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Band structure, cohesive energy, optical conductivity, and Compton profile of lithium
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A self-consistent calculation of energy bands in lithium has been performed using the
linear-combination-of-atomic-orbitals (KAO) method. The basis set consisted of nine s-type, six p-type,
and three d-type Gaussian orbitals. Exchange was included according to the Xa method with a=2/3.
Results are presented for the band structure, Fermi-surface properties, cohesive energy, and the
Compton pro61e. The interband contribution to the optical conductivity was calculated including the k
variation of the momentum matrix elements. The distortions of the Fermi surface from spherical
symmetry are less than 4%. The optical and thermal effective-mass ratios are 1.48 and 1.53,
respectively. The onset of direct interband transitions is predicted to occur at 3.28 eV, The calculated
cohesive energy is 0.124 Ry.

I. INTRODUCTION

The band structure of lithium has been studied
by many authors. ~ We have undertaken another
calculation with the following objectives: (i) to de-
velop and test procedures for calculating energy
bands within the linear -combination-of -atomic-or-
bitals (LCAO) method using as basis states individ-
ual Gaussian orbitals (not atomic functions); (ii) to
calculate the total energy as a test of the numerical
precision of our calculational methods; and (iii) to
test the ability of ordinary band theory to predict
the observed Compton profile and interband optical
conductivity.

The I CAQ or tight-binding method, as originally
developed, was based on an expansion of the wave
function for a band electron in a set of trial Bloch
functions formed fxom wave functions for isolated
atoms. The method was plagued by severe prob-
lems involving the computation of the numerous re-
quired integrals, particularly three-center inte-
grals. The calculational difficulties were greatly
reduced by I.in and collaborators '4'v who showed
that the use of a Fourier expansion for the crystal
potential eliminated the necessity for explicit con-
sideration of, three-center integrals, and pointed
out the utility of Gaussian-type orbitals (GTO) as
basis functions for the expansion. In previous
work, the band structures of transition metals have
been investigated using a basis set consisting of
atomic wave functions (expressed as linear com-
binations of GTO) for all states except Sd, and in-
dependent GTO for the 3d. ~ The variational free-
dom of the basis sets would be increased and the
accuracy of the results improved, if it were possi-
ble to treat the orbitals as independent. The pres-
ent work is our fix st calculation of this type.

This calculation begins with the assumption of a
charge density formed by the superposition of
atomic charge densities, as detexmined from the
work of Huzinaga. Exchange was included ac-

cording to the Xa method, ~ with n= —', . Self-con-
sistency was achieved by iteration, as described
elsewhere. ~s In order to test the numerical accu-
racy achieved in this calculation, we have com-
puted the total energy per atom. Comparison with
the corresponding figure for an isolated lithium
atom leads to a value for the cohesive energy of the
metal. We have also used the calculated wave
functions to compute the Compton profile, which is
a measure of the electron momentum distribution.

Major emphasis in this work has been placed on
calculation of the optical conductivity. In previous
work, we have demonstrated that the interband con-
tribution to the optical conductivity of potassium
can be adequately calculated using the self-consis-
tent I.CAQ method. However, that work used a
basis set consisting of atomic wave functions. The
use of an individual orbital basis should lead to a
substantial improvement in the wave functions of
excited states. As a result, the conductivity cal-
culated here should be accurate within the limita-
tions of the one-electron approximation and the
form of the exchange interaction employed. Qf
course, additional contributions must be expected,
particularly from the electron-phonon interaction.

II. PROCEDURES OF THE BAND CALCULATION

The wave function g„(k, r) of an electron belong-
ing to band n, and wave vector k is expanded as a
linear combination of trial Bloch functions P&(k, r)

y„(k, r) =Q c„,(k) y, (k, r) .

The Qz(k, r) are linear combinations of Gaussian
orbitals on the atomic sites,

Qg(k, r) = ~~ Z e' ""ug(r -R„) .

The orbitals u; are products of normalized radi-
al function of the form
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TABLE I. Orbital exponents for the Gaussian basis
set.

s type

10000. 0
800. 0
90. 0
16.0
4. 0
1.4
0.46
0.24
0. 13

P type

100.0
11.0
2. 5
0. 7
0.29
0. 15

d type

2. 50
0.36
0. 14

(in which l; is the relevant angular momentum and

g, is the orbital exponent) and angular functions
which are real linear combinations of spherical
harmonics. Our basis includes nine s-type, six
p-type, and three d-type functions. The exponents
are listed in Table I. The small exponents re-
quired in atomic calculations are not required to
construct solid-state wave functions. The present
basis can be compared to the nine s, seven p func-
tions contracted to three independent s and three
independent p functions employed in Ref. 17. Ex-

tensive tests in which the overlap matrix was diag-
onalized at many points in the Brillouin zone indi-
cated that none of the overlap eigenvalues was
small enough to cause numerical instability. The
resulting Hamiltonian and overlap matrices are of
dimension 42' 42 at a general point of the Brillouin
zone. The lattice constant was taken to be
6. 597@0.

The self-consistency calculation followed the
procedures described in Refs. 22 and 25. Approxi-
mately twenty iterations were required to achieve
self -consistency. The iterative process stopped
when the (110) Fourier coefficient of the Coulomb
potential did not change by more than 10 ~ Ry.
Changes in the lowest 100 rotationally independent
Fourier coefficients of the crystal potential were
considered. The charge density was sampled at
140 points in ~8 of the Brillouin zone in the final
stages of the iterative process. The calculations
were done using double precision arithmetic on an
IBM 360-65.

The energy bands resulting from these calcula-
tions are shown along some directions of symmetry
in Fig. 1. In order to facilitate comparison of our
results with those of other workers, a table of en-
ergy levels relative to the lowest I', state is given
in Table Q. Results obtained by Dagens and Per-
rot 0 using the same exchange potential are also

1.8

1.6

1.4

1.2

1.0
K

0.8
C5

0.6
X
LLI 0.4

Np

N'e FIG. 1. Band structure of
lithium in several symmetry
directions.

0.2

0.0

-0.2

-04-
r

(OOO)

N P
(440) (444) (soo)

r
(OOO)

P H N

(444) (8oo) (44o)

WAV E VECTQR



BAND STRUCTURE, COHESIVE ENERGY, OPTICAL. . . 5117

TABLE II. Energies of selected states (in Ry). The
results quoted from Ref. 20 pertain to the K-S exchange
potential.

2ak/7t

(o, o, o)
(o, o, o)
(1,0, 0)
(1,1, 0)
(1,1,1)
(2, o, o)
(2, 1, o)
(2, 1,1)
(2, 2, o)
(2, 2, o)
(2, 2, o)
(2, 2, o)
(2, 2, 2)
(2, 2, 2)
(4, o, o)
(4, o, o)
(4, o, o)

State

r,
r„
b, i
Zi

N'
1

Ni

N4'

P4
Pi
H&5

H)2
Hi

E(k) (present)

0. 00000
1.274 04
0. 042 10
0. 08382
0. 125 99
0. 17074
0. 208 39
0.25066
O. 271 58
0.476 48
0.954 96
1.11757
0.494 19
0. 812 85
0. 615 01
0. 85361
1.21419

Ref. 20

0. 000 00
1.275 54
0. 042 15
0. 083 85
0. 126 00
0.17122
0.208 53
0.25063
0. 270 07
0.483 70
0.982 12
1.085 09
O. 492 87
0. 85464
0. 643 85
0. 80742
1.203 38

given. The calculation performed by these authors
seems to differ from ours significantly only in that
it was performed within the "muffin-tin approxi-
mation using the augmented-plane-wave (APW)
method. " There is evidently excellent agreement
for states in the lowest band, but some of the ex-
cited states disagree by amounts up to 0.05 Ry.
The origin of these discrepancies is not known, but

may be related to the muffin-tin approximation.

III. FERMI SURFACE

The density of states was calculated from the
energy levels according to Gilat-Raubenheimer
method. The Fermi energy was determined and

the Fermi surface was constructed. The width of
the occupied portion of the band (Er —Er ) is 0. 254

Ry. Our calculated Fermi surface is a slightly dis-
torted sphere. The largest distortion is a bulge
extending to about 4%%d of the average radius along
the [110]axis. The surface does not touch the zone
boundary. The distortions are conveniently char-
acterized by parameters

k k —k(k)=104 ""' '" (4)
F

in which k indicates a direction, kz(k) is the dis-
tance to the surface in that direction, and kz is the
radius of the free-electron Fermi sphere. Our
calculated values for q in the [100], [110], and [111]
directions are given in Table III. The largest dis-
tortion from spherical shape is about 4% in the
[110]direction. These results can be compared
with the estimates of Donaghy and Stewart obtained
from positron-annihilation experiments. How-
ever, the interpretation of such experiments is not
straightforward as there may be substantial cor-

4' =6 — g'kV'E k (5)

and

m th 1 " dS~
(6)

m 2mkr I V&E(k) I

The integration of (5) was carried out using an em-
pirical fit to E(k) using a Kubic harmonic expansion
through sixth order as in Ref. 10. Equation (6) was
integrated numerically over the Fermi surface us-
ing an adaption of the linear analytic (Gilat-Rauben-
heimer) method used to compute the density of
states. We find m, /m =1.48 and m~h/m=1. 53.
These results agree well with values of 1.47 and
1.50 calculated by Perdew and Vosko. ' Our re-
sults for these and other related parameters are
summarized in Table IV, which also contains ex-
perimental and some other theoretical results.
Comparison of the calculated and measured ther-
mal effective mass indicates a mass enhancement
of 44/p.

IV. OPTICAL CONDUCTIVITY

The real part of the frequency-dependent optical
conductivity contains an i.nterband cont;ribution
which is, for v &0,

2ve' ~ " d'k
Re[o((u)]=, Z,

i
(fk

i p i
~) i' f, (k)[1 -f„(k)]

x 5(E„(k) —E,(k) —I(u) . ('7)

In this equation, co is the frequency of the light and

f, (k) is the Fermi distribution function for the state
I lk) (wave vector k, band l). The matrix elements
involved in this formula were computed numerical-
ly using the wave functions obtained in the band cal-
culation. Such a procedure is relatively easy to
implement within the framework of the LCAO meth-
od of band calculation, since the matrix elements

TABLE III. Distortion of the Fermi surface in lithium.
The parameter q is defined in Eq. (4).

q (100)
71 (110)
q(111)

Present

—220
380

—110

Expt. (Ref. 28)

—100
400

—100

rections resulting from deviations of the electron
and positron wave function from plane waves. s

Recently, de Haas-van Alphen oscillations have
been observed in a sample of lithium dispersed in
paraffin wax. ' These observations do not yield pre-
cise dimensions of the Fermi surface, but do show
that the distortion from spherical form is small.

We have calculated the optical and thermal effec-
tive masses according to
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TABLE IV. Parameters relating to the band structure and optical properties: m~ is the
optical effective mass, mth is the thermal mass; G(E&) is the density of states at the Fermi
surface; +o is the direct interband threshold; ~& is the plasma frequency (computed with

m~); (dL, is the frequency at which the real part of the dielectric function vanishes;. and tc&

is the effective ionic polarizability. Numbers in parentheses refer to the references.

Parameter

mmmm

mt m

G(E ) (Ry ')
E(r, ) (Ry)
Ep —E(I'() (Ry)

E(X)) -EK)') (Ry)

~, (eV)

~, (ev)
&, (eV)
Kg

Present
results

1.48

1.53

6. 54
—0. 3454

0.2537

0. 2048

3.28
6. 62
6. 85
0. 015

Other
theoretical

results

1.45 (12), 1.48 (21)

1.64 (12), 1.64 (20)
1.65 (16), 1.50 (21)

0. 252 (12), 0. 2601 (20)

0. 209 (12), 0. 214 (20)
0.210 (21)

3.6 (12), 3.4 (21)

Experimental
values

1.33 (34), 1.57 (36)

2. 19 (32)

2. 5+ 0. 1 (34), 3.2 (36)

of the gradient operator between Gaussian orbitals
on different sites can be obtained analytically. 33

The wave-vector dependence of the matrix ele-
ments is significant. The integration over the Bril-
louin zone was performed by the Gilat-Rauben-

heimer method based on 1785 points in 4+8 of the
Brillouin zone. We have also computed the conduc-
tivity with the inclusion of a phenomenological con-
stant relaxation time v. In this case, the complex
conductivity is

(
4Ne 2 fe g ~ d'k I (fkI pI nk) I~ f, (k)[I f (k)]

m„(~+f/7) 3 m~ff, „„(2w)' ~„, ~~, (~+,/&)2
' (8)

Here

&u„, = [E„(k) E,(k)]/h, —

m„ is the optical effective mass given by (5), and

N is the average electron density. It can be veri
fied that this expression satisfies the sum rule

f Re[o(m)]d&u=vNe /2m .

band transitions occurs at a lower energy than is
predicted by our calculations. Some of the dis-
crepancy is probably due to indirect (phonon-as-
sisted) transitions. However, if such transitions
are taken into account the onset of interband would

I2.0
I I I

Our results for the real part of the conductivity are
shown in Fig. 2 according to Eels. (7) and (8). In

the latter case, the relaxation time v was chosen
so that the Drude contribution, which comes from
the first term of (8), fits the observed conductivity
well below the interband threshold. We find v

=9.86x10"' sec. The experimental results of
Mathewson and Myers obtained from lithium films
deposited on sapphire~'35 are shown. Qbservations
in a more limited energy range have been reported
by Hodgson.

The experimental observations do not extend to
high enough energies to determine whether there is
agreement with theory in regard to the general
shape of the interband conductivity. The measure-
ments do appear to indicate that the onset of inter-
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FIG. 2. Optical conductivity of lithium. The solid
curve is obtained from Eq. (7), the dashed curve is ob-
tained from Eq. (8) including a relaxation time v=9. 68
x 10 4 sec. The crosses and triangles are the result of
Ref. 34 for temperatures of 140 and 298'K, respectively.
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Sum of one electron energies
2 Coulomb energy of electrons
& exchange energy
Total energy of solid
Total energy of free atom
Cohesive energy (calc. )
Cohesive energy (expt. ) (Ref. 39)

—6. 970
8.577

—1.036
—14.511
—14.387

0.124
0.122

TABLE V. Total energy of lithium. Quantities refer
to Eq. (10). All energies are in rydbergs.

K = 1 + K~ —QPp/QP
2 (10)

A quantity related to the low-energy (infrared)
optical properties is the effective ionic polarizabil-
ity. ~' This quantity, denoted e„, enters the expres-
sion for the real part of the dielectric function sc

for photon energies much smaller than the thresh-
old for'interband transitions. If this condition is
s", .tisfied, and v» 1/7', where 7 is the "Drude" re-
laxation time,

be expected to be displaced from the calculated
direct gap of 3.28 eV to perhaps -3.00 eV
[E(N&) —Er minus phonon energy] which re-
mains larger than the observed value (-2.4
eV at 125 'K). Our results for the gap at N are in
good agreement with many other theoretical calcu-
lations, involving different potentials, and it is not
likely that improved one-electron calculations can
change this result substantially. It is possible that
many-body effects may be involved. However, it
is also possible that the measurements made on
evaporated films are not representative of bulk
single-crystal lithium. Our value for the onset of
direct transitions agrees well with the result of
Hodgson (3.2 eV) although the shape of the conduc-
tivity curve is different. The recent calculation
of Perdew and Vosko gives 3.4 eV for this quanti-
ty 21

One further comparison is of interest. The cal-
culated optical conductivity of lithium differs qual-
itatively from that obtained in our previous work
for potassium in that the large absorption found
in the 6-9-eV range in potassium was absent in
lithium. This absorption was attributed to transi-
tions involving d-like bands above the Fermi sur-
face. In lithium, the corresponding bands are
much higher i.n energy.

in which u~ is the plasma frequency,

oP~= 4wNe /m f, .

The polarizability e„ is given by

8ve p 'd'k f (k)[1 f (k)]
I (fk I p( sk) I

m'& „, ~ (2v)' ' "
[(u„,(k)]'

(12)
with

(u„g(k) = g [E„(k)—Ei(k)] . (13)

We have computed ~„using the energies and ma-
trix elements previously discussed. Our result is
listed in Table IV. In addition, we have determined
the frequency +~ at which the real part of ~ van-
ishes from our numerical calculation of e [not
from (10)]. This value, which corresponds closely
to the peak of the energy-loss function, Im(1/z), is
found to be 6.85 eV.

V. COHESIVE ENERGY

Calculation of the cohesive energy furnishes a
stringent test of the numerical accuracy of a band
calculation, since this quantity is, if calculated di-
rectly, the difference of two much larger numbers.
We have computed the total energy per atom of lith-
ium metal using an expression for the total energy
in the statistical-exchange approximation:

(14)

in which p(r) is the electron charge density, and

V,(r) is the exchange potential

V,(r) = —2e (3p/8a) (15)

The summation in the first term includes occupied
states only. The value obtained in this way for
metallic lithium (at the observed lattice constant
only) can be compared with simila, r results for the
free lithium atom. Our results for-the terms in
Eq. (14) are presented in Table V. The uncertain-
ty in the calculated solid-state total energy is be-
lieved to be a 0.01 Ry. The energy quoted for the
free lithium atom was obtained in a separate cal-
culation using same exchange potential (a = —',), but

I

allowing for the spin polarization which exists in
the atom. Our calculated free-atom energy is low-
er than that obtained if spin polarization is neglected
by approximately 0.04 Ry.

The resulting cohesive energy is in excellent
agreement with the experimental value given by
Gschneider. ~~ It also agrees quite well with that
obtained by Averill with the same exchange approx-
imation but using the APW method and a muffin-tin
potential. However, our calculated solid-state
total energy is lower than that obtained by Averill
by about 0.04 Ry, compensating for the lower total
energy of the free atom. In addition, it has to be
remembered that the Xn approximation does not
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1

I.80

l.50—

I i; I I I I I ing event has occurred, and 5& denote the energy
transferred to the electron. In the impulse approx-
imation it canbe shown that the cross section for scat-
tering into a fixed directon of k is proportional to4~

I.20—
~a(q}=

( s d'p p(p}6(q-p &),(2v) (16)

0.90—

0.60

0.30

I I I I I I I I I I I I I

0 0.20 040 0.60 0.80 I.OO 1.20 I.40
Q VALUE IN THREE PRINCIPAL DIRECTIONS

FIG. 3. Compton profile of lithium. The solid line is
the core (1s) contribution. The other curves include the
band electrons, and pertain to the following directions:
dash-dot, [111]direction; short dashes, [100] direction;
longer dashes, [110]direction. The experimental points
are as follows: x, Ref. 43, [111]direction; ~, Ref. 43,
[100] direction; 4, Ref. 43, , [110]direction; O, Ref.
(43), polycrystalline sample; and ~, Ref. 42, polycrys-
talline sample.

take explicit account of electron correlation either
in the atom or in the solid.

VI. COMPTON PROFILE

The Compton profile is a measure of the electron
momentum distribution. Let p denote the initial
momentum of an electron in the system, R denote
the change in momentum after a Compton scatter-

in which p(p} is the momentum distribution function
0 is the volume of the unit cell, R=R/) R [, and

q=mcu/f &
/

——,
'

/

&
f
.

A straightforward procedure exists for evaluation
of Jg(q) using wave functions expressed as combina-
tions of Gaussian orbitals. The details have been
described previously. Our results for Jg(q} are
shown for three different directions in Fig. 3.
Experimental results due to Phillips and gneiss
and Eisenberger eg gl'. are shown for compari-
son. It is apparent that the theoretical values of
J(q) are too large for small q and too small for
large q. This discrepancy can reasonably be at-
tributed to the effects of electron interactions,
which tend to introduce additional high-momentum
components into the wave function. The effects
are, however, not large in lithium: Evidently most
of the tail of the band contribution to J(q) is ac-
counted for in a one-electron band model. It
should also be noted that our calculations reproduce
the experimental directional anisotropy qualitative-
ly but the magnitude of the anisotropy predicted is
somewhat larger than is observed. Our results
seem to be in good agreement with the APW calcula-
tion of Wakoh and Yamashita. '
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