charac-
teristics of surface displacements noted by
others.3-%?

The lattice statics formalism developed for ap-
plication to surface problems is quite general for
monatomic lattices and can be used, with minor
modifications, to investigate the properties of sur-
faces having lower symmetry than those considered
here and to determine the nature of interactions
between surfaces and point defects within the crys-
tal.

*Work supported by the University Senate Research
Committee.
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