
PHYSICAL REVIE% 8

Momentum density and Compton profile of the inhomogeneous interacting electronic
system. I. Formalism

L. Lam
DeIpartment of Physics, City College, City University of ¹wFork, ¹wFork, ¹wFork 10031~

and Department of Physics, Columbia University, ¹wFork, ¹wFork 10027

P. M. Platzman
Bell Laboratories, Murray Hill, ¹eJersey 07974

(Received 31 December 1973)

A general formalism to determine the momentum density and Compton profiles of an inhomogeneous
interacting electron system is proposed. The method is based on Feynman's theorem and the
Hohenberg-Kohn theory of the inhomogeneous electron gas. Functional-derivative techniques are used.
The results emcompass many of the previous approaches as special cases and present them from a
unified vie~int. In addition, several new approximate methods for calculating the Compton profiles of
electronic systems are proposed.

I. 'INTRODUCTION

The single-particle momentum density of an in-
homogeneous electronic system (e.g. , atoms, mol-
ecules, and solids) is a rather interesting and im-
portant quantity to study. Its importance rests on
the. fact that it can be measured, rather directly,
by high-energy (x-ray or y-ray) Compton-scatter-
ing experiments. ' Its interest, in the context of
condensed-matter physics, rests on the fact that it
is a relatively simple function which incorporates,
in a nontrivial way, the many-body aspects of the
interactions between the constituents of the system.
In particular, for metals, this function gives in-
formation about the shape of the Fermi surfacea'3
and the importance of short-range electron-elec-
tron and electron-ion collision. The momentum
density provides us with an experimentally observed
function of a single variable which may be used to
compare approximate wave functions of the many-
body system. Such a comparison may ultimately
be useful in discriminating different sets of wave
functions which yield equally good estimates, for
example, of the ground-state energy.

In a typical experiment, '5 the energy spectrum
of monochromatic x-rays scattered through 180'
by a sample (i.e. , the electronic system) is mea-
sured. Because of the high energy of the photons
used and because of the high-recoil energy of the
electrons relative to typical atomic energies, the
so-called impulse approximation is applicable. In
this case, t¹differential cross section is found to
be linearly proportional to Z(q) where"

function of the electronic system and aN, a&~ are,
respectively, the annihilation and creation oper-
ators of the free-electron state

(1.3)

In (1.1) the z axis is chosen as the direction of k,
the momentum transfer, and q is given by

(1.4)

with (d being the energy transferred in the scatter-
ing event.

In this paper we assume that the impulse approx-
imation is valid so that Z(q), the Compton profile,
as defined in (1.1) gives us a two-component aver-
age of the three-dimensional momentum density

In what follows we attempt to find an effective
way of calculating N& and thus Z(q), taking both the
intrinsic inhomogeneities and the CouloInb correla-
tion between the electrons into account.

Previous efforts to understand the momentum
density or the Gompton profiles of electronic sys-
tems fall into either one of the following four cate-
gories.

(a) First calculate the wave functions of the
many-electron system (e. g. , in some sort of Har-
tx'ee-Fock appx'oxlIQatlon for atoms self- con-
sistent approximations for molecules, 9 and Nigner-
Seitz approximations or pseudo-wave-functions '
for solids, etc. ), and then Fourier transform the
wave functions to obtain the momentum density.
This is usually done by assuming that the wave
function is an antisymmetrized product of single-
particle wave functions and is thus stx'ictly within
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(c) Confine oneself to the homogeneous case and
treat the interelectron Coulomb interaction in the
random-phase approximation (RPA)" " and in some
cases go beyond RPA to include some exchange ef-
fects. ' ' 7 The Compton profiles corresponding to
these various approximate results of NN are also
available. '

(d) A full many-body treatment for conduction
electrons in metals with weak crystal fields that
include both the interelectron and electron-ion in-
teractions. '

Our method of calculating the momentum density,
or the Compton profile, of a general inhomoge-
neous interacting electronic system as presented
in the following includes all the four categories of
previous approach as special cases ' and suggests
several new approximate methods, one of which is
applied to atomic systems in the following paper.
In Sec. II, the general formalism is presented, and
several special cases are spelled out in Sec. III.
Section IV concludes the paper.

II. FORMULATION

approximations. The Hohenberg-Kohn formula-
tion of this problem provides us with such a
scheme.

H= T+U+ V

where

T= —,
' f Vg~(r) Vg(r)dr

(2.3)

(2.4)

V = f V(r) g (r) P(r) dr

g(r) and g~(r) are the mutually conjugate second-
quantized field operators. When g(r) is written in
terms of the a~'s, the annihilation operators for
plane-wave states, Eq. (2.4), become

(2.6)

B. Ground-state energy as a functional of electron density

For a system of nonrelativistic interacting elec-
trons in an external potential V(r) (the source of
the inhomogeneity), the Hamiltonian has the form
(K=e =m=1)

For simplicity of presentation the electronic
system we consider here is nonrelativistic and at
zero temperature. Qecause of the high Fermi
temperature and low Fermi velocity (relative to
the velocity of light) characterizing most simple
mate'"ials these conditions are usually satisfied.
The generalization to nonzero temperature pre-
sents no conceptual problems and is presented
elsewhere. The essence of our approach is a
combination of Feynman's theorem and the Hohen-
berg-Kohn formulation24 of inhomogeneous electron
gas. Our method of finding the momentum density
of an inhomogeneous electron liquid described by
the Hamiltonian H is based on the following two
steps. 2'

T=~ E~Q~a&

where

2k

In this representation (2. 2) is

H~ (&) = T~ + U+ V,
where

Tp = Q e „(p)a~ a~

~.(p) =~.+»&
~.

(2.7)

(2.8)

(2.9)

(2. 10)

(2. 11)
A. Connection between momentum density and

ground-state energy

Feynman's thee rem implies the relation

BE~(X}
8X

(2.1)

wher'e E~(X) is the exact ground-state energy of
H, (~) and

Hq(A. ) =H+ 4'aq— (2. 2)

Here p= (p, o~) denotes the momentum and spin of
the plane-wave state of an electron. Thus, a knowl-
edge of the ground state energy of a system with
the modified Hamiltonian given in (2. 2) enables one
to calculate N~ . 'The question then is how to find
suitable expressions for the ground-state energy
of a complicated system in a realistic yet suffi-
ciently general fashion so as to permit a variety of

A comparison between Eqs. (2. 3) and (2.9) shows
that H~(A) is obtained from H by replacing e, by
e,(p). As a, result, if we replace everywhere e,
by e,(p) in the ground-state energy E of H we will
get E~(X}. If we then go on and differentiate E~(X)
with respect to A. and set A. =0, we will by Eq. (2.1)
obtain N~ . In general, this differentiation with re-
spect to A, is very invoived because &, usually ap-
pears in E in a very complicated form. However,
as we will show shortly, some simplification using
the results of Hohenberg and Kohn24 are possible.

Defining n(r) by

n(r) = (40
~
y'(r) y(r)

~
Co&, (2.12)

Hohenberg and Kohn have shown that~' (a) the

ground-state energy E of H is a unique (and univer-
sal) functional of n(r) and (b) E is stationary with
respect to the variation of n(r).

Point (a) implies that we may write
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z =z[n]

=— ~ V(r)n(r) dr

+—,drdr +G[n]
1 "n(r)n(r')

(2. i3)

(2. i4)

we have

n(r) -n, (r)

G[n]-G„[n,] .
The dependence on p in n„(r) and G„(n„) is under-
stood. As pointed out above, under the transfor-
mation (2.15), E of (2.14) becomes E~(X). There
are two sources of A, dependence in E~(A). The
first is an explicit dependence coming from G, (n„)
outside of n„(r). The second is the dependence
contained in n„(r). When we differentiate E~(X)
with respect to A. in order to obtain N~ we may ne-
glect the second dependence because of the sta-
tionary property [see point (b)] of E any first-order
changes in n(r) do not affect E. Consequently,

(2.17)

Eq. (2.14) is a formal expression used to define
the correlation functional G[n]. Since n(r) depends
on the ground-state wave function, it is obvious
that n(r) also has a dependence on &~. Let us as-
sume that under the transformation

(2. iS)

A. Gas of almost constant density

For a gas of almost constant density, i.e. ,

n(r) =no+n(r) (3.2)

(for example, in the case of the jellium model
where the positive charge is assumed to be uni-
form), the charge density n(r) is also a constant.
The energy functional G[n] in (2. 14) is then simply
the sum of kinetic, exchange, and correlation en-
ergies of a homogeneous interacting gas of con-
stant density n, and the momentum density N& [Eq.
(2.19)] is isotropic. A discussion of the qualitative
and quantitative behavior of the momentum density
and the corresponding Compton profiles in this case
has been presented elsewhere ' and will not be
repeated here.

Ayide from these cases we must resort to some
approximate scheme which allows one to explicitly
compute the Compton profile. We consider three
such approximation schemes. The first one sim-
ply yields, within the framework of this formula-
tion, the perturbation results for a weakly inhomo-
geneous system. The second gives us a new type
of Fermi-Thomas approximation for a system with
slowly varying density, while the third presents an
in-principle self-consistent scheme for utilizing
the results of density calculations to obtain an ap-
proximate calculation of the Compton profile.

'Sz, (~) sG,[n]
8A, ~ 0 BA.

(2.19) n(r)/no «1
and

(3.3)

since E[n] —G[n] has no explicit dependence on a~.
Using (2. 1), we see that

VG[n]
p (2.19)

where the functional derivative on the right-hand
side of (2.19) is understood to have the same mean-
ing as that in (2.1) plus the implicit understanding
that n(r) everywhere is kept intact during the dif-
ferentiation.

III. SPECIAL CASES

in general the exact form of G[n] is unknown ex-
cept in some exceptionally simple cases. For non-
interactiDg electrons and for interacting electrons
in the Hartree and Hartree-Foek approximations
it is straightforward to show that Eq. (2.19) is
equivalent to

5K r —r
5&~

Defining the Fourier transforms by

(3.7)

(3.4)

the energy functional G[n] [in (2. 14)] can formally
be expanded to second order in n(r) i.e. ,

G[n]= G[nol+ fZ(r- r')n(r)n(r') drdr'+. . . ,
(3.5)

where G[no] is the energy functional of a homoge-
neous gas of constant density no, i, e. , the ex-
change and correlation energy. By (2. 19)

(3.6)

where N~ is the momentum density of the homoge-
neous gas of density pro and

(3.i)
K(r) -=+Ã(q) e "' (3.8)

the Fourier transform of the one-electron orbital

When the external potential V(r) is a constant
(3.9)
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q=0 (s. ii)
Similarly

Z(q) = —,
'

v, [&(q, 0) —1] '

Substituting (S.IO) and (3.12) into (3.9) we have

(3.12)

V(q) '
&Z(q, 0)2~ v, ~(q, o} &a~

(s. is)

For a crystal, the variable q in (3.13) is restricted
to the reciprocal lattice vectors only, and we re-
cover the equations obtained previously for a weakly
inhomogeneous electron gas. ' Equation (3.13)
has already been applied to simple metals. '

B. Locally averaged method

In many cases of interest the momentum density
of a uniform gas is expected to vary slowly with
the electron density n. Qualitatively we can under-
stand this if we remember that the momentum den-
sity of a uniform system is almost completely fixed
by the Fermi momentum p~. Since p+=-n'~, i.e. ,
is rather weakly dependent on density, we would
hope that a slowly varying approximation would be
valid even for rather rapidly varying density func-
tions.

In order to obtain an expression for the momen-
tum density, it is natural to write the energy func-
tional G[n] as

G[n]= fg~[n]n(r)dr (s.14)

(in the manner of Hohenberg and Kohn ). For a
system of electrons with slowly varying density the
functional gz [n] may be expanded about the point
r, i.e. ,

g~ [sl =g' [s]—l f&.(.) (r'}

x[n(r+ —,'r')-n(r ——,'r')] dr'+. . . , (3.15)

where g [n] is the sum of kinetic, exchange, and
correlation energies per electron of a homogeneous
gas of constant density n(r) and

Z'„(~) (r') =-Q K),(q) e '~'~' (s. is)
C

K, (q) = —,
' v, je„(,) (q} (s. I'I)

g„&„&(q) is the static dielectric constant of a homo-

By perturbation theory, treating V in (2.3) to low-
est order, it is easy to show that n(q) can be re-
lated to the external potential V(q) through the di-
electric function e(q, (d) of the homogeneous gas
(of density so). In fact.-(;)="'"(I- ' (s. Io)

v, ( ~(q, o)

where

geneous gas of density s(r). By (2. 19) and (3.14)-
(s. Iv),

X, = fZ,'( (r))n(r) d'r+ mV, (3.1&)

where N~ (n(r)) is the momentum density of a uni-
form electron liquid with local density n(r) and

2

xn(r) dr dr' (3.19)

We note that the first term on the right-hand side
of (3.14) is isotropic in p although n(r) may be
anisotropic in r space. The anisotropy of N& in p
space only comes from 5Ã~.

The spirit underlying the approximation in (3.14)
is the same as that in the Thomas-Fermi gas. The
important difference lies in the fact that n(r) in
(3.14) is the exact electron density (coming from
the complete solution of the many-body problem
including inhomogeneity and electron correlations)
compared to the simple n(r) used in the standard'
Thomas- Fermi approximation. Furthermore, the
local momentum density in (3.I&), N~{n}, is the
fully interacting electron liquid result while the
counter part in the Thomas-Fermi approximation
is nothing but the free-electron Fermi distribution.
These two distinctions will be shown~ to lead to
significant modifications in the Compton profiles.

G[s] -=T[n]+Z„[n], (s.so)

where T[n] is the kinetic energy of a system of in-
homogeneous noninteracting electrons with density
n(r) and E„[n] is, by definition, the exchange and
correlation energy of an interacting system with
density n(r}. The set of one-electron equations
obtained from such an assumed form for the ener-
gy functional are

[P'/2m+ V„,(r)] (,(r))=Z, y, (r), (s.21)

with

)'.„(r)=-r(r)+I - -, d '+);.(r'), (S 2r)

(L Self-consistent approximation

In some real systems the electron density is
neither nearly constant nor slowly varying, so that
the two approximations discussed in Secs. IIIA and
III B cannot be used for quantitative calculations.
A simple alternative approximation scheme is use-
ful.

It has been shown by Kohn and Shama~ that it is
possible, at least formally, to replace the many-
electron problem of (2. 14) by a set of self-consis-
tent one-electron equations. This is accomplished
by splitting the energy functional G[n] into two
parts
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( )
5E„[n]
%(r) (3.23)

n(r) =Q I e;(r) I' . (s.24)

1 "n(r)n(r') „-„-,
2. ~r —r'I

Here N is the number of electrons. The ground-
state energy E of the system, by (2.14), becomes

E„,[n] = J a„(n(r))n(r) dr (s.so)

(S.31)

where &„,(n) is the exchange and correlation energy
per electron of a homogeneous electron gas of con-
stant density n. Computations in this approxima-
tion have been carried out for atoms by Tong and
Sham ' and for sodium metal by Tong. By the
rule of Sec. II B and Eq. (S.30)

[& (n(r)) -N, (n (r))] n (r) dr (S.32)

+z„(n] —J)',.(r) ( )dr (s.as)

6E; 5E„[n] 5 V„(1)
5&p 5E'p ~ Gap

Equation (3.26) may be made more explicit if we
use the fa,ct tha, t

(3.27)

Equation (3.25) is exact and Eqs. (3.21)-(3.24)
have to be solved self-consistently.

In analogy with the one-electron approximation,
the momentum density N~ may be found by simply
differentiating Eq. (3.25) with respect to its im-
plicit dependence on g~ [see Eq. (2. 19)] making
sure to keep n(r) fixed as per the discussion pre-
ceding Eq. (2.19). The result is

where N&(n) is defined after (3.18) and ~"(n) is the
free-electron Fermi distribution.

Another intriguing problem in the theory of the
Compton profiles of solids is the correct handling
of the core-orthogonalization effects. This diffi-
culty arises because we have artificially divided the
electrons in the solid into core and conduction elec-
trons. Although the case of sodium metal3 ~ 20 (and
similar materials) has been successfully attacked
by simple approximate Inethods, the general core-
orthogonalization problem is still a difficult one.
The method presented in this section offers a way
to avoid this problem completely. By treating all
the electrons on the same footings~ and using (3.29)
and (3.31), we can obtain the momentum density
or equivalently the Compton profile directly for
the whole system if we know the density n(r) every-
where and have a suitable approximate form for
the momentum density of the homogeneous gas.

I@')

Putting (3.28) into (3.26) and using (S.24), we
finally find tha, t

(s.28)

I (p I g ) I

8 xe[n]

$~1 ~Cp
(s. a9)

Equation (3.29) is similar to Eq. (3.1), however,
unlike (3.1) it is formally exact. When the states

~ g,.) are the actual one-electron states as in the
Hartree-Fock approximation then [as in (S.1)] the
second term on the right-hand side of Eq. (3.29)
is missing. In this self-consistent scheme the
states I P&) do not represent the "actual" one-elec-
tron states of the system as in the case of the Har-
tree-Fock calculations, thus the existence of the
second term on the right-hand side of (S.29). This
term represents the corrections to the momentum
distribution due to correlations between the states
l(1);).

To be more specific, let us consider one partic-
ular form of approximation for E„,[n], i.e. , the
"local" approximation. We set

IV. CONCLUSIONS

We have presented a general formalism which
enables us (formally) to determine the momentum
density and Compton profiles of homogeneous in-
teracting electronic systems. This method is based
on the use of Feynman's theorem and the Hohen-
berg-Kohn theory of the inhomogeneous electron
gas. This forrnal solution shifts the problem of
finding the momentum density directly to that of
finding the ground-state energy of the inhomoge-
neous system (with a slightly modified Hamilto-
nian). In this form it is possible to take advantage
of the many explicit results obtained by workers
who were interested in the ground-state energy
problem. Many of the conventional approaches
and a few new ones axe recovered when explicit
forms for this ground-state energy are postulated.
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