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Exact calculations of the linear coefficient of surface-plasmon dispersion and damping a = a, + i a,
= lim~~q '[eo, (q)/co, (0) —1], using the random-phase-approximation dynamical equation, for a

jellium-vacuum interface characterized by a smooth, finite, surface potential barrier are described in

detail. a is shown to be markedly sensitive to the shape of this barrier, casting doubt on the reliability

of using non-self-consistent potential barriers to determine surface plasmon properties. For the case of
an A1-density (r, = 2) substrate, the sensitivity of a to barrier shape should manifest itself through a

rather strong increase of a, with alkali-impurity adsorption.

I. INTRODUCTION

The properties of surface plasmons have re-
cently become the object of much experimental
and theoretical investigation, stimulated by
the hope that the measurement of the surface-
plasmon dispersion relation will yield information
concerning the electronic structure of free-elec-
tron-metal surfaces, " and also by the knowledge
that the force law, which determines the trajectory
of a fast electron impinging on such a surface, is
in large part a manifestation of (real and virtual)
surface-plasmon excitation. " As a result of re-
cent inelastic-low-energy-electron-diff raction
(ILEED) experiments, ' the first values are now

available of the parameters of the surface-plasmon
dispersion relation for a characterized, single-
crystal [clean Al(111)] surface, and measurements
of the variation of these parameters with alkali
(Na and Cs) adsorption can be expected in the not
too distant future. Qn the theoretical side, in
the last two years, the first microscopic calcula-
tions of surface-plasmon properties have been
reported. ' ' These calculations, all based
on the random-phase-approximation (RPA) equa-
tion of motion, have been increasingly realistic
in their descriptions of the static free-electron-
metal surfaces at which surface plasma oscilla-
tions occur. My own calculations, which are the
most recent, are the first in which the static
metal surface is described by a smooth finite
(and, in principle, self-consistent) surface poten
tial barrier. In two rather brief reports of these
calculations, '6'7 I have presented numerical re-
sults that show (a) that the surface-plasmon dis-
persion relation is quite sensitive to the assumed
shape of this potential barrier, '6 and (b) that one
should expect marked changes of the dispersion
relation as a function of alkali coverage, for an
Al-density substrate. 7 The present paper is de-
voted to a detailed exposition of the calculations
which led to these conclusions. Specifically, in
Sec. II, the algebraic reduction of the RPA dynam-

ical equation is presented, which I found to be con-
venient for the calculation of the long-wavelength
slope of the surface plasmon dispersion relation.
In addition, I show that my reduction of the RPA
equation leads to a formal expression for this
slope, which is equivalent to the formal result
found earlier by Harris and Griffin. In Sec. III,
the details of my numerical work are described;
in addition to discussing methods of integration,
mesh sizes, and so forth, I explain how I reduced
the RPA integral equation approximately to a
finite set of linear algebraic equations, i.e. , a
set which I could solve numerically. (This re-
duction involves knowing the asymptotic form of
the charge fluctuation associated with a long-wave-
length surface plasmon, deep inside the metal
which is supporting the plasmon. This asymptotic
form is derived in Appendix B; Appendix A is also
devoted to the evaluation of asymptotic properties
of certain important integrals. )

In Sec. IV, the results of the calculations are
reviewed, and, in particular, the sensitivity of
the surface-plasmon dispersion relation to barrier
shape and to alkali adsorption is shown. Finally,
in Sec. V, directions are discussed for future the-
oretical work on surface plasmons. The reader
who is not interested in following all of the tech-
nical details of the calculation reported in this

paper should skip over the material between Eqs.
(2. 35) and (2. 51), and all of Sec. III.

II. RPA THEORY OF SURFACE PLASMON DISPERSION
AND DAMPING

For a variety of materials (Al, Mg, . . . ), the

frequency of long-wavelength surface plasmons
is found to be approximately equal to v~/v 2, the
semiclassical value for a jellium-vacuum inter-
face. Thus, the RPA dynamical equation, which

predicts precise1y this value for the infinite-wave-
length surface plasmon frequency, '4 seems a use-
ful starting point for the microscopic calculation
of the surface pie smon dispersion relation &u = a&, (q).

In all RPA surface-plasmon calculations that
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have been reported to date, 6 '6'~~ the solid sur-
face has been taken to be flat, and the single-
electron potential energy (which should, in prin-
ciple, contain the effects of the periodic ionic lat-
tice as well as those of the self-consistent dis-
tribution of electrons} to be spatially constant
apart from a discontinuous step at a "surface
plane, " say, z =0. In the present work I have re-
tained the restriction to a jellium model, transla-
tionally invariant in planes parallel to the surface,
but have gone beyond previous efforts in allowing
for a surface potential barrier V(z) of essentially
arbitrary form. By virtue of this generalization,
it has been possible for me to study the sensitivity
of surface-plasmon properties to the model shape
of V(z), ' and, in particular, to the changes in V(z)
that might be expected as a result of alkali adsorp-
tion on a free-electron-metal surface. The re-
sults of these studies are further discussed in
Sec. IV. Since the very definition of the jellium
model involves averaging out short-wavelength
properties of a solid, its use forces one to focus
attention on the solid's response to long-wave-
length fields. However, the infinite-wavelength
surface-plasmon frequency, within the RPA at
least, '4 is equal to ~»/v 2, irrespective of the de-
tails of surface structure'. Thus~ within the RPA
this frequency is uninteresting as a surface di-
agnostic property, and, expanding the surface
plasmon dispersion relation in powers of the wave
vector q in the form

-ewe-r'I . r &~

g
&& g„',„„,„(z',z")q„(z")y, (z") (2. 2)

&u, (q) = ((d»/M2) [I+ (a, + in») q+ (@+iP»)q'+ ~ ~ ~ ],
(2. 1)

it is rather the coefficients a~, Nz, g, P», . . . whose
relation to surface structure one is led to study.
In what follows, the RPA dynamical equation is-
cast into a form which permits the direct evalua-
tion of az and a3, i.e. , in which the fact that
~,(0) = to»/W2 is accounted for exactly; this form
of the RPA equation thereby greatly facilitates
the numerical computation of the a' s.

For a semi-infinite solid which is translationally
invariant in two dimensions, the surface plasmon
is entirely characterized by a wave vector q di-
rected along the surface, and a (complex) fre-
quency &u =&a,(q). In this geometry, therefore, the
RPA equation for the fluctuating electric potential
Q,„(z), associated with a surface plasmon is an
integral equation in one variable, namely, s, the
coordinate normal to the surface. This equation
takes the form'3

0, g~ OO

V(z)-
—(4)+»z) ~ z +()

(2. 4)

where 4 and e+ are, respectively, the work func-
tion and Fermi energy of the metal in question, it
follows that

(d„=K /2&l 4 —»~ . (2. 5)

Thus, in Eq. (2. 2), the zero-temperature Fermi
function 8„„is given by

8~ = 6(»„—(I/2m) (0'+ z')) . (2. 6)

The function (2ve /q) e " ', in Eq. (2.2}, is the
qth Fourier component of the Coulomb potential
e /[z +y +(z —z ) ]' . Finally, the quantity

9» „,„(z',z") is defined by the expression

k'- (k+q)'

+G 8 ~Z y QP+ +(Ofc p 2e 7
&'- (k+q)'

in which G'(z', z; ») are, respectively, the out-
going and incoming Green's functions correspond-
ing to V(z). These functions satisfy the equation

(» —l») G'(z, z'; »)= »+
1 d'

, —V(z)i2' dz

xG'(z, z'; ») =5(z'-z") (2. S)

and have the spectral representations

6 +$5 —(dg
(2. 9)

where the integral on x runs over the complete set
of solutions to Eq. (2. 3). The substitution of Eqs.
(2. 9) and (2. 7) into Eq. (2. 2) leads back to a more
familiar looking form of the RPA equation for
A,.(z)."

It should be recognized that, as it stands, Eq.
(2. 2) has branches of solutions other than the one
which corresponds to surface plasmons. In par-
ticular, it has bulk-plasmon solutions, which are
characterized by the sinusoidal oscillation of
(f),„(z) as z -~, and by Re&a & v». It may also have
solutions corresponding to "higher-order" surface-
plasma modes. '" Thus, in order to use Eq. (2.2)

In Eq. (2.2), the (})„(z)are electron wave functions
corresponding to the assumed surface potential
barrier V(z); that is, they satisfy the Schrbdinger
equation (with k=1)

)().( )-=(- z d, , +)'(z))(.(~)= .(.( )
1 d

(2 2)

Assuming V(z) to have the asymptotic behavior
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to calculate the ordinary surface-plasmon disper-
sion relation, one must seek a means of focusing
only on that branch of solutions to Eq. (2. 2) which

emerges from the frequency ~~/v 2 at q = 0.
The study of Eq. (2. 2) at q = 0, however, is

complicated by the presence of the factor q
' in its

kernel. In order to overcome the difficulty, one
makes use of the following identity:

g;...(z', z")=(g (q' ~ qg q) —te.

(2. 10)

which is a trivial consequence of the definitions of
9' [Eq. (2. 7)] and of the equations of motion for
the G' [Eq. (2. 8)]. Using Eq. (2. 10) to substitute
for 0' in Eq. (2. 2), integrating by parts on z',
and using the fact that ())„(z') is a solution to Eq.
(2. 3), one may rewrite Eq. (2. 2) in the form

q, ( )=, gq,„dz"dz' e" '' g qq„(z') —sg (z-z') ", eq„(z)g(e —z')j
m(o 2v '., v ez'

xg„,„„„(z',z") ())„(z")f,„(z"), (2. 11)

Po (z) =const=i,

(d) = (g)p/M2

(2. 12)

The proof that Eqs. (2. 12) and (2. 13) solve Eq.
(2. 11) proceeds via the identity

dz "g~,„„,„z',z" „z"

q„(z '),s)' —[[2k.q+ q')/2m]' (2. 14)

which is a consequence of Eqs. (2. 7) and (2. 9).
Substituting Eq. (2. 12) into (2. 11) (at q=0), and
using Eq. (2. 14) to perform the z" integrals, one
discovers that (t)0„(z) =1 is a solution to Eq. (2. 11)
if, and only if, the equation

in which q =q/q. In this form there is no hin-
drance to the examination of the q =0 limit, and in-
deed it is straightforward to show that at q =0, Eq.
(2. 11) has the solution'~

I

equivalent to

(u' = (2ve'/m) n, (z- ~) =-,'ru,', (2. 18)

as was claimed [cf. Eq. (2. 13)].
In what follows, the knowledge that Eqs. (2. 12)

and (2. 13) solve Eq. (2. 11) at q = 0 is used to ex-
tend the possibility of solving the latter for the
surface-plasmon frequency at values of q slightly
different than zero. The method used is an adapta-
tion of one which suggests itself naturally if V(z)
is taken to be an infinite square step potential. "

The quantity cr,„, which may be thought of as
being proportional to the surface charge fluctuation
associated with a plasma oscillation, is defined by
the equation

2ze2 "cd " 2dg
0'q~ =

m~ ~ (2)T)' () v

0

dz'sgn z -z' „z' ", + „z (2. iS)

x()„(z")p, (z") .
Note that at q = 0, substituting for (3))o„(z}from Eq.
(2. 12), and using Eqs. (2. 14) and (2.16), oo„ is
given by

holds for all values of z.
Equation (2. 15) may be simplified through the

recognition that the quantity no(z) defined by

Jde I gd
(2. ie} With this result in mind, let

(2. 20)

represents the unperturbed Jellium electron num-
ber density, as a function of z. Substitution of
Eq. (2. 16) into (2. 15), and integration by parts on
z', reduces Eq. (2. 15) to the form

1=(2ve /mcu )[no(z —~)+no(z- —~)] . (2. 17)

Far out into the vacuum, i.e. , as z ——, the
electron density vanishes. Thus Eq. (2. 17) is

( 0~(z) -=(1 —(o,'/(o') y g„(z) —(g,„. (2. 2Z)

At q = 0, since (f)o„(z) is constant in space, then

v,„(z)= (const) x(1 —~&/2&@ ) =0, (2. 22)

where the last equality in Eq. (2. 22) follows from
Eq. (2. 13). Thus, for small, but finite, values
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of q, v, „(z) is a quantity of O(q); and by converting
Eq. (2. 11}from an equation for Q, (z) to one for
v, „(z}, one may expect that its q =0 solution will
be explicitly extracted.

The conversion of Eq. (2. 11) is accomplished by
substituting Eq. (2. 22) into it, and by using Eqs.
(2. 19) and (2. 14). After straightforward manipula-
tion, one finds the following equation for v, „(z) in

terms of o.,„.

K

2(on~ 2p

dz dz"28„„I
p( „~ zpz

& B„,„„,„(z'z")(})„(z")v, „(z") . (2. 23)

In Eq. (2. 23), the quantity n„ is equal to
+0(z - ), the kernel L„- „,",(z, z') is defined by

L- „-(z,z') —= [k q+5(z -z')]e '" ' 'g„(z')+ [sgn(z'-z}e ' ' ' +1] (a. 24)

and the inhomogeneous term v( «(z) is given by

(0) coy 0' 1 d k 2' p p p ],

( )
z I'"k'""z'z r) (» ) ) —"((2k 2 ')(2 )z)

—(
~o Q

In order to complete the conversion to the new unknown function v, (z), it is also necessary to eliminate
(t),„(z) in the definition of («,„[Eq. (2.19)]. Substitution of Eq. (2. 23) into (2. 19), and the use of Eq. (2. 14)
yields the expression for («, as a quadrature over v, „(z),

rz' 2» rz' (2»)', z " dz' ' ' ' ( —((2k r( q')/2 rzl')

2 2 Cl

A, IC q

Equations (2.23) and (2. 26) for v, „(z) and cr,„are together completely equivalent to the RPA equation for
(t), (z) [Eq. (2. 11)]. The advantage of using the new pair of equations is revealed in the limit of small val-
ues of q. In this limit, assuming that the important values of ~z -z I are always small compared to q
one may Taylor expand e ' ' ' in Eq. (2. 23), thereby finding, through terms of O(z), that v, (z) satisfies
the equation

,„(z)= '" dz'(z —z') ', + dz"K„(z,z"),„(z"),
n~ dz' (2. 27)

where K„(z,z") is given by

~0

(Iqz")-=—, , 2q„d*' 2»(z' —z) l ~ 2(z' —z)q. (z')) 2„(z'z"),q„„(z",) .dz' (a. aa)

Equation (2. 27) directly shows that v,„(z)/o,„is a quantity of O(q) as q-0, as expected [cf. , Eq. (2. 20)].
Thus, Eq. (2. 26}, which in the q- 0 limit assumes the form

(a. 29)

permits the direct calculation of the departure of
ar from cov/«) 2 through terms of O(q), once Eq.
(2. 27) has been solved for v, „(z)/o,„. It is essen-
tially via the numerical solution of Eqs. (2. 27) and
(2. 29), then, that I have obtained values of («.~ and

nz for different potential barriers V(z).
However, before proceeding to a discussion of

the numerical analysis, it is necessary to resolve
two issues. First, one must show that the fact

that the inhomogeneous term of Eq. (2. 27) behaves
as z in the limit z -+ is not an indication that
the response of the electron gas deep inside the
metal is important in determining (q«,(q). Thus,
one will have justified the q expansion of e '
which leads from Eq. (2. 23) to (2. 27). Second,
one should check whether the expression for the
coefficient of q in Eq. (2. 29) is identical to the
formal expression for the linear coefficient of
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surface p1.asmon dispersion and damping which has
been given by Harris and Griffin. ~' The remainder
of this section is devoted to these tasks.

In order to show that it is only values of z near
the surface that are important in solving for
e,(q) to O(q), one replaces v,„(z) by a new un-
known function A, (z) defined by

the surface region of the metal and not the deep
interior. [At a first reading, one may wish to
skip the text from this point to the beginning of the

paragraph containing Eq. (2. 51).1

The proofs of these statements follow from the

asymptotic properties of the functions I'„„.(z',
z"; (d) defined by

p pp Qp d 2dK

dy
I& dz

(2. 32)
In what follows, the remaining integral on the
right-hand side ot Eq. (2. 32) is evaluated, leading
to the surprisingly simple expression for &( '(z),

IO

rn(u dz, n„

(2. 33)
According to Eq. (2. 33), A~(„)(z) has the asymptotic
behavior

sin(2k' + 5)/z', z -~
A(0)(z)a~ 2z

(2. 34a)

(2. S4b)

,(,)
dn, 1 dV
dz' mar dz

(2. so)

where V(z) is the static potential barrier. Using

Eq. (2. 30) to substitute for v,„(z)/o,„in Eq. (2. 27),
the latter assumes the form

A,.(z) = ~,"„'(z)+J dz "K„(z,z")A,„(z"},(2.S1)

where K„(z,, z ) is defined in Eq. (2. 28), and where,
using Eq. (2. 14) at q=0, &(„'(z) may be written

in terms of which K„(z,z' ) may be written
(2. s8)

K„(z,z")=2 f dz'I, ,(z', z", (d)+ID ()(z, z"; (d) .

In Appendix A it is shown for sufficiently well-be-
haved potential barriers~~ V(z), that the integrals
I'„„.(z', z"; (d) approach zero as sinusoidal Iunc-
ions of z" times z", as z"-~ with z held fixed,

and it is shown that the kernel K„(z,z ) therefore
approaches zero in a similar fashion, if z (or z' )

is held fixed and z" (or z) approaches ~. [In the
limits z'or z"- —~, i. e. , fa,r outside the metal,
it is clear that the I„„.approach zero exponential-

ly, because of the exponential decay of the func-
tions of P„(z) as z- —™,for z&kz. Thus [cf., Eq.
(2. 38)], K„(z,z") approaches zero exponentially
for z - — with z held fixed, while it approaches
a constant as z ——~ with z' held fixed. ]

In order to evaluate the integral on the right-
hand side of Eq. (2. 32), one considers the quantity
J'„(z', ur) given by

d k ""2d

where the phase shift 5, a constant, depends on

V(z). Equation (2. 34a) indicates that b.+'(z) is
small for values of z appreciably inside the metal.
Gn the basis of this behavior one can easily show

that the important values of z and z ' in Eq. (2. 31)
are only those near the surface, as is necessary.

It is also demonstrated below that the subsitu-
tion of Eq. (2. 30) into (2. 29) leads to the expres-
sion for or~ in terms of 6,„(z),

in which

n Ix, d„(d') f d[d(~ —d")

x g t„,„(z', z ")]z "(~„(z"),

1 d~ If
ddz + V(z ) ~I z

(2. 38)

(2. s9)

CO dz', A „(z')
2 n„dz'

~k
ddfdd 'dd "d„(d '),

According to Eqs. (2. 7) and (2. 8), J'„(z'; (d) may
be rewritten

M d kJ'.(z' ~) = —
(2 )8 28" ~ ~.(z')n„w g ~" dz'

dz
(2.35)

x 2z pjc z (d dz gpgo~ z yz z fg z ~

On the basis ot Eq. (2. 35) it is easy to see that
is completely determined by values of &,„(z) in (2. 40)
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However, thanks to the asymptotic properties of
the I'„„., which guarantee that the integrand of Eq.
(2. 38) is decreasing as z" ~ times a sinusoid at
z" and exponentially as z"- —~, one may ob-
tain another expression for Z'„(z «v), integrating
by parts on z and dropping the boundary texms
at z"=~~. This expression is

QP dk
Z'„(z', (o) =

(2 )g

x 2d
28

d
z

by making use of Eqs. (2. 14) and (2.45}, and final-
ly by using the identity

r I « I«AK 2 d&}««
G&««0««(z «z ) dz Qp dz

(2. 47)

whose proof is analogous to that of Eq. (2. 44) [one
starts with K'„(z, ~) instead of K„(z,v)).

Having established the validity of Eq. (2. 35),
which may be written in the form

dz"gq„o„z',z"z" „z"=2z „z
+ «««1 d&}'gg„,„(z,z )—

m dz
(2. 42)

Similarly, considering the quantity K„(z,~), de-
fined by

dkK„(z', (u) =
(2 )2

2dK

x dz aP„-A BI O~ z yz rr
dz

(2. aa)

one proves (again for use within the k and && inte-
grals) the identity

««&«+ « I«&jk
& 'a««0««( «z

= &fz" g~,„(z',z")
d

„&j„(z"},

which when combined with Eq. (2.47) yields

(2. 44)

x Id "g',„(z',z") —„,", . (2.41)

Thus, comparing Eq. (2.41) and (2. 40), one has
for use within the k and && integrals (which, cf.
Appendix A, permit the integration by parts) the
identity

2 n„dz'

a constant,
~&1&(z)

a sinusoid times z ~, as z -+~ .
asz -~

(2 )

(2.48)
one sees the fact that ~ is determined entirely
by values of &, (z) in the surface region to follow
from the asymptotic falloff of Io, o(z, z"; e) asz"-+~ (see above, cf. also Appendix A), and
from the fact that dno/&fz and &fV/&fz

' are only
nonzero near the surface.

Knowing that &«&z is determined by A, (z) in the
surface region, one now asks whether the values
of &,„(z) there are themselves determined [via
Eq. (2. 31)j entirely in terms of the electronic re-
sponse in that region. This question is answered
by considering the iterates A,'"„'(z) of Eq. (2. 31),
for example,

~;„&(z)=-jdz"K„(z,z")A&'„&(z") . (2. 49)

Note that since K„(z,z") and b,&0& both fall off asz" 2 for z"-~, and since K (z, z") approaches
zero exponentially as z"-—~, while 4,'„' diverges
only linearly in that limit, the variable z' in the
integral of Eq. (2.49) is confined to the surface
region. Thus the asymptotic properties of &u&(z)
are just those of K„(z,z ) as a function of z, forz" fixed, namely (cf. above), that

= —z'y. ( ') .
CO

(2. 45)

Equation (2. 33) can now be derived from Eq.
(2. 32), via the substitution of Eqs. (2. 28) and
(2. 45) in the latter, followed by the use of Eq.
(2. 16), and the recognition of the identity

Similarly, one can derive Eq. (2. 35) from Eq.
(2. 29) by substituting Eq. (2.30) into the latter,

Using Eq. (2. 50), one shows similarly that &&„'(z)
and, iteratively, that 4&"„&(z)« for any n&1, has
the same general asymptotic behavior as A,"„&(z).
Thus the values of all of the iterates of Eq. (2. 31)
are completely determined by values of previous
iterates in the surface region. Therefore the
important values of 4, (z) itself are entirely de-
termined in the surface region, and one concludes
that the q expansion of e " ' ' in Eq. (2. 23) is
asymptotically valid to O(q).

Since one can now believe that Eqs. (2. 31) and
(2. 35) provide a correct basis for the evaluation
of &u,(q) to O(q}« it is relevant to ask whether Eq.
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(2.35) agrees with the formal result of Harris
and Griffin, "which relates &u, (q), to this order,
to the fluctuating electron number density 6n, (z)
associated with a surface plasmon. Harris and
Griffin's formula for u&, (q) is

&,"„'(z) can be rewritten in the form

d,",'(z)= —, ~ q f dz'p(z') + qze(-z) .
m(d dZ

(2. 56)

CO'.(q)= q' (+q(fd e ..( dz 6n, „(z)
The function 4,„(z) is related to (t),„(z) by Eqs.
(2. 30) and (2. 21). Using these equations, one
finds that

in which

+ dept +0q2 (2. 51) ()=— 1 P '" 1
@OJ

q

p(z) =-n, (z)/n„- e(z), (2. 52) 1, , dna 1 dV
dg 'z

'pl ~ dz m(d dz
(2. 57)

where e(z) is the ordinary step function. The re-
mainder of this section is devoted to a demonstra-
tion that Eqs. (2. 35) and (2. 51) do in fact agree

The demonstration makes use of the fact that
the fluctuating potential associated with a surface
plasmon (t),„(z) is related to 6n, „(z) by Poisson's
equation'

27le
P,„(z)= dz'e ']~"] 6n, „(z'), (2. 53)

which, by virtue of the fact that q I z - s t is always
small in the evaluation of &u, (q), may be expanded
as

(d
'.(q)= ' ((- — (izn [d..( )-d.'z'(z)]) .

g~m NO

(2. 55)
The function &,( '(z) is given explicitly in Eq.
(2. 33). Making use of Eq. (2. 52), this formula for

I

2M
y. (z)=

" dz'(I-qlz z'I+"')6"-. (z) .
(2. 54)

One proceeds by noting that Eqs. (2. 31), (2.28),
and (2.47), together with the fact that I 0 o(z, z; (0)
-0 as z- —~, permit Eq. (2. 35) to be rewritten
in the simple form

One now wishes to eliminate Q, (z) and o,„from
Eq. (2. 57) in favor of 6,„(z). Of course (t),„(z) can
easily be eliminated using Eq. (2. 54). It is less
straightforward, however, to see how to dispose
of o,„. The trick, in this regard, is to make use
of the fact that by virtue of the asymptotic falloff
of 6(0„'(z}, as z —~, and of the similar behavior
(discussed above) of all of the iterates of Eq.
(2. 31), the function &, (z) - 0 as z —~. [Indeed
(cf. Appendix B), it can be shown that 6, (z) ap-
proaches zero as z times a sinusoidal function
of z, in this limit. j According to Eq. (2. 57), this
behavior of h, „(z) requires P, (z) to have the
asymptotic form

0'~~ q "
r r de 0y,.(z- )=;, 1-qz+ —dz z

1 —&o~/(u n„„dz'

(2. 58)
However, in the same limit, Eq. (2. 54} requires

P, (z- ~) to be of the form

27T8 r
2

P,„(z-~) = dz 6n, (z )(1 —q(z —z )+ ~ ~ ~ ) .r

(2. 59)
Comparison of Eqs. (2. 59) and (2. 58) yields an
expression for o,„in terms of 6n, (z'), which
when substituted into Eq. (2. 57) results in the
formula

d„(z)= — z((p(z)/fdz'en„(z), )((
—f dz z

-q dz z 6n, „(z ) dz 6n, „(z ) +O(q ) —1 +z — dz zr r r r 2 1, , dna 1 dV
Pl Qo dz ma dz

(2. 60)

One substitutes for (t),„(z) in Eq. (2. 60) using Eq. (2. 54). The resulting formula together with Eq.
(2. 56) may then be combined to yield to O(q), as z- —~, the expression

Z!."( -)=-e I(dz'z'en„t ')/fd en„(z')) ——'fdz'z' (2. 61)

Using Eq. (2. 52) to convert the last integral in
Eq. (2. 61) to fdz' p(z'}, and substituting Eq. (2.61)

I

into Eq. (2. 55), it is seen that the latter is iden-
tical to the Harris-Griffin formula (2. 51), which
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was to be shown.
In conclusion, it should be noted that despite its

appealing look of simplicity, Eq. (2.51) does not
lend itself to paxticularly straightforward physical
interpretation. The main difficulties in inter-
preting it are (a) that 5n, „(z) is a complex number
and thus not an observable quantity and (b) that
the dynamical equation, e. g. , Eq. (2. 31), gives
no obvious clue as to the relation between 6n, „(z}
and simple structural features of the surface. It
is presumably for these reasons that Eq. (2. 51)
has never been applied.

III. NUMERICAL EVALUATION OF ugq)

Of the equivalent forms of the RPA dynamical
equation, the pair of equations involving &,„(z},
Eqs. (2.31) and (2. 55) is best suited for computing,
because these equations present the least difficulty
in the region of large positive values of z. In this
section I discuss the reduction of Eq. (2. 31) to an

integral equation on a compact domain of the z
axis, and I present some of the technical details
associated with its numerical solution. (The reader
who does not wish to follow all of the technical de-
tails of the calculation reported in this paper may

skip this section. }
In order to evaluate the function /), „(z) numer-

ically, one would like to convert Eq. (2. 31) to a
matrix equation on a sufficiently finely spaced
mesh of values of z, of the form

~,„(z,) = &,".'(z;)

+ % 'lz K~] Zg y Zgzz +qg) Zgz&

where the zo& are appropriately chosen weights.
One would then solve for &,„(zz) by inverting the
matrix 5»" —gv~"X„(z~, z~ „). (5»„ is Kronecker
5 function. ) However, since the domain of inte-
gration in Eq. (2. 31) is —~ &z"& ~, the matrix
one needs to invert is apparently an infinite one,
not amenable to inversion on the computer. In
order to proceed therefore, one requires a meth-
od for reducing the z ' integration of Eq. (2. 31),
effectively, to an integration over only a compact
domain of z'"s about the jellium surface.

Qn the vacuum side of the surface, z
this problem is not a severe one, because of the
fact (cf. Sec. II) that K„(z,z") falls exponentially
to zero as z --. This fact permits one, with

negligible error, to replace the lower limit of the
z ' integral in Eq. (2.31) [and thus the lowermost
value of z&" in the j"sum of Eq. (3.1)) by a finite
value, —Z, with Z sufficiently large and posi-
tive. Clearly, the value chosen for Z should not
affect the computed values of 4,„(z) and (d,(q).
In practice, I found, by trying a variety of values
of Z„ for a given V(z), that it was easy to find a

range of acceptable values of Z, by this standard.
Unfortunately, the integration limit z -+

cannot simply be replaced by a cutoff. The prob-
lem is that the larger the value of z, the larger
is the value of z' at which the function E„(z,z")
begins to fall off: or in other words, X„(z,z")
has matrix elements of non-negligible magnitude
along (but not necessarily on) its diagonal, for
axbitrarily large z and z

One therefore adopts a different method for
handling the large z region in Eq. (2. 31), based
on knowing the asymptotic form of &,„(z") as z"

Suppose, as is shown in Appendix 8 to be
true, that for z" sufficiently large, 4,„(z")is of
the form

(3.2)( tl) tl Q Q (pggt ~

1~1

where the (k,] are a finite set of known wave vec-
tors, and the (c,) are constants to be determined.
If Eq. (3.2) holds for z" larger than some large
value Z„, then Eq. (2. Sl) can be written in the
form

~N

4, (c)=a,„"'(z)+f dz")( (z, z")4, (z")

+ &t&r, a z (S.3)

OO

~ kkgg"
dz"Z„(z, z") „, . (3.4)

zN
z"'

Equation (3.3) will be useful if one can obtain sim-
ple expressions for the functions E,,„(z), and if the
the (c,] can be related to values of 4, (z") cor-
responding to z "g [-Z, Z„].

The evaluation of the E,,„(z) is further discussed
below. In order to relate the e, to values of
4,„(z' }with z "( [-Z, Z„], one assumes that for
values of z" smaller than but near to Z„, the,
asymptotic form of b,„(z '), Eq. (3.2) is still
valid. For I, such values of z", (Z„.. . , Zj,
one therefore has

d, (Z,.)=Z,. g c,e' ' ', /'=1, I, (3.5)

cg -Z 2~$AgZg& (S.7)

One now returns to Eq. (S.3), approximating
the z" integral by a sum over a mesh of points
{z»j=l, Z] such that z~= —Z„and zz=Z„, and
choosing the Zi, ...,Z~, for example, to equal

a set of L equations which can be inverted to yield

c, = +St/, ~. 6, (Z,.), /=l, I, , (S.5)
l'~1

in which 5K». is the inverse of the matrix
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jr~ - I, +1, . . ., Z~). One thus converts Eq. (3.3)
to the approximate finite-dimensional matrix
equation

d,„(,) = A,".'(z, )

+ K~ f » zgtt zggtt+ ~ zgt ~

L L

+ Q E,, „(zq) Q sg, ~g» d., (z~ z, g, ) . (3.8)
l~f f tag

All of the numerical xesults reported in Sec. IV
were obtained by solving Eq. (2.31) in the approx-
imate form of Eq. (3.8). In what follows, the
preliminaries to the numerical solution of Eq.
(4. 8) are presented. The kernel K„(z,z") is re
written in a form which is better suit+ for compu-
tation than that of Eq. (2. 28), and the functions
E, „(z) are evaluated to leading order in Z„. This
section concludes with a description of the details
of my numerical calculations: integration methods
mesh sizes, etc.

An essential element of the numerical solution
of Eq. (S.8) is obviously the evaluation of the
kernel K„(z,z"). This evaluation is greatly facili-
tated by the xeplacement of the z' integral in Eq.
(2. 28), for K„(z,z"), with an integral over only
the surface region, via the use of an identity sim-
ilar to Eq. (2.4V), viz. ,

()( (z &u+&o„) exp[i(2m&u+z ) ~ z"] (3.12)
(o((a+&a„)

and"

( ( (*;».—»))»»p[-i(»' —»»)'~'»"],
N(((d + &d„}

and the evaluation of the integrals of (S.11) is re-
duced to the evaluation of the function t~(z), de-
fined by

t( z)= f dz"z" 'e'"-"
I

for appropriate values of p, and z =Z„.
In order to calculate tt(Z„) for P real and ) PZ„l

& 1, I used a simple Pads approximant, which

is accurate to one part in 10~. For Imp &0, I ap-
proximated e~(z) by the asymptotic form

(S.13)

(S.4), (3.10), and (2. 36)] to be able to evaluate
the integrals

f dz" G'(z z ' +++to )f (z )e' " /z
~N

(3.»)
in closed form, or at least to be able to convert
them to integrals over a compact domain. {Note,
by the way [cf. Eq. (3.3)], that one only needs the

E,, „(z), and therefore the integrals of (3.11), for
values of z ~Z„.] Assume that Z„has been chosen
sufficiently large z ' «Z„~z, the Green's functions
6'(z, z"; +&o+&o„) assume the forms [cf. Eqs. (A2)

and (A5) of Appendix A]

1 d(J(„d dt's„ t~(z) — . z
e'~' .

pg~ yo xpz
(s. 14}

(s. 8)

Equation (3.9) is proven by the same method as
was used for Eq. (2.4V), and is valid, as were the
previous such identities, only within k and x in-
tegrals that permit the dropping of boundary term
at z =~ (in integrating by parts). Substituting Eq.
(3.9) into Eq. (2.28), one obtains an expression
for X (z, z' ), which is easily evaluated numerical-
ly» viz ~ »

+ [Ig g(z z (d) —Iz 0(z z (0)]

+ID,0(zpz j &o) —— dz e I(40(z pz ~ (o) p

r.

(S.10)

where the I'„„.(z, z"; ((() are defined in Eq. (2. 36).
It is this expression for If'„(z,z") which I used for
computation.

In order to compute values of the functions
E,

~
„(z) of Eq. (3.4), it is desirable [cf. Eqs.

Finally, for p real with IpZ„l &1, I used the iden-
tities

f dz"z" 'cos(pz") =z '

--,'vipi+p f dv v-'sin'v,

i
1

dz" z" 'sin(Pz") =P 1 —C+» I+
Jg Ipfz

, sin.
"0 v 1+v

(S.15a)

(S.15b)

where C is Euler's constant. The use of these
identities permits one to integrate accurately over
the point P = 0 when the occasion arises (and it
does, cf. Appendix 8» all too often', .

The remainder of this section is devoted to a
description of some of the details of my computa-
tions. In order to obtain the functions ()(„(z), and
the functions (I('(z; + &o + u&„), in terms of which [cf.
Eq. (A2) of Appendix A] one may express the
Green's functions G'(z, z; +&@+to„), I integrated
the Schr6dinger equation [Eq. (2.3) or Eq. (As)]
using the Noumerov method ~ which is highly ac-
curate. As a result the mesh of z's on which these
functions were known consisted of equally spaced
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FIG. 1. Calculated values of electron density no(z)/n„
(in upper panel), and of A~„(z) and A~„(z) (center panel),
using the Lang-Kohn potential barrier VLK(z) for x~=2,
shown in the lower panel. Note that &,„(z)-4,'„'(z') ap-
proaches a constant asz ——~. This constant [cf. Eqs.
(2. 55) and (2. ~)~ equals -4(0., +~~,).

values of z; therefore all necessary z integrations
were performed using the Newton-bootes method. ~'

On the other hand, x integrals were performed by
Gaussian integration. The matrix inversions re-
quired to obtain 5g, ',., cf. Eq. (3.8), and to solve
Eq. (3.8) were performed using the standard ma-
trix inversion package on the S.U. N. Y. , Stony
Brook, IBM 370-155 computer system.

Typically, a mesh of 32 values of x gave a suf-
ficiently accurate set of values of K (z, z' ) and

E,,„(z). The accuracy of the z integration was
verified by making the mesh finer. A mesh of on
the order of 30 or 35 equally spaced values of ~;
was generally used in solving Eq. (3.8). The fine-
ness of the mesh was again judged to be sufficient
by increasing the density of points and observing
little change in the results.

In order to test the validity of a choice Z, I
imposed two criteria. First I required, for any

single choice Z, that the quantity &,„(z)—b,~„'(z)

be the same at z =Z as at mesh points z adjacent
to Z„. The satisfaction of this requirement (of
which an illustration is given in Fig. 1) guarantees
that the value chosen for Z is sufficiently far into
the vacuum that b,, (z) —4+'(z) is behaving asymp-
totically there, and therefore, that the value ob-

tained for n via the equation [cf. Eq. (3.55)]

~ =--'[~..(Z.) —~,".'(Z.)] (3.18)

As I stated at the outset, the motivation for the
present study of surface-plasmon dispersion and
damping has been to gain insight into the relation
between surface electronic structure and surface
plasmon properties. The first steps in this direc-
tion, reviewed in this section29 have been explora-
tory ones. I have solved Eq. (3.8) numerically,
and using Eq. (2. 55) have obtained values of the
linear coefficient of surface plasmon dispersion
and damping a for a variety of choices of the po-
tential ba, rrier V(z). [Within the RPA, as de-
scribed above, the specification of V(z) is equiva-
lent to the specification of all static surface elec-
tronic structural properties. ]

In order to explore the sensitivity of n to the
shape of V(z), for a given bulk jellium conduction-
electron density, I have evaluated o, using the
Lang-Kohn self -consistent potential barrier for
that density V«(z), and also using model barriers
of the form

(4. 1)
with various values of the surface diffuseness and
work function parameters, a and 4 [and with 5 =+5
(see Ref. 31)]. Results, for conduction electron
densities corresponding to electron gas radii r,
between 2 and 6, are pxesented in Figs. 2 and 3.

One notes in these figures that both e~ and ee
show a'marked sensitivity to the shape of V(z).
For example, in Fig. 2 it is seen that the com-
puted VRlues of cled Rnd Qa vs x~ Rre systematically
only about —,

' as large for the asymmetric (i.e. ,
mostly concave downwards) Lang-Kohn barriers
as they are for symmetric model barriers, of the

is not explicitly dependent on Z . Second in order
to check that n was not implicitly dependent on
Z„, I verified, for selected cases, that if &,„(z)
—&~+'(z) was independent of z, for z near Z, then
the "re"-solution of Eq. (3.8) with a value of Z
farther out into the vacuum yielded the same value
of n as did the first calculation.

I checked that e was independent of Z~ similar-
ly, by determining a value of n with one value of
Z„and then verifying that for a larger Z, I would
find the same value of o.. My choice of which
z s to use as Z~, . . ., Zz [cf. the sentence follow-
ing Eq. (3.7)] was not always (z~ ~,». . . ,z~). In
certain cases I found it useful to choose the values
(z~ z~,z, z~ 2I„4, .. . , z~j in order to eliminate nu-
merical noise in solving for h, ~(z).

IV. SENSITIVITY OF SURFACE-PI. ASMON DISPERSION
AND DAMPING TO BARRIER SHAPE, AND TO IMPURITY

ADSORPTION
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FIG. 2. Dependence of at t and 0.2 on w~. The curves
labeled -0.~ and -0.2 were calculated using the Lang-
Kohn potentials. The curves labeled -e& (a, 4) and
—0, 2Q, 4) were calculated using VQ;a, 4) with the values
of u that are shown, and values of taken from Bef. 30.
Upper panel: comparison, for ~, =2, of (2m/8 )VL~g)
and (2m/I' )V(z; 0.66 A, 3.89 eV). The units are L

theoretical work on surface plasmon properties.
Bennett' first showed that the unexpected sign of
a& could be understood within a hydrodynamic
model of an electron fluid surface. His results
were subsequently corroborated by Beck and Cellie
for a square-step (a =0) potential, and are cor-
ro borated again by the present results for a variety
of barrier shapes.

In Fig. 3, for Al density (r, = 2. 0'l), I show the
dependence of a~ and nm on Q and a. Note in the
upper panel (A) that the c.'s depend rather weakly
on 4, at least on the scale of work function changes
that one might expect for different single-crystal
surfaces. On the other hand, in the lower panel
(B) one sees that the variation of the a's with a is
quite rapid. The values of e~ and a~ decrease in
magnitude by factors of -4 and ™5, respectively
between the values of a = 0.67 A for which (cf.
upper panel of Fig. 2) V(z; 0.6'l A, 3.86 eV) and

VL„(z) are of comparable surface diffuseness, and
a = 0. 335 A, which is & this approximately self-
consistent diffuseness. The trend of the 0.'s with
decreasing u does appear to be in the direction of
Beck and Celli's a = 0 variational result, lending
credence to the validity of the variational method.
However, the rapid variation of the 0.'s with c also
forces one to conclude that the agreement of their
value of a, (a = 0) and experiment~2 is accidental.

form given in Eq. (4. 1), of comparable surface
diffuseness. One also notes that the values of e~
and oa for the Lang-Kohn barrier at Al density
(r, =2) are about three times as large as the val-
ues -0.OV and —0.21 A, respectively, reported
by Beck and Cellie for a step-function barrier.
In Fig. 3, this difference is put in perspective,
in that n, and na axe shown to be quite rapidly vary-
ing functions of a, the diffuseness parameter of
V(z; a, C'), which equals zero for Beck and Celli's
pote tial.

The curves in Fig. 2 were calculated using
values of 4 obtained self-consistently by Lang and
Kohn before "lattice corrections, "3 and using val-
ues of a chosen by requiring V(z; a, C) to equal
VL„(z) at the two points where its values are
10%(ez+@) and 90%(e„+@)below the vacuum level.
The values of u that were used are given in Fig. 2.
The upper panel of this figure is a comparison of
the Lang-Kohn barrier VLx(z) and V(z; 0.66 A,
3.89 ev), for r, =2.

It is worth noting in Fig. 2 that 0.
&

is in general
negative, despite the strong sensitivity of the e's
to the shape of V(z). It was the observation of neg-
ative values of 0.~, by keV electron transmission
through Mg films (polycrystalline, with unchar-
acterized surface geometry and purity), and later
by inelastic low-energy-electron diff raction on an
Al(111) surface~~ that provoked much of the recent

l.25-

l.OO-
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0.75-

CI2 (.87A, I)

-gl(.87k, I)

0.50

l.75-

4 (eV)3S 1 4.0 $ 4.5
Self-consistent Expt I. 0 for
JelliMm %(rs*2.07) polycryatolline Al

l.50-

I.25-

0.75- .88eV)
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0.25 „-

Beck+ Celli
results
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O.l 0.2 0.3 0.4 0.5 0.8 0.7 0.8
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FIG. 3. (a) Dependence of 0. 1(0.67 ~,- 4) and 0.2

(0.67 A, 4) on 4, for r, =2. 07. (b) Dependence of
0.&Q, 3.86 eV) and 0,2', 3.86 eV) on c for &~=2.07.
Beck and Celli's variational results for n =0 (Ref. 6) are
also shown.
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Incidentally, this conclusion is supported by the
fact that in more recent experiments the values of
a& for Al and Mg no longer appear to be negative. '

The fact that the e's vary rapidly with potential
barrier shape makes it natural to suppose that, in
particular, they will be sensitive to the changes in
this barrier which result from impurity adsorption.
The ILEED experiments of Porteus should soon
provide experimental information in this regard,
for the cases of Cs and Na adsorption on an Al(111)
substrate. ' In the meantime, I have attempted
to estimate the magnitude of this effect theoretical-
ly, ~ using the self-consistent potential barriers
provided by Lang's calculations of work-function
changes versus alkali adsorption on an Al density
(r, =2) jellium substrate. Lang's potential bar-
riers V~(z) each correspond to the adsorption, on
the r, = 2 substrate, of a fixed number per unit
area of a certain species of alkali atoms. For
each of these potential barriers, I have solved for
the corresponding values of nj and a2, using Eqs.
(S.8) and (2. 55). I present the results of these
calculations in Fig. 4.

Lang and Kohn originally showed that the use
of a step-function model of the ionic (positive)
charge distribution at a clean free-electron-metal
surface leads to self-consistent electron density
profiles which account reasonably well for mea-
sured surface energies and work functions. On the
basis of this success, Lang has generalized the
Lang-Kohn jellium model to one for alkali-covered
surfaces, 33 in which the positive background
charge-density drops to zero in two steps from its
value in the substrate. The second step represents
the ionic charge of the adlayer Its widt. h d (see
Fig. 4, inset) is set equal to the distance between
the most closely packed planes of bulk crystals
of the alkali species being adsorbed. The volume

density of the adlayer positive charge n" is taken
to equal the fractional coverage 8 times the aver-
age ionic density of the akali metal in its bulk
form n„" . Thus, at 8=1, which is referred to in
Fig. 4 as "full coverage" (and in Ref. 17 as "mono-

layer coverage"), the adlayer ionic charge is that
of one close-packed layer pf alkali adatoms. This
prescription for choosing values of n" and d, to
correspond to a given experimental adlayer cover-
age, leads to fairly good agreement with experi-
mental work function versus alkali coverage data;
I have therefore also used it in preparing Fig. 4.

Because the results shown in Fig. 4 correspond
to a jellium model of both the substrate, and adsor-
bate ionic charge, it seems reasonable to focus at-
tention on their qualitative rather than on their
quantitative features. The most striking aspect of
the results is that n„ the dispersion coefficient,
is rather strongly sensitive to alkali adsorption
(on the r, =2 substrate) while n3, the damping co-

efficient, is less so. The values of n, and n2 are
plotted in Fig. 4 vs N" =dn", the number of
alkali atoms adsorbed per unit area. Note that a,
rises roughly linearly with coverage, and that for
a given value of N", n, is rather insensitive to
which alkali species is being adsorbed (i.e. , to
what value of d has been chosen). On the other
hand a2(N", d) does seem to depend on d, and thus
on alkali species, for fixed N" (T. he solid curves
in Fig. 4 are drawn in solely as guides to the eye. )

The sign change of n, at N" = 0. 2X 10"atoms/
cm, in Fig. 4, is a "quantitive" feature of the re-
sults, in that there could obviously not be such a
sign change if o.'~(N" = 0) had not turned out to be
negative. According to the latest ILEED experi-
ments on a clean Al(111) surface, it is now be-
lieved that n~(N" = 0) is in fact positive (the "best
fit"' is o.', =0. 2 A+0. 1 A). This result, if true,

0.0
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FIG. 4. Calculated dependence of a~ and n2 on alkali
adsorption for an rs = 2 substrate. Inset: positive back-
ground charge density used by Lang to obtain the poten-
tials V& (z) which correspond to adsorption of a given
amount of a given alkali. The adlayer thickness d
equals the separation of the most closely packed planes
of the bulk alkali metal corresponding to the alkali
species being adsorbed. n+4 and n are, respectively,
the adsorbate and substrate volume densities of positive
charge. Full layer coverage corresponds to the choice
of positive adlayer charge density n "equal to n„, the
bulk-charge density of the corresponding bulk alkali
metal. ~A4= dn, is the number of alkali atoms adsorbed
per unit area.
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precludes the observation of a sign change in 0.
&

with coverage; it also suggests that one will have
to go beyond the jellium model if one is to have a
quantitative theory of surface-p1. asmon dispersion.
The question of going beyond the jellium model, to
calculate n& and a~, is discussed below in Sec. V.

V. DISCUSSION: DIRECTIONS FOR FUTURE
THEORETICAL STUDIES OF SURFACE PLASMON

PROPERTIES

The results presented in Figs. 2-4 give a quali-
tative indication of the sensitivity of n, and o.'z to
the shape of the surface potential barrier V(z).
However, they represent only a first step in c1.ari-
fying the nature of the physical relation between
the n's and V(z), which remains obscure because
of the complicated form of Eqs. (2. 31) and (2. 55).

There are two lines along which one would hope
to be able to make further progress. First, by
making an extensive study of the values of a, and

n& for some sort of "complete set" of potential
barriers V(z), one might hope to be able to detect
empirically those aspects of V(z) which cause o.~
and aa to vary. For example, one might learn
what aspects of V«(z) and of potentials of compar-
able surface diffuseness V(z; a, 4), cause the val-
ues of n, and n2 to which they lead to differ by
factors of -2, or to learn what aspects of Lang's
potentials for alkali adsorbates render n, (N"~, d)
essentially independent of d.

Second, by developing a means for incorporat-
ing the effects of lattice periodicity into the theory
of surface plasmon dispersion and damping, one
would presumably be able to test calculations of
the n's against experimental measurements. The
present jellium calculations do not permit such
a test.

In calculating work functions, Lang argoes 3 that
the approximate validity of the use of a jellium
model stems from the fact that a work function is
a quantity whose definition, as the energy given up
in removing an electron from a metal to n, in-
volves an average (of the surface dipole) over the
entire metal surface. More generally, one would

argue the discreteness of a metal's ionic charge
should not play an important role in determining
the magnitude of any of its long-wavelength surface
properties. And indeed it is this argument which
leads one to suppose that Lang's potentials should
provide a basis for calculating long-wavelength
surface plasmon dispersion and damping.

However, this argument neglects the fact that
surface plasma oscillation is a high-frequency
phenomenon, whose dispersion relation reflects
the selection rules which govern surface-plasmon
decay, while a work function is a static surface
property, in which such selection rules play no

role. In the absence of departures from two-di-

mensional translation invariance, whether due to
lattice periodicity or to some other form of "sur-
face roughness, "34 it is known, in general, that

q =0 surface plasmons are undamped, ~4 or in other
words, that

Im&o, (q = 0) = 0 . (5. 1)

Thus, the experimental (ILEED) observation that

I
lm~. (q = 0)/Re~, (q = 0)

I
=18%, (5. 2)

for an Al(111) surface, is a good indication that
departures from two-dimensional translation in-
variance not only can but actually do play a signif-
icant role in determining u&,(q) for small values
of q.

One may estimate the scale of length which
characterizes the relevant departures from sur-
face "flatness" by assuming that their effect is to
couple initially undamped infinite wavelength sur-
face plasmons to surface plasmons of shorter
wavelength, whose damping, for the sake of the
estimate, can be assumed to be governed by the
linear damping law [cf. Eq. (2. 1)]

(5.3)

In this appendix, I derive the asymptotic falloff
behavior of integrals of the form I'„„.(z ', z; e),
cf. Eq. (2. 36), which enter into the calculation of

the kernel K (z, z"), cf. Eq. (2. 37). The first
step in the derivation is the recognition that
9~„0„(z',z") is independent of k, by virtue of Eq.
(2.7), and therefore that the I'„,„.can be written

drr(a' — '1(,) rl„(e')(,)
xg'„, (z', z")q„(z') .

Im(u, (q) = (g,(0)n, q .
Using the value na —-- 0. 57 A calculated for a clean
r, = 2 substrate [using VL„(z)], it is seen that in
order to explain the experimental damping ratio
of Eq. (5.2), one must assume the important de-
partures from surface flatness couple the q =0
surface pla, smon to modes of wave-vector = (0.18/
0.57 A '). Thus the length scale which character-
izes these departures is of the order of (0.57/0. 18)
A= a few A, which makes it seem likely that they
are associated with lattice periodicity (as opposed
to surface "imperfections, " i. e. , steps, kinks,
. . . ). I hope to be able to incorporate lattice pe-
riodicity effects, into the theory of surface plas-
mons, perturbatively, for free-electron metals.
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Note in Eq. (Al} that the factor (k2Z —z') vanishes
at the upper limit of integration. For potential
barriers V(z) which do not have a solution at z = 0
(that is, a z =0 resonance), the integrand of Eq.
(Al) also vanishes at the lower integration limit.
It is argued below that by virtue of this behavior
at the limits of integration, the integrals I'„„.fall
off as z" ' times a sinusoidal function of z ', asz"-~ (with z' held fixed).

The proof is simplified by the fact that the
Green's functions whose sum or difference equals
9&„0„(z'&z ') have the closed representations

G'(z ', z";E) = [I/w(E)]

x [8(z' —z")g'(z '; E))1) (z; E)

where for the minus sign the square root is to be
interpreted as i(2m&v-z )' if z &2m+. At the
same time, the wave functions )})„(z)have the as-
ymptotic form as z-,

$„(z)- sin(zz+ 6„), (A6)

where 5„ is a phase shift independent of z. The
assumption that V(z) has no z = 0 state implies '
that

5„0=0 . (Av)

Consider first the term in I'„,„.corresponding to
G'(z, z'; &o+&o„). In the limit z -~, this term
approaches

f dz (Kfp —K )f„,»~(z
& K& &)

G-(z', z"; E) = [G'(z', z";E)]+,

+8(z"-z'))})'(z";E)g (z'; E)],
(A2a)

(A2b) where

xexp[i(2mw+z ) z"]sin(zz"+6„)
&

(As)

which obey, respectively, as z- +~, an outgoing
wave boundary condition, and where the Wronskian
s)(E) is given by

u(E) = „(z;E))1)-(z; E)
1 dg'

&.( ~) & )&; ))4z (A4)

where the )})'(z;E) are the solutions to the equation

, +V(z) )I)'(z; E)=E)I)'(z; E), (A3)
cP

)}„(z) — 0, qz,
K~O

(Al 0)

d ", 1x, )}) (z'; &o+to„)
dz K(CO+(dK)

(A9)
By virtue of Eqs. (A3) and (2. 3), the quantity

f„,„.(z', z, &o) is an analytic function of z along the
line O~z~kz. Moreover, since V(z) has no state
at v = 0, one has

Using Eqs. (A3) and (2. 4), it is clear that asz"-~, the wave function g'(z"; + &a+ &a„) has the
dependence

and thus one obtains

f„,„.(z ' 0, ra) = 0, (A11)

)})'(z";+(o —(o„)-exp[i(+ 2m(a+ z )'~ z "],
(A6)

One uses these facts to integrate by parts in the
expression of (A8), after rewriting it in the form

(A12)

(A13)

1 z
2 2, e "~(2m++x ) d

dK(kz K )f„„(z K (d) . „[(,},&)& ]
(exp {i[(2m&v+ z ) + z]z "3)

e "(2m~+x ) d a i/2+ . „„»&z —(exp(i[(2m&v+x )' —z]z"j) ~.iz [(2m&v + z ) —z] dz )
The crucial point is the vanishing of the boundary terms, due to Eq. (All), and to the fact that k2 —z~= 0
at z =k~. Because the boundary terms vanish, the expression of (A12) is equivalent to the expression

Ay

+ K exp {'E[(2m(d + K ) + K]z ) (kp —K )f„,„(z K (d) 2 gI2
0

+ exp(i[(2m&u+ tc ) —z]z") (k& —z )f„,„&(z'& K& (d) p gyp

According to the Riemann-Lebesgue lemma 6 the
integrand of (A13} vanishes as a sinusoid timesz", as z"- , and thus the entire expression
vanishes as z" ~ times the sinusoid, as desired.
One may verify this fact directly, of course, in-
tegrating by parts once again in (A13). One there-

I

by finds it to have the asymptotic behavior as
ll

Z

(A exp{i [(2m(o + kz2)~ ~ z+ k~]z")

+Bexp(i[(2m&v+k+)'s -kz]z "})/z'3, (A14)
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x exp[- (2m&v —Kz)z "]sin(»z" +6„)

y J 1+ d»(k& —K )f„,„i(z & K~ —(d))1 l2

x exp[- f(»' —2m(o)'I'z "]sin(Kz" + 6„). (A16)

One may easily carry out an integration by parts
in each of the integrals of (A16), analogous to that
performed for the integral of (AS). One finds that
boundary terms at K = (2m&v)' contribute nothing
to the asymptotic value of the expression of (A16)
as z -~, but that the boundary term at v =4~ does
contribute, yielding for I'„„.(z, z '

) terms with the
asymptotic dependence on z",
(C exp{i[(k2~ —2m(u)'"+k~]z'$

+ D exp {i[(kzz—2m(o)'12 -kz]z"'])/z'" . (Al7)

Thus in either case, the integrals I'„„,(z'z")
behave as z times a sinusoid as z -~, as was
originally claimed.

APPENDIX B

In this appendix, I show that, asymptotically as
z-~, b,,„(z) assumes the form

(z ~) z z Q c e1kgt
2=1

(Bl)

to leading order. The e, are a set of constants,
to be determined by solving Eq. (3.6). The k, are
determined below; there turn out to be a finite
number, I., of them, where L, =6 if @~+&2m(d and

I.= 10 if kz & 2m'. 37

By virtue of Eq. (2. 31), the asymptotic behavior
of +@~&(z) 18 governed by tllat of 41(z) given in Eq.
(2. 34), as well as (self-consistently) by that of

where A and 8 depend on n, n', and z (and in which,
incidentally, the integration limit z = 0 contributes
nothing).

It remains to verify that the term in I'„„.(z ',
z ";~) containing G (z', z"; —ur+ &o„) instead of
G'(z', z; &o+&u„) has a similar or faster falloff be-
havior as z"-~. There are two cases.

(i) If kz& 2m', then for all K between 0 and kz,
one has

q'(z"; —(o+(u„) = exp[- (2m(o —Kz)'~2z" ] .
(A15)

Thus the falloff of the G (z, z"; —&a+v„) term in
I'„,„.is exponential as z - , and the over-all as-
ymptotic behavior of I'„„.is of the form shown in
(A14).

(ii) If kz &2m'&, which is true for sufficiently
dense jeilium (e.g. , at Al density), then the G

contribution of I'„„.takes the form

J dz "A„(z,z") ~,„(z") .
In order to determine the behavior of this integral,
one studies the functions M„„.(z; &u) defined by

ky

M'„„.(z; CO)
-=2 '

d»(k'g —K')

dz G zyz ~ kQP+(dg q z +q~ z e 83

[It is easy to express the integral of (82) in terms
of the M'„,„.(z, &o), using Eqs. (3.10), (2. 36), and
(2.7). ]

One attempts to determine a set of wave-vectors
{k,), such that Eq. (Bl) is self-consistent, i.e. ,
such that the use of Eq. (Bl) in evaluating the
M'„,~(z; ur) will lead to the result that M'„„i(z ~; &u)

varies as z times a linear combination of the
same set of plane waves e' ". For example, con-
sider M', ,(z; ~) which [cf. Eqs. (A2) and (A4)] may
be expressed as

QP 1
Mt 0(z; (d) =

g cf»(kg —K ) tt „(z)o, gn„o w(~+ (u„)

Z j CO+('d„' dZP™Z j +(de

xq„(z")n,„(z")+P (z; (o+(u„)
~0

X dZ Z ~ (d+(dg gZ +~~Z e

Because g„(z ——~) is proportional to
exp[z "(2IC +kzz —»2)'~~], the z ' integral from
—~ to z in Eq. (84) is a differentiable function of
K, in the region [O, kz]. For this reason the term
in Eq. (84) involving this z integral can be evalu-
ated asymptotically, using the method of integra-
tion by parts. One breaks the integration from
—~ to z into the two parts, from — to a point &,
and from Z to z, where the point Z is chosen to be
sufficiently deep inside the metal, that for z"& Z
one may replace the functions $ (z"; u&+ &a„), and

A,„(z' ) by their asymptotic forms.
As z- ~, using Eqs. (A5) and (AS), the contribu-

tion to Mo 0(z; u&) from the integral over (- ~, Z)
can be written in the form

J CK(kz —K ) sin(»z+5„)exp[f(2m&v+K ) z]A„(K),
(B5)

where A„(K), as explained, is a differentiable func-
tion of K, and where by virtue of Eq. (A9), 5~ = 0
and A (0) =0. As a result, using methods identical
to those of Appendix A, one finds that the expres-
sion of (B5) behaves, as z ~, as a linear combina-
tion of

z z exp{iz [(2m') +k~~)'~'+k„]],
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or in other words, that two of set of 0& must be
(2ppg(g ~k2 }1/2 ~k

The contribution to Mo 0(z; &o) from the integral
over (Z, z) is somewhat less straightforwardly
evaluated. In the limit z-~, using Eqs. (A5) and

(A6) and the fact that

where

B(»,z)-=dz'z''~ L c,e"~"
~

xexp(fz[(2m(d +») +»])B(K z), (B8)

g (z- ~; e+ &o„)= exp[-iz(2m&a+»z)~~z]

+x(sr+&@„)exp[fz(2mar+» )' ], (BV)

x sin(»z '+ 5„)(exp[- fz(2m(d +» ) ]

+r(ra+ &a„) exp[iz(2m&v+»I)'~3]) . (Be)

where r(&o+v„) is a reflection coefficient, this con-
tribution is proportional to the difference of the
integrals, J„which are defined by

jdfc

z, -=d»(kz-» ) ~ I
(K + 2m('d )

Let

g, (»; (o) =—(2m(u+»')'lm +» . (B10)

Then, using the differentiability of B(»,z), and

twice integrating by parts on K, one obtains the
expression for J„

z'«~(» (g) d ( (k~ »z}e"~~ Ap

B(», z)z'g,'(» q (d) d» I&(» +2m~)"'g,'(»; w)

(Bl1)

In the boundary term of Eq. (Bll), the limit kz
only contributes if the d/d» operates on (kz —» ),
while the contributions from the limit K =0 are
equal in J, and J, and therefore cancel when one
evaluates J, —J . Thus, the z dependence contrib-
uted to Mo 0(z; &o) by the boundary terms of J', is
of the form

z exp(iz[(2m&v kz+)'~ +kz]) B(kz, z} . (B12)

In order to determine the asymptotic behavior of
B(kz, z), one needs to evaluate the limiting form
of integrals such as

J dz'z' exp(iz'[+(2m&u+kzz)~lzykz+k, ]}.
(B13)

There are two possibilities: (a) If k, is such that
the argument of the exponential is zero, then an
integral such as (B13) equals (Z -z ), which as
z - , behaves as a constant. Thus the asymptotic
dependence of (B12) adds nothing new; it is the
same as was given in (B6). (b) If the argument of
the exponential of (B13) does not vanish, then the
integral behaves asymptotically as

(fZ [+ (2m&v+k+) I akz+k, ])
x exP(iZ[+ (2maP + kzz)'~2 +kz +k, ]j+O(1/z ),

(B14)
in which case one also obtains the asymptotic be-
havior given in (B6), for Mo 0(z; a&).

Next one examines the integral on K remaining
in Eq. (Bll). Note that this integral is premulti-
plied by z . As a result, one only need consider

1 a
d»e'«~'"' 'F(»)z2

0

x(exp(fz[+(2m'&+» ) a»+k, ])
—exp(iZ[a (2m&v+» )' +»+k, ]]), (B15)

where E(K) is a smooth function of K.

In this expression, the term involving Z falls
+o zero, as z-, at least as fast as z, by virtue
of the Riemann-Lebesgue lemma. The same is
true of the term involving

exp(iz [+ (2m(u+»')'~'+»+k, ]],
unless the equation

g, (», (g) + (2m(o +)»'zI+=»0 (B16)

is satisfied. In this case, the integral of (B15)
behaves asymptotically as

Z 2geklg (B17)

I

the term in this integral, in which both d/d» oper-
ators act on B(»,z). [The proof of this statement
follows from the fact that integrals of the form,

g
d t tm2 jpgz

Z
z e

and

'dz 'z '-' ej"',
z

are bounded, respectively, by Z and ln(z/Z), and
the use of the Riemann-Lebesgue lemma. ] How-

ever, the evaluation of d B(»,z)/d» is easy, be-
cause the two K derivatives bring down two factors
of z' from the various sinusoids. Thus one finds
that the integral term in (Bll) contributes asymp-
totic z dependences of the forIn
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x exp[i(2m&v+ K )I~z]z]
L

x Q cI{e'"S;(z, K(o) —e '"S;(z, — &K(o)],

(B18)
where the functions S', are defined by

S', (z, K, &d)=—f dz'z' zexp{iz'[kI+(2mId+Kz)+K]]

(B19)
Consider first the term involving S;(z, + K, &u) in

Eq. (B18). If the equation

kI + (2m'+ K ) + K = 0

cannot be satisfied for 0 & K & k v, then S,(z, K, to) can
be replaced in (B18) by the asymptotic expression

Sg(Z ~~ Kq (d) = {-iz [kI + (2m(o + K ) + K])

xexp{iz[k, +(2mId+K ) +K])

+O(I/z') . (B21)

Substituting Eq. (B21) into (B18), one then finds
that the S;(z, K, &u) term of (B18) varies asymptotic-
ally as z ~ times a linear combination of the
e'"~', plus terms which die off more rapidly as
z -~. One obtains a similar result for the S;(z,
—K, &u) term, under the assumption that

kI+(2m(d+K ) —K=0 (B22)
I

Thus, collecting results, the assumption that A,„(z)
behaves asymptotically as in Eq. (Bl) leads to the
conclusion that Mo 0(z; Id) contains in its asympto-
tic behavior, a linear combination of terms of the
form z e'"", where the set of k&'s includes +2k~
[from A,'„'(z)] and (2m&o+kv)'~1+kz.

In order to complete the study of the asymptotic
properties of Mo 0(z; &o), one must now consider
the contribution of the term [cf. Eq. (B4)] involving
the z' integral from z to ~.

As z- ~, using Eqs. (A5), (A6), and (B7), this
contribution can be seen to behave as

J (
2 z)

slII(Kz + 5g)
(2m(d+K )

x{exp[-i(2m&v+K } ~ z] r+( Id&+@„)

f (K) =f (ko) + (K —ko)f '(k, )

+ 2 (K —ko)'f "(k,) + ~ ~ ~,
g(K) = (K —k, )g'(k, )

+-,' (K —ko)'g "(k,) + ~ ~ ~,
C(K) = C(k,) + ~ .

(B24a)

(B24b)

(B24c)

where in Eq. (B24b), the constant, g(ko) has, by as-
sumption, been set equal to zero. Using Eqs.
(B24), one may write Is(z) for z- ~ in the form

cannot be satisfied for 0& z &k~.
However, it should be noted that Eqs. (B20) and

(B22) can have solutions for 0 & K &k„, for various
of the k, 's that one already knows must be included
in {kI). For example, if k, = —2k+, then Eq. (B20)
has a solution at K =k„—mId/2k~. (See Table I for
more examples. ) In this case the replacement of
S'(z- ~, K, Id) in (B18)by Eq. (B21) is not a cor-
rect procedure, as is evidenced by the fact that the
denominator in Eq. (B21) can equal zero, and one
must take explicit account of the fact that S;(z, K, &u)

is not analytic at K =k„—mar/2k'.
In order to solve this problem quite generally,

one considers integrals of the form

F tg(ff )gz

I(z) = dK C(K}e' '" ' dz' &, (B28)
0 g

in which C(K), f(K), and g(K) are assumed to be
smooth functions of K, and in which g(K) is assumed
to have a zero at a point ~ =k„with 0 & ko &k~.

The asymptotic behavior of I(z) as z-~ can be
obtained by breaking the K integration of Eq. (B28)
into four integrations over the domains [0,ko
—Az ], [ko —Az, ko], [ko, ko+Az ~], and [ko+Az ~,

k„], where A is an arbitrary constant and p is a
constant satisfying & &P & 1. Consider first, the
integral over the third of these domains, which I
call I~(z). Since K is restricted, in this integral,
to be arbitrarily near to ko (as z becomes arbi-
trarily large), the functions C(K), f(K), g(K) in
Is(z) may be Taylor expanded about K =ko; the ex-
pansion yields

I3(z) =C(ko) e' '"o" f dK J dz'z' exp[i[(K-ko)(z f '(ko)+z'g'(ko))
ko E

+-,'(K -k, )'(zf "(k,)+z'g "(k,))+ ~ } (B25)

or, changing variables, as

I~(z) =C(ko)e' ' o" Az n'~' f dy J, dv v exp{iAz' ~y[f '(ko)+ vg'(ko)]

+ —,'iA'z' ~y [f"(k,)+vg"(k,)]+ j . (B26)

However, by virtue of the choice p &» the term in the exponential, in Eq. (B26), which is proportional
to z ~, is negligible in the limit z- . Dropping this term therefore, and interchanging orders of inte-
gration one may reduce Eq. (B26) to the form
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1 "" dv expijAz) ~ [f '(k )+ vg'(k )]}—1
(B27)

which can easily be asymptotically estimated as z- ~, since P has been chosen smaller than unity. Sim-
ilarly, the integral Iz(z) which corresponds to the second domain of z, viz. , [ko —Az, ko], may be written

( ) ( )
'f(Q ) 1 I" dv 1 —exp(- i z' ~[f '(ko) + vg (kp}]}

a 0 f '(k, ) + vg'(k, )

ln order to evaluate Iz(z) +Is(z) (which is the quantity actually needed), one uses the method of contour
distortion, thereby finding the expression

Iz(z)+I~(z) =2C(ko) sgn[g'(ko)]e' '"o)'z

exp(iAz' [f '(k )+g'(k )] —vAz' [g'(k )(}—
ll~

(1+iv)'[f '(k, ) +g'(k, ) +ivg'(k, ))
(B29)

As z- ~, the term in the integrand of Eq. (B29) involving the exponential yields a contribution to 12+I&
which dies off as z '~, and which therefore can be neglected. The term which comes from the 1 in the
numerator, however, gives rise to a. term in Iz +Is which behaves as z ' exp[if (ko}z]." This term must be
retained.

lt remains to evaluate I,(z) and I~(z), the K integrals corresponding to the domains [O, ko —Az v] and
[ko+Az ~, kv], for example, I,(z), which may be written in the form

00- A)I"~
&

&c(~)~
I,(.) = t d—x C(K) z "("" (B30)

8 p V

By virtue of the fact that (( does not get closer to ko than ko —Az ~ in Eq. (B30}, the argument of the expon-
ential in the v integral is always at least of order g (ko}Az, which is arbitrarily large as z —~, I,(z)
takes the form

AO hd & (if (~)+c(a) 3c

I,(z-~) = s dx C(K)
ZZ gp g(K

(B31)

Similarly, as z- ~, the integral I4(z) is of the form

( )
1 ""&

( )
exp(i[f (K)+g(K)]z}

iz „( ~g~v g(K)

There are now two possibilities: either f (K)+g(x) is constant in z {this situation occurs [cf. (B18)]when
g((()=((( +2m(d) +((+k and f((() =- ((( +2m(d) —((}, or otherwise, f((()+g((() is a smoothly varying func-
tion of z of nonzero derivative. In the first case,

f ((() +g((() =k),
the integral I,(z) takes the form

&()))g 00-Ag v
C(K)I,(z- ~}= . , d((

M 0 g((()

(B33)

(B34)

(B35)

ln order to take advantage of the facts that g((() is smooth and that g (ko) = 0, one defines the function g((()
by the equation

g((() = (((-k,)g((() .
Note that

g'(k, ) =g(k, ) ~ 0 . (B38)

One substitutes Eq. (B35) into (B34) and integrates by pa.rts, obtaining the result

e(~(' C(k ) C(0) e'~)' 'o ~ d C(K)
I)(z - ) = . z, , lnAz —,, lnko — . z d((ln(ko —K) (B37)

d(( g((()

As z- ~, it can be seen upon a, further integration by parts that the integral term in Eq. (B37) vanishes as
z ('~)lnze' ", which canbe neglected. Similarly, if Eq. (B33) holds, the integral I4(z —~) may be shown
to behave as

ln(k k,) ' lnAz + ~ ~ ~
e'~)' C(k ) C(k } (B38)
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Thus the sum I,(z- ~) +I,(z- ~) behaves asymptotically according to

e "i' C(j&) 'F
I,(z-~)+I,(z-~) = . , in~ &&-k,

~

+ ~ ~ ~iz' g((&)
(B39)

dz e
' [f& &+e& &

d ( C~~~
(B40)dK (g(K)[g (K) +g (K)] j

I

by allowing the d/dj& operator to act on [g(&&}7,
and by replacing the resulting [g(z)] in the inte-
grand by the largest value it assumes within the
domain of integration, namely, [g'(ko)z ~72. Mak-
ing this replacement, and using the Riemann-
Lebesgue lemma, one then finds the integral term
to be of order z +' as z —, which again may
be dropped in comparison with terms of O(z 2}.

In the boundary term of E&l. (B40), the contribution
at ~ =kp -Az ~ behaves asymptotically as z
cf. E(l. (B24b}, while the contribution at (&=0 is of
O(z ); the boundary term is therefore negligible
in the limit z -~. The asymptotic behavior of the
integral term in E&l. (B40) is dominated by the fact
that g(&&) vanishes at i& =ko. One may obtain a
bound on the asymptotic value of this integral term

In the second case, in which f (j&)+g(j&) is a smoothly varying function of z, of nonzero derivative, the
integral I,(z) may be converted (integrating by parts) to the form

O(z) ei[f (~ &+c(~& &c

z' g(j&)[f'(j&)+g'([&) ]
Ap~ Ag

+
z p

TABLE I. Compilation of the results of searching for those values of K&[0,kF] at which the functions S (Z, + K, [~) are
not analytic. Thenonanalyticities occur for values of K which solve any of the equations in the first column, produc-
ing asymptotic behavior of 6 „(z) governed by wave vectors givenin thefourthcolumn. Note that the set of k&'s in the table
is closed, in the sense that the same finite set of k&'s appears in the second and fourth columns.

Condition for nonanalyticity
of S&(a, + K, co), Eq. (B19)

For Sf (a, +K, [g):

(2mcg+K ) +K+kg =0

(which has solutions only if
kg &0)

For Sf(z, —K, (d):

(2m~ + K2)1/2 K +k1 = 0

(which has solutions only if
k) &0)

kr

—2kF

—m[g/kF

—(kF -2m') -kF2 1/2

(kF —2m') —kF2 1/2

—2kF

—m(d/kF

—gr F- 2m')) —kF2 1/2

(kF -2m') —kF2 1/2

Value of K at which
nonanalyticity occurs

kF —m[a/2kF

-kF + m[a/2kF

fpF —2m(d)', kF & 2m~

—(kF 2m[9) ~ kF & 2m+}2 1/2 2

—kF + mv/2kF

kF —mes/2kF

(jtF —2m')
& kF & 2m G&)

(kF —2m~)1/2

Plane-wave wave-vectors generated
by nonanalyticity

+2kF, +m~/kF

(kF —2m') + kF, (kF -2m') + kF

+ 2kF, + mv/kF

(k2F 2m~)1/2 ~ k F (k2F 2mfd)1/2 y kF

For S,(e, K, —a), kF & 2m':
—(K -2m') +K+k, =o2 1/2

—2kF

—m[g/kF

kF+ m g/2kF, m& & 2kF

kF.+mes/2kF, 2kF& mcus

[which has solutions only if
0 &k) &- (2m~)'/ (assuming
K &0)].

—(kF —2m[v) —kF No solution, k& & —(2m')

(kF —2m') —kF2 1/2 kF

For S&(z, —K, —~), kF & 2m'
—(K -2m') —K+k, =02 1/2

[which has solutions only if
k& & (2m(d)' (assuming K & 0)]

2kF

m[9 /kF

—(kF —2m') +kF2 1/2

(kF -2m') +kF

+2m'))' +kF

(kF + 2m')) —kF

kF+ m g/2kF, 2kF & mv

kF +mfd/2kF, m[~ &»F

No solution, k& & (2m[g)'

kF

+ 2mfd)'

No solution, k& & 2m(d

Irrelevant for physical values of r„ for which -kF+ mes/2kF & 0.
"Irrelevant because this value of K is smaller than 0.
'Irrelevant because this value of K is larger than kF.
Irrelevant because this nonanalyticity gives rise to an asymptotic falloff of O(e lnZ).
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I(z) —(const. ) z e" '~o' (B41)

where by assumption, g'(k, ) =0. Thus returning to
the integral of (B18) [which is a sum of integrals
of the form of I(z)], one has shown that it behaves
asymptotically as a linear combination of terms
of the form

z exp[+ f(2m&o + kzo)
z +ko], (B42)

where k, is any value of z in (0, kr), such that

(2mur+koz)'~z+ko+k, =0 . (B43)

It has previously been shown, cf. the paragraph
following (B17), that the set of k, 's governing the
asymptotic behavior of Mo o(z, ~) includes +2k'
and (2m&v+k+)'~ +kr. To this set, one must now
add + (2m~+k', )' '+k„ for each k, that solves Eq.
(B43), and with k, being any of the totality of k, 's.
For example, take k, = —2k' in Eq. (B43). One
finds then, that the equation

(2m(u+ko)'~ +ko —2kr=0

has the solution ko=kr —m&u/2k+, and that the set
of k, 's therefore be supplemented by

(B44)

m 3-~~~ me mv2m'+ k~ —'2k + k~
2k +, +2kp

F F

(B45)
The values + 2k„of (B45) are of course not new,
but the values + m&u jkr are, and thus the set lk, j
must be at least

(+2k+, (2m&u+kr) ~ akr, +ma/kr) . (B46)

I

Thus, finally, in the case, f(K)+g(z)Wa constant in

x, the integral I,(z) is negligible as z —~. A sim-
ilar argument holds for I,(z).

Collecting results at this point, one has shown
that the asymptotic behavior of the integral I(z),
of Eq. (B23), is given by

(2m(u+k', )'~' —k, —m(u/2k' =0,
which is solved by

(B48)

ko ——k„—m(o /2k', (B49)

which, cf, Eq. (B42), implies that the set (k,j must
include

mN ~ mv mN
P 2 F 2 ~ E2k

(B50)
just as in (B45). Thus, the fact that Eq. (B49)
solves (B48) leads to no new values of k„and one
concludes that if 6, (z) is given asymptotically by
Eq. (Bl) with k, in the set given in (B46), then

Mo, (z; e) will also behave asymptotically as a
linear combination of z e'"&', where k, is in this
same set.

The question which remains is whether the con-
tributions of the other M'„„.(z; ra) to

f dz "A„(z,z "}~,.(z "},
cf. Eqs. (B2) and (B3), require the inclusion of
any additional k, 's. The answer to this question
depends on the sign of k~ —2m~. In any case it
is clear that the arguments which have been used
to this point to evaluate M', ,(z- ~; ~) apply equal-
ly well to M„,„.(z-~; w).

Consider, for example, Mo 0(z; &o), which [cf.
Eqs. (B3), (A2), and (A4)] may be expressed as

Proceeding in the same manner, one finds that
the equations

(2m&u+ko) ~ —ko —2k r——0

(2mw+k', )'~'+k, +(2m&u+kzr)~~zykr=0, (B47)

(2m+ +ko)'~ + ko+ mrs/2kr. ——0

have no solutions for kp such that 0&kp &k~. The
only other equation of the form of Eq. (B40) that
does have such a solution is

PI;,(z; ~) =, dz(k', -z') „, , P„(z)]g"(z;~.-~)
7T P2 yg) p

~0

x & "y- (z"; .— N. ( ")~ t ")~ C'(; — )I "'"&'*~'"'
(B51)

In the limit z- ~, the wave functions t'ai'(z; u„—u)
behave according to

if the inequality

k„'& 2m' (B53)
q'(z- ~; a)„—&u) =exp[-z(2m(u —x )'~z],

and

g (z- ~; &u„—&u) = exp[-z(2m' —zz)~~z]

+r(~„—&u) exp[+z(2m&v —z )' ],

(B52a)

(B52b)

where r(&u„—~) is a reflection coefficient. Thus

holds, the g'(z —~; ~„—&u) are non-oscillating for
0 & z & kr. This fact permits the expression (B51)
for Mp p to be evaluated easily.

The integral I(z) defined by

I(z) -=f dz" q'*(z"; (o„—ar)q„(z")&, (z"),
(B54)
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may be asymptotically expanded using Eqs. (852a),
(A6), and (81), leading to the result

I(z-~) =z ' Qc, exp{[ik, —(2m(u —z')'~']z)

1 e g (fcg+5„)

2i (2m(u —v~)'~' —i(k, + ~)

j (K~+6g)

(«mt« —«')"'-«(«, —«)) '

Substituting Eq. (855) into Eq. (851), one finds
that the z ' integral over (z, ~) contributes to the
asymptotic value of Mo o(z; &u) the term

PB(d 1 Q gp g

FL Io 2M
g

( p 2)
sin(KB+5„)

(2m(u —«z) ~f2

integral over (-~,Z) contributes asymptotic terms
to Mo, o(z- ~; &u) of the form"

z 'exp {-iz[(k~- 2m(u)'~'+k„]] . (856)

can be satisfied with ko between (2m&v)' and kz,
then they also include terms of the form

One also finds, in analogy to the case of Mo 0, that
the z" integral over (Z, z) contributes terms of the
form of (856), as well as terms of the form z ~

& e'"~'. Finally, one investigates the contributions
of the z integral over (z, ~) in Eq. (851), for
k~ & 2m~. One finds that these contributions in-
clude terms of the form z e' " (which add nothing
new to {k,j), and that if one of the equations

—(kzo —2m(o)'~2+ko+k, = 0,

z 'exp{iz[+ (k', —2m(o)"'+k, ]j . (86O)
j (fcg+5„)

(2m(o —z')"' —i(k, + «)

j (fcg+6ff)

(2 —«*)"' —«(«, —«) ) (856) —(kz~ —2mro)'~ +k~ .
It must also include the values

(861)

Collecting these results for Mo 0(z; ru & kz/2m),
one sees that the set of 0&'s must be expanded to
include

plus terms that fall off exponentially as z —. Ac-
cording to the Riemann-Lebesgue lemma the in-
tegral in (856) equals a constant plus terms that
fall off as z ', and which when premultiplied by
z can therefore be neglected.

The z' integral over (-~,z) in Eq. (851) can
similarly be shown to behave asymptotically as

times a linear combination of e' ~' where the
k, are just those which have been assumed to play
a role in the asymptotic expression for &, (z).
Thus, as long as Eq. (853) is satisfied, neither
Mo o(z- ~; &u), nor, by virtue of a similar argu-
ment, any of the M„„.(z-~; v) requires the addi-
tion of any new values of A, to the set given in
(846). [Thus for k~ & 2m&v, I.= 6 as was stated
below Eq. (81).]

If on the other hand the inequality

kz& 2m' (857)

holds, then the asymptotic behavior of P'(z; &u„—u&)

is oscillatory, for 2m(d & x & A~. In this case there-
fore, one might expect the asymptotic properties
of Mo 0(z; &u) to be as complex as those of Mo, (z, ),
and indeed, in this case it is found that the set
{k&) must contain four more elements.

As in the case of Mo, o(z, &o), for k~z& 2mur one
breaks the contribution to Mo, o(z; u) of the z
integral over (-~, z) into two parts, one from the
integration region (-~, Z) and the other from (Z, z),
where Z is taken to be sufficiently large that forz"&Z, q (z"; a)„-~), q„(z"), a,„(z")maybe
represented by their asymptotic forms. Proceed-
ing exactly as for Mo 0, one then finds that the z

+(k 2I(o)'~ +k (862)

where k, is any solution to Eqs. (859), as well as
the values

+ (ko+ 2m(d) +ko q

where ko is any solution to Eqs. (843) for a new
value of k, .

It is easy to verify, and the verification is il-
lustrated in Table I, that these new possibilities,
for k~~&2m~, require the set of 0, to be 7

{+2k~, (2mv+kz~)'~3+k+, +m&u/kz,

+ (k'„—2m(u)"'+ k~) .
Two of the new values of k, [cf. Eq. (856)] come
directly from the z' integral over (- ~, z) in Eq.
(851). The other two values of k, , namely,
+ (kz —2m&v)' +k~ arise from the fact that the
equation

(2mv+v )
~ +fr —(kz —2m&v)'~ —kz=0 (865)

has the solution

K = (k 2m%)

With these results, the study of the contributions
of Mo 0(z; &o) to the asymptotic behavior of b,,„(z)
is complete. It is easy to see that the other
M„„.(z; u) in K„(z,z' ) contribute no further new
values of k, . The asymptotic form of 4,„(z) is cor-
rectly given by Eq. (81), where the set {k,}has
six elements for kz& 2m&v, given in (846)& while
it has ten elements for k~ &2mId, given in (864).
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