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Momentum density and Compton profile of the inhomogeneous interacting electron system.
II. Application to atoms
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The locally averaged method which treats an inhomogeneous interacting electron gas as an average
over many systems with locally uniform densities is applied to calculate the momentum density and
Compton profile of atomic argon and krypton. The results show good agreement with experiment and
marked improvement over simple Thomas-Fermi calculations

I. INTRODUCTION

In the past few years' there has been renewed
interest in the momentum density and the associ-
ated Compton profiles of a variety of electronic
systems. The Compton profile J(q) (see the pre-
vious paper hereafter called I) can be measured
directly and is related to the momentum density
Ng by

z(q) = fdP„dP, [x;]„,. (I)

In all real electronic systems (atoms, molecules,
solids, etc. ) both spatial inhomogeneity and the
electronic Coulomb correlations are present and
are reflected in the function N&. A general method
enabling one, in principle, to calculate N& taking
these two factors fully into account was formulated
in I. This general approach is based on Feynman's
theorem and the Hohenberg-Kohn theory of the in-
homogeneous electron gas. In this paper one of
the special cases, viz. , the locally averaged meth-
od, introduced in Sec. IIIB of I will be applied to
atomic argon and krypton.

Atoms are the simplest finite systems containing
a number of interacting electrons. The spherical
symmetry of the nuclear potential V(r), which leads
to the spatial inhomogeneities makes atoms easier
to handle theoretically than other finite systems,
e. g. , molecules. In addition to this, the core
electrons of many other complicated systems such
as solids are atomic or ionic in character so that
an understanding of atoms is an essential first step
in our interpretation of data taken in solids. In
order to find the Compton profile of the conduction
electrons in metals, for example, it is necessary
to know the core part first and subtract it from the
total profile. It is a good approximation to assume
that the core electrons have wave functions which
are essentially unchanged from the corresponding
atomic wave functions. The Compton profiles of
these systems are typically obtained utilizing

Hartree-Fock atomic wave functions. For prac-
tical reasons it would be of interest to find a sim-
pler way to accurately determine the atomic Comp-
ton profiles and thus ease the job of subtraction in
solids.

At the present time the Compton spectrum of the
three lightest noble elements, helium, argon, and

krypton are the only ones to have been measured.
With the perfection of the Z-ray technique this list
will soon be lengthened. For the three elements
mentioned above their Compton profiles have been
calculated either by Fourier transforming the self-
consistent wave functions4 or by using the Thomas-
Fermi approximation. As we will show below
(Sec. III) the Thomas-Fermi method is far from
adequate in explaining the Compton profiles. On

the other hand, for high-Z atoms, where Z is the
atomic number, wave functions must include rela-
tivistic effects properly and they become increasing-
ly difficult to obtain. With these facts in mind the

locally averaged method of I is presented here as
an alternative to the self-consistent wave-function
calculations. Its merit and accuracy will be re-
viewed in Sec. II.

Section III contains the numerical calculations for
atomic argon and krypton using the above method
together with the Thomas-Fermi results for com-
parison purposes. General discussions are then
presented in Sec. IV.

II. THEORY

The idea of treating a system of inhomogeneous
interacting Fermi particles as locally homogeneous
and in equilibrium dates back to the original
Thomas-Fermi approximation. 6 Since then differ-
ent kinds of variations of this scheme have re-
ceived considerable attention. "

The Fermi- Thomas method always works best
when the gradients of the density are small. How-
ever, the actual magnitude of the corrections to
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such a scheme depend on the explicit quantity
which is being calculated. In I it was pointed out
that the locally-averaged-density method as ap-
plied to a calculation of the momentum density
might have an extremely wide range of validity,
i.e. , be quite insensitive to gradients. This meth-
od approximates the momentum density N- by

Ã~= fN (s(r))n(r)dr. (2)

Here n(~) is the local charge density and iV3(/3(r))
is the momentum density of a homogeneous inter-
acting electron gas of constant density n(r). The
leading corrections to Eq. (2) have been evaluated
in I. Combining (1) and (2), we arrive at a simple
expression for the Compton profile

J(q) = fJ2(q) n(r) dr . (3)

Here 8„'(q) is the Compton profile of the homoge-
neous gas at a density n.

The Thomas-Fermi approximation results if in
(3) we replace J'„(q) by the free-electron parabolic
profile and n(r) by n TF(r) where

I.0'

0.9

0.2

0. 1

Qt.
0

n (r) = (32/9r ) Z [e(x)/x] / .
In atomic units (if=m =e'=1)

x =-2(4/3v)2/'Z '/' ~,

(4)
(b)

FIG. 1. Momentum density N& as a function of w~ for
fixed p. (a) p=O, (b) p=l. 05 (p&=1). Data from Ref. 11.

and 4(x) 'is a function satisfying the Thomas-Fermi
equation

TABLE I. Compton profiles of Ar.

d @~~ 1/2 [C ( )]3/2 (6)

0. 0
0. 1
O. 2
0.3
0.4
0, 5
0. 6
0, 7
0.8
O. 9
l. 0
1.2

1.4
1.6
1.8
2. 0
2. 5
3.0
3.5
4. 0
5. 0
6.0
7.0
8. 0
9.0

10.0
15.0

5. 052
5.028
4. 950
4. 812
4. 608
4. 369
4. 028
3.690
3.328
2. 982
2. 658
2. 108
l, 701
1.417
l. 221
l. 084
0. 873
0. 736
0.621
0. 520
0. 351
0.249
O. 177
0. 130
0. 098
0. 075
0.025

Expt.

5. 058
5. 022
4. 917
4. 749
4. 526
4.259
3.960
3.643
3.319
3.000
2. 697
2. 164
1.753
l.461
l.264
1.129
O. 924
0. 744
0. 634
0. 534
0.366
0.260
O. 181
O. 137
O. 104
0. 078
O. 025

5.378
5.299
5. 044
4. 727
4.405
4. 090
3.787
3.499
3.226
2. 970
2. 729
2.295
1.920
1.601
l. 336
l. 122
0. 812
0.685
O. 591
0. 512
O. 379
0.274
0.192
O. 131
O. 089
0.064
0, 026

5. 607
5.462
5. 123
4. 770
4.423
4. 091
3.776
3.478
3.199
2. 937
2. 692
2. 253
1.876
1.557
l.294
l. 084
0.795
0.67S
0.587
0.509
0.376
0.271
O. 189
0.129
0. 088
0.063
0.025

HF

5.626
5.433
5. 119
4. 781
4. 445
4. 120
3.808
3.513
3.232
2. 967
2. 720
2.275
l. 890
l. 564
l. 296
l. 080
O. 795
D. 681
0. 591
0. 512
0. 380
O. 274
0.191
0.129
O. 088
O. 063
0. 025

8.245
7.106
5. 744
4. 885
4.263
3.782
3.394
3.072
2. 800
2. 567
2. 363
2. 027
l. 759
l. 542
1.362
l.211
0. 923
0. 721
0. 575
0.465
0.316
0.222
0.161
0. 119
O. 090
O. 069
0. 022

This function 4 (x) can be approximated by

4 (x) = [(1+l.8106lx'/2+ 0.60112x)/(1+ l. 81061x'/2

+1.39515x+0.VV112x'/ +0.21465x

+0.04v932/2)]'. (v)

These results will be useful in the numerical cal-
culations presented in Sec. III.

III. CALCULA'GONS

In Table I we give the calculated Compton pro-
files of argon (Z =18). The experimental results4
(Expt) and wave-function calculations (WF) are
also listed for comparison. The last column (TF)
in the table is the Thomas-Fermi calculation using
Eels. (4)-(V}. The fourth column, marked LAN
(locally averaged method) in the table gives the re-
sults using (3) with a charge density obtained from
Tong and Sham (TS).' The Tong-Sham n(r} is
calculated by the Kohn-Sham self-consistent
scheme. ~

The momentum density of a homogeneous gas
may be considered to be a function of two indepen-
dent variables, i.e. , the momentum P and the gas
density n, or equivalently, p and x,. The quantity
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r, in atomic units is (4ttn/3) I . In Fig. 1 we
show the typical variation of N; with r, (the RPA
result) for two values of P (the Fermi momentum
P„=1)." For typical atoms the relevant r, falls
within the range 0&@,&2. 5 (see Fig. 4). From
Fig. 1 we see that for this domain of r, to a first
approximation we may write

x,(r, ) =A,r, +a,

for all p. In our calculations the linear term in
Etl. (S) is fixed by the two points ~, = 0 and r, = 1.9.
It follows from (1) that the Compton profile has a
similar lineax dependence on r, .

The fifth column (TS) is calculated utilizing the
same Tong and Sham'o charge density as before,
but instead of using RPA expressions for the homo-
geneous gas we have used the free-electron Fermi
distribution. The sixth column (HF) uses charge
densities from Hartree-Fock calculations'3 and the
same RPA local Compton profiles as that in the
LAM column.

As shown in TaMe I, the Thomas-Fermi results
are not in good agreement with experiment. Com-
parisons between the columns LAM, TS, and HF
show that the use of various n(r) and J'„'(q) in (3)
does make a difference. While it is clear that the
direct wave function results give the best agree-
ment, it is also clear that the LAM calculations

0.0
0.1
0, 2
0.3
0.4
0. 5
0. 6
0.7
0.8
0. 9
1.0
1.2
1,4
1.6
1.8
2, 0
2. 5
3.0
3.5
4. 0
5.0
6.0
7.0
8.0
9.0

10.0
15.0
20. 0
25. 0
30.0

WF

7.228
7.194
7. 085
6.888
6. 595
6.216
5.776
5.309
4. 848
4.420
4. 039
3.441
3.037
2. 769
2. 583
2, 441
2. 144
1.857
l. 578
l. 326
0.934
0.678
0. 512
0.400
0.319
0.259
0.104
0. 049
0.026
0. 015

Expt.

7.205
7.152
7. 022
6.767
6.459
6, 098
5. 701
5.289
4. 880
4, 491
4. 133
3, 540
3.122
2. 850
2.670
2, 533
2, 219
l. 898
l. 597
l.338
0.937
0.683
0. 522
0.399
0.316
0.254
0. 095
0. 044
0. 022
0. 009

7.240
7, 182
V. 013
6.735
6.360
5, 968
5. 590
5.230
4. 891
4. 574
4.277
3.747
3.299
2. 927
2. 629
2. 399
2. 024
l. 764
l. 551
l. 343
1.008
0, 741
0. 534
0. 384
0.294
0.243
0. 111
0, 04V

0.023
0. 014

V. 448
7.378
V. 168
6.819
6.387
5.971
5, 576
5.205
4.857
4. 534
4.233
3.698
3.249
2. 881
2. 589
2.368
2, 010
l. 756
l. 545
1.335
1.000
0.734
0.523
0.379
0.290
0.241
0.110
0. 046
0.022
0.014

TABLE II. Compton profiles of Kr.

TF

10.363
9.797
8.417
V. 395
6.634
6.030
5. 533
5.112
4. 750
4.433
4. 152
3.677
3.288
2. 962
2.686
.2.448
1.977
1.628
1.362
1.152
D. 848
0.642
0.497
0.392
0.313
0.253
0. 100
Q. 047
0. 024
0. 014

)
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are also quite accurate. In Fig. 2 the results of
LAM and TF are plotted together with the experi-
mental data.

In Table II the calculated Compton profiles for
krypton (Z = 36) are presented. Each column in the
table has the same meaning as its counterpart in
Table I. The same conclusions about argon can
also be drawn here. The results of LAM, TF,
and experiment from Table II are plotted in Fig.
3. In this case the agreement between LAM and
experiment at the origin is much closer than in
the case of argon.

The above conclusions remain valid even when
the revised experimental data of Eisenberger and
Reed'4 are used instead of the data quoted here.

IV. DISCUSSION

q (a.u. )

lO

FIG. 2. Compton profiles of Ar. Solid line, experi-
ment from Ref. 4. Dashed line, calculated Thomas-
Fermi results. Dots, LAM calculation (see Sec. III).

The agreement between the LAM calculations
and experiment for argon and krypton give us some
confidence that LAM works quite well in atoms.
This coincides with the conclusions of Park and

Rotenberg, ' who used the same kind of approxi-
mation to calculate the atomic scattering factors.
In both cases, the LAN results show marked im-
provement over the Thomas-Fermi results and
are close to the wave-function calculations.
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LAM.

J"- Jl+ JP

FIG. 5. Schematic plot of the hvo contributions to the
Compton profile of atom. J& is from electrons near the
nucleus. J2 is from outer electrons in the atom.

I I I I I I I I I I I

5 IO

q (o.u. )

FIG. 3. Compton profiles of Kr. Symbols the same
as in Fig. 2.

As we have already pointed out the validity of
LAM is closely tied to the requirement that r,
vary slowly in space. In Fig. 4 we plot the Tong-
Sham n(r) '0 and the corresponding r, values for
Kr. In this case we see a posteorj that r, does
vary smoothly. In fact a similar result holds for
Ar.

There is another point worth making. Within
the LAM, Z(q) for each q, [Eq. (3)j is an integral

Z((q) =- f J'„(q)n(r) dr

and

Z~(q) =—i J'„(q)n(r) dr .

(lo)

over aQ space. However, it is clear that for dif-
ferent q's J(q) is in fact determined by the contri-
butions from different space regions. For ex-
ample, near q = 0, the space integral in (3) is dom-
inated by the contribution from the region of the
atom where r, is relatively high (low density).
This may be made clearer by separating the in-
tegral in Eq. (3) into two parts:

~(q) =~)(q)+&3(q),

where

4vrr~rl (r ) (a.u.)

50

40

30

20

FIG 4 Spatial charge
density, 4ndn(x} and the
corresponding r~ for Kr.
In(~} from Ref. 10].
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A is an arbitrary value of r which crudely divides
the wiggling from the smooth part of r n(r). For
example, in Fig. 4 we may choose A-0. 8 a.u.
The generaL shape and size of J, and J3 is sketched
in Fig. 5. The point q~ in Fig. 5 is roughly given
by qz =1.92/r, (R), the Fermi momentum corre-
sponding to z, at r =R.

These simple considerations indicate that the
Compton profile of any atom may be roughly sep-
arated into bvo curves. The sharpest one, J3,
comes from the outer electrons where the density
changes rather smoothly and is expected to be
given accurately by the LAM formula, Eq. (11).
Since the integral under J(q) is equal to the total
number of electrons N, the flatter spectrum J, has
an area which is determined by

(12)

N J,'(q) dq .

8, as defined by Eq. (10) does satisfy this sum
rule. Thus if @re have a good J3 the integral sum
rule restricts the form of J, and tells us that at

least the average properties of J are correct.
The calculations shown in Sec. III indicate that

an accurate n(r) and Z„(q) are essential to the suc-
cess of the locally averaged method. This reduces
its usefulness as a practical means to calculate
the Compton profiles of core electrons in solids
since n(r) is not known before a detailed calcula-
tion is carried out. Another complication is the
uncertainty of whether n(r) in (2) can be taken as
that part of the core electrons only without includ-
ing conduction electrons. On the other hand, for
atoms n(r) may be inferred from x-ray diffraction
experiments and the locally averaged method may
be appropriate. It remains to be seen how well
the method ean be applied to other electronic sys-
tems, e.g. , molecules.
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