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Within the framework of the random-phase approximation we consider the effect of band structure on
characteristic-energy-loss experiments.

I. INTRODUCTION and energy loss ~ = ~, —~, is given by

Recent experimental work' utilizing x rays to
probe the dynamic structure factor S(q, ~) of
simple metals has demonstrated the existence of
crystal potential effects in the spectrum of these
materials. Theoretical work on this matter is
extremely limited. Generally the calculations'
which have been published concentrate on the
detailed numerical evaluations of the diagonal
components of the frequency- and wave-vector-
dependent dielectric tensor. In this work the
emphasis will be on an over-all understanding
of the role of band structure in characteristic-
energy-loss experiments. We will show how the
random-phase-approximation (RPA) expressions
with band structure (RPAB) may, at high fre-
quencies, be simplified and the essential physics
of the periodic potential elucidated. Utilizing
some elementary models of the band structure,
we may evaluate the important formulas to quan-
titatively predict the general properties of the
characteristic. loss spectrum within the RPAB
approximation.

The experimental spectrum, while qualitatively
displaying the predicted behavior, is not in good
quantiative agreement with these results. In
addition to our general discussion, we will present
some numerical calculations relevant to a simple
two-band model. '

II. CROSS SECTION

In a typical x-ray scattering experiment (Fig. 1)
the spectrum of x rays scattered through a fixed
angle 8 with momentum transfer (q (= 2 (R|(sin( —,'8)

d-dA dQ. - 4 "2™q-
where (do/dQ)0 is the well-known Thomson cross
section and e '(q, (()) is formally defined in terms
of the response of the system to an external lon-
gitudinal potential p,„((q, &u}, i.e.

e '(q ~) =
V (.~(q, (e)/y...(q, ~),

where y„~ is the total potential and

(2)

The momentum transfer q is unrestricted, while
the vector k is confined to the first Brillouin zone
and the reciprocal-lattice vector G, is defined by
q =%+G, .

The tensor a in Eq. (3} is the so-called polar-
izability tensor of the system. It is directly pro-
portional to the response of the system to the
total potential and is a tensor in the reciprocal-
lattice vectors G and G'. The tensor character
of this response function simply reflects the fact
that the charge induced in the system by a per-
turbation at wave vector % will have Fourier com-
ponents at all wave vectors %+G. The tensor u
must be inverted to obtain the inverse dielectric
function and thus the scattering cross section.

In the conventional random-phase approximation
(RPAB) one sets a equal to its free-electron value
a ie. s'6

[s(/, p) —n(/', p+%}](/, p(e +o ' (l', p+%)(/', p+%( e'@++~' (l, p)
&u+E(l, p) —E(l', p+Q+i& (4)

where indices l and p label the energy band and crystal momentum, and E(l, p) and s(/, p) are the energy
and occupation number, respectively, of these states The use .of Eq. (4) assumes that the
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FIG. 1. Schematic diagram of a typical scattering ex-
periment.

system responds to the total field as if it were a
free inhomogeneous electron gas.

Equation (3) with the associated definition [Eg.
(4)] of a' is quite complicated owing to the details
of the band structure. However, several qual-
itative properties are readily apparent. (i} If the
Im(e(g, v)) is small, the zeros of He(e(j, u&)) will
show up as peaks in the scattering cross section.
(ii) The Im(e(q, ~)) arises from the vanishing of
the energy denominators in Eq.. (4), i.e., when

&u = E(f ', p +%) —E(E, p) .
In this case (p) &k» and ) R+p) &k» in the extended
zone scheme. The continuum of energies defined
by Eg. (5) encompasses the usual zero-momentum-
transfer interband optical tr ansitions generalized
to finite %.

In order to get a physical feel for the behavior
of the scattering cross section we first consider
the well-known homogeneous-gas RPA results.
Equation (5) defines two parabolas (shown in Fig.
2),

FIG. 2. Free-electron HPA excitation spectrum.

two cases are worth considering; they are labeled
by (a) and (b) in Fig. 3. The first situation obtains,
if the plasmon frequency is higher than the typical
interband energies and if the critical momentum
transfer k, is less than —,'C, the Brillouin-zone
boundary. In this case the effect of the interband
transitions is to push up the plasma frequency
(compared to free-electron value). The coupling
to the higher plasmon branch' pushes the plasma
frequency down. The coupling between the two
branches at the zone boundary results in bending
and splitting of the plasmon mode.

When the plasmon is at lower frequencies, situa-
tion (b) obtains and the plasmon is damped near
Ps =0 and pushed down by the bulk of the interband

In the shaded region lying between the two parab-
olas, e(%; e}has a large imaginary part. The
solution of e(k, ru) =0, the plasmon, is shown as
a dotted line. Its dispersion at long wavelengths
is given by

where co~ is the free-electron plasmon frequency.
The dotted curve enters the continuum at a value
of momentum transfer (cutoff momentum)

Band-structure effects modify the above picture.
Qualitatively such modifications are shown in
Fig. 3. In a free-electron model of the band
structure, the additional parabolas reflect the
presence of umklapp or equivalently interband
transitions. In this simple picture, conceptually

FIG. 3. Band-structure modifications of BPA excita-
tion spectrum.
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transitions above it. The bending effect will not
be as well defined, since the plasmon near the
zone boundary will be rather severely damped
by direct, processes, as contrasted with umklapp,
processes.

III. HIGH-FREQUENCY LIMIT

In many materials (for example Be with sr~ = 15
eV) the plasma frequency is high relative to the

typical interband energies, su~, so that the energy
denominators in Eq. (4) may be expanded in powers
of (vtt/~)'. Each term in the power series may
be evaluated by replacing the various powers of
[E(l, p} —E(l', p+ R)] which appear in the expansion
by commutators of the Hamiltonian H with'.' To illustrate this procedure, we look at
the real part of Eq. (4) which can alternatively be
written as

a'(%+G K+G' (u) = —2 ~ ' '~ ( 'P (l (e ' + ' (l' +E&(l' +Pc(e' 'G '(l
[E(l Q E(lt $)]2 tP tP tP tP

pl l

Expansion in I/~' gives

(6)

n'(R+G, R+G', &o) = —2 g ', [E(l, p) —E(l', p+%)](l, p(e ' ' '(l', p+E&(l', p+R(e' ' ' ' (l, p)
ps&'

( l p(s'l(It+ G) t (l/ p+$&( lt p+$(et(k+G) t (l p)+0(1 /(g6)

The diagonal term in Eq. (9) to order &o
' can be written as

(9)

p ~ l

n(l, p)(l, p( [H, [H, (H, e ~']]]e ~ ' (l, p),

a'(%+G, %+G, ~) = ——,P n(l, p)(l, p([H, e ' ']e' '(l, p)
p, l

(10)

where

q =%+G

and H is the one-electron Hamiltonian of the
system (atomic units 8 = e = m = 1 will be used
throughout)

H= ~P + V(r).

Using the identities

[H, e-"']e'')' =H-H',

(12)

(13)

a'(q, q, (u) = q 'N/uP + —
4 Q e(l, p)(l, p ([(q v)' V]

3q'(q. v)'+-.'q'I l, p&,

where N is the average valence electronic density.
In a similar way, the leading off-diagonal term

(to order &u ') is given by4

'(R+G, K+G', ) =
& P (l, p)

pe&

"(l p& (18)

[H, (H, [H, e '~']]]e'~'
=H' —3H'H'+3HH" -K", (14)

Writing the effective valence-electron-ion po-
tential (e.g., pseudopotential} as

where

H' =-,'(p+8'+ V(F)

=H+ —,'(q' —2iq. V),

we find that Eq. (10) can be written as

(15)

(16)

V(r) = g etit' t V„-,

and the valence electronic density

PX = g ~(l 5)«, p I
e "' ll, p &,

&op

(19)

(20)
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Eqs. (17) and (18) can be written more conveniently
as

2

ao(%+6, %+6, &u) =, —,p (q K)'&KpK

g
2

—3, g n(f, p)

E, p

"(IPl(q &) I&, p)+e'&/4~'

and for G&G',

,(g 6 g -,
)

( +6) ~ (k+6')

The off-diagonal term has been calculated only
to order (d ', since on inverting the dielectric
tensor in Eq. (3), the leading contribution from
it comes in squared (i.e., it is of order ~ ).

Equations (21) and (22) are quite general. Apart
from the use of HPAB, the only other approxima-
tion that has been made is that x is large com-
pared to typical interband energies.

The high-frequency limit (HFL) of the RPAB
simplifies the expression for the various com-
ponents of the dielectric polarizability tensor
and illuminates the physics contained in them.
In order to quantitatively discuss the collective
modes in the system, we need an approximate
procedure for inverting the matrix equation,
Eq. (3). It is clear from Eq. (22) that under many
circumstances the off-diagonal terms may be
considered small. They are small at high fre-
quencies and also whenever the crystal potential
effects are small. We will assume this to be
the case and work to the lowest order in the off-
diagonal elements. In this case we may easily
invert Eq. (3) using the formulas of Wiser [Ref. 8,
Eq. (38)], i.e.,

ToK(ky &)TKo(~t +)

K~

In order to simplify the notation somewhat, we
have assumed that q is in the first Brillouin
zone; i.e., G, =O and q=—%. In Eq. (23)

term (v ') in Eq. (21}, when substituted into Eq.
(23), yields the long-wavelength plasma fre-
quency for the homogeneous electron gas. The
next term in Eq. (21) describes the effect of the
crystal potential on the long-wavelength plasma
frequency. In the high-frequency approximation
i' is always of the same sign as the first term,
i.e., it pushes the plasma frequency up, relative
to its free-electron value. For a hexagonal
crystal this term is, in general, anisotropic;
for a cubic crystal it is isotropic, since the only
tensor one can construct is 5;&.

The next term in Eq. (21) yields the long-wave-
length q2 dispersion of the plasmon mode. In
the absence of the periodic potential it is equal
to ~o 8(4'V&'/&u'), i.e., the usual RPA result. In
the presence of band structure it may be aniso-
tropic in other than cubic crystals. The last
term contributes to the q4 dispersion of the plas-
mon. There will be other terms coming from
cu

' terms in the diagonal pieces and ~ ' in the
off diagonal, which also contribute to such terms
so that Eq. (21) will be incomplete insofar as the
q4 corrections to the dispersion are concerned.

The summation in Eq. (23) leads to a sma. ll
shift in the zeros of c. This' shift is simply the
second-order perturbation correction to the en-
ergy of the lowest plasmon due to coupling to
the higher plasmon bands. The sign of the term
[1+TKK(0, e) &0] is positive, i.e. the other pla. s-
mons push down on the lowest plasmon near k =0.
Near the zone boundary % = ——,'6, Eq. (23) is ef-
fectively a two-plasmon band model. The only
term in the sum in Eq. (23) which is significant
is. the one with K=G. Equation (23) describes
the coupling of the plasmon at % to one at k+K.
While it is an approximate formula based on a
weak coupling assumption (valid to second order
in the coupling constant), it is exact within the
framework of a two-band or single-reciprocal-
lattice-vector model. '

Using Eq. (22) for ToK, the equation for the plas-
mon frequency &u(near ——,'G) can be written as

[1+T„(-—,'6, (u)] [I + TGo(- —,'6, (o)] = (~o/(u'},

(25}

TKK,(%, ~)=, oo(%+K, %+K', ~).
/%+K

'
QPg = 41M p~g/m. (28)

Near the zone center the zeros of e (Eq. 23) are
roughly determined by the zeros of 1+Too(%, u&),

since the off-diagonal ToK(R, &u) terms are small
and 1+TKK(R, ~) is not equal to zero. Substituting
the high-frequency form of Too(%, &u) [see Eq. (21)]
into Eq. (23) we see immediately that the leading [H —(u~(-,'6)]' = (u' . (28)

Too(- 26, &o) = To G(- —,6, ~)=- ~~(—,6)/~,
(27)

where &u&(~G) is the plasmon frequency at %= —,'6,
Eq. (25) becomes
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Thus the single plasmon mode is split at the zone
boundary —,'G by the amount (see Fig. 3}

Similarly the next term in Eq. (21) can be written
as

2
. G

((l» (p G}
(29) g & I,p l(q V) I I, p & n(l, p)

l, p

Our high-frequency picture of the plasmon is
now rather complete. We have derived several
general expressions which characterize the effects
of band structure on the plasmon frequency and its
dispersion near 2 =0 [Eq. (21)] as well as the
splitting of the plasmon mode near the zone bound-

ary [Eq. (29)]. The only qualitative property
missing from our treatment is the damping as-
sociated with umklapp processes. We will return
to this point in Secs. V and VI.

where

f ~at( (5+G((' ((, 5(

—FQ (q K)fVK~'

dp[q. (2p+2G+K)] n'(e 1;,o)

(e» —e»» )
p+ K+ G p+ ~

(32)

IV. NEARLY-FREE-ELECTRON APPROXIMATION

AND THE HIGH-FREQUENCY LIMIT

It is well known that in most solids the effective
interaction of valence electrons and ions is small,
i.e., the energy momentum relation is approxi-
mately Ef= k'/2m and the Fermi surface is
roughly spherical in an extended zone scheme,
characterized by the unperturbed Fermi function
n'. The pseudopotential theory' has been espe-
cially successful in treating such interactions. We
will evaluate the various terms in Eqs. (21) and

(29) within the framework of weak-pseudopotential
approximation. This will lead to explicit expres-
sions for the plasmon frequency, its dispersion
near %=0, and the splitting of the folded-back
plasmons at the zone boundary. Since it is the
general behavior and approximate size of these
terms which are of interest to us, we will not
attempt a precise calculation of them. Rather,
our calculations will be limited to the second
order in the "weak" pseudopotentials. In a wide
class of materials such calculations are expected
to be semiquantitatively correct and thus have
wide applicability.

The evaluation of the second term in Eq. (21) is
straightforward. Since (to the lowest order in
V»)

Z' —4u,' K+2@' '", K 2k,
-"

we find that

E = 3N/4vk»3 . (33)

In Eq. (32) we have assumed that the Bloch state
~l, p& arise from the plane wave e' ("o '. The
expression inside the curly brackets is easily
evaluated and is equal to

wk»2 (q. G) G G' G+ 2k»
(34)

~no
Tl = ll + (6e —6il,)Bg (36)

where

eno
= —6(e —e») (36)

and p, is the chemical potential. Using the condi-
tion that the total number of particles is con-
served, we find, to lowest order in V,

G~o

I Vsl2 0+2k»
(37)

Working in the extended-zone scheme, the first
term in Eq. (32) can be written as

—E I:f &i(t( (i+.G)('a((, 5( ((,+D„((, , =

(38}

In the first term in Eq. (32) we cannot replace
n by n'. The change from a spherical Fermi sur-
face will give rise to corrections of the order of

~
Vo(' and hence must be evaluated.
In order to calculate the changes in n due to the

presence of a weak pseudopotential we write

g (q K}2V-pg= ~ g &q K}'IVKI'
K

K —4jPg i K+2k@

(31)

where

Dz= —F d q- 2no c

D~=F 5p q. d

( 39)

(40)
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D, = -E 6e q d (41)

The first term in Eq. (32), when substituted into
Eqs. (21) and (23), gives the usual q' plasmon
dispersion for a homogeneous electron gas in the
RPA. The second term arising from the change
in the chemical potential is easily evaluated, the
result being

D =(Bw) q )'~z g G
Ac~ (42)

where

G+2k~
Q-2k~ (43}

The above correction to the q' dispersion is
isotropic and is of such a sign as to decrease the
dispersion from the free-electron RPA result.
Calculation of D, is much more involved but
straightforward. The result is

g
Qxo

+ 1- —, Ac

3G 362
(44)

where 8 is the angle between q and G. The first
term is isotropic while the second is not.

Equations (31)-(34) and (38)-(44) may now be
substituted directly in Eqs. (21) and (22) and the
dispersion relation Eq. (23) evaluated. In Table I
we show a representative set of results for the
pseudopotential parameters characteristic of the
hexagonal metals Be and Mg. On the one hand,
the plasma frequency for Be (about 20 eV) is
relatively high compared to the typical interband
frequencies, so that we might expect our high-
frequency formulas to be accurate. On the other

Be Mg

a (A)
c (A.)
V „-„(Ry)
Vo()p2 (Ry)
Vio~~ (Ry)
V&ou (Ry)
co+& (eV)
&oP'(eV)
"P~~ (eV)

2.287 '
3.583 '
O.O68 b

O O94b
O.O96 b

o o64b
18.44
18.76
18.77

3.21
5.21
0 014c
0.026
0 036c
0 058c

10~ 89
10.96
10.92

~ Reference 9.
Reference 10.
Reference 11.

TABLE I. Physical parameters for Be and Mg and the
results for plasmon frequency in HFL.

hand, it is known that a pseudopotential param-
etrization of the band structure of Be is quanti-
tatively inadequate and that the potential is not
weak. Because of this we may think of the results
given in Table I as a qualitative guide (rather than
a set of quantitative numbers) to the size of the
correction involved. For Mg the situation is
reversed. Since the pseudopotentials properly
describe the energy bands" and are weak, we
expect that our calculation of the various terms
in Eq. (21) is accurate. However, the plasmon
frequency (about 10 eV) is not very high relative
to typical interband energies, so that we. cannot
expect our high-frequency formulas to be accurate.

The first two entries in the table are lattice
constants along the a and c axes. The next four
are the pseudopotential form factors corresponding
to the smallest reciprocal-lattice vectors that
give nonvanishing contributions. The lowest Fou-
rier component (0001) does not contribute because
of a vanishing structure factor. As there are no
satisfactory empirical results for the pseudo-
potential of Be (e.g., obtained by fitting the Fermi
surface), the model pseudopotential" of Animalu
and Heine was used. For Mg, several authors
have obtained pseudopotential parameters by fitting
to the Fermi surface. The parameters used here
are taken from the fitting by Kimball et al. ' The
next three entries are for the long-wavelength
plasmon frequency. ~~ is the plasmon frequency
for the free-electron gas of appropriate density
and ~~~I and ~~,~ are the plasmon frequency ob-
tained in the HFL [Eqs. (21) and (23)] for momen-
tum transfer along the a and c directions, respec-
tively. As is clear from Eqs (21)-(2.3), both the
plasmon frequency and its dispersion will, in
general, be anisotropic in a hexagonal crystal.
Because of the many pseudopotential form factors
of comparable magnitude, in this case the anisot-
ropy tends to average out. However, in a crystal
where only one of the form factors is large we
may expect a significant anisotropy.

The off-diagonal terms in the dielectric constant
matrix are small, justifying the use of Eq. (23).
The diagonal term in Eq. (21) pushes the plasmon
mode higher in energy while the off-diagonal con-
tribution in Eq. (21) pushes it down, the former
being about 1.0 times larger than the latter in ma, g-
nitude. The correction to the q' dispersion co-
efficient for the plasmon from the free-electron
value calculated in the HFL for the plasmon in
the a and c direction are, respectively, -+10 '
and —10 '(a. u. ) for both Be and Mg. This is
quite sensitive to the relative strengths of the
various pseudopotential coefficients. Aga, in the
small anisotropy in dispersion is due to the fact
that many pseudopotential coefficients give sig-
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To the lowest order in the crystal potential,
Eq. (23) is a valid representation of the dielectric
constant, independent of the use of the high-fre-
quency approximations. The advantages of the
HFL is its intrinsic simplicity. However, the
use of a more general expression like Eq. (23)
enables us to extend our calculations to materials
where the plasma frequency is comparable to
typical interband energies, i.e., there is ap-
preciable oscillator strength left at these energies.
In addition, we can begin to include effects such
as damping and dispersion away from the zone
center.

The expression for the real part of «(0, ar) in
this weak pseudopotential approximation has been
given by Wiser [Ref. 6., Eq. (39)]. This equation
can be written in a more convenient form as

~f 2

~(0, ~)=(-( ' +,,& P'I)' I'I(:"I'&'

~ I I'Gl'I G" I'(f6, )'
G'+(2/v')(I', )

G (45)

whel 6 G& is the component of 5 in the direction of
the momentum transfer and

dr (4«6)"[(a«6)' —(u']
G

+~6 (E4+6+ O' E%+6') . (4V)

nificant contributions that tend to cancel. It should
be remarked that in order to compare our results
with the recent experiment' on Be, we must make
the correction to the plasmon frequency arising
from core polarization. The correction is —0.22
and -0.51 eV to the plasmon frequency for Be and

Mg, respectively. With the above correction, the
results compare favorably with experiment. ' The
anisotropy in the dispersion has the correct sign;
however, it is much too small compared to the
experimental values.

V. GENERAL WEAK PSEUDOPOTENTIAL

APPROXIMATION

y(X) =2X(l -X/G') inIXI

X (() XG

-~ln X+&
X-a

&, =(v/2G)[P(gG'+kgG) -P(gG' —k~G)], (50)

where

X' —(d2 —XG'f(X)= X,, XG'i. IX—
' X+co+(2X-X'/G') —&u in Ix-e (51)

The damping of the long-wavelength plasmon,
given by Im«(fc, ~) = «, (R, ~), is governed mainly
by the second term in Eq. (23). We will show that
in the weak pseudopotential approximation its con-
tribution to «,(0, (()) is of the order of V62; that of
the last term, or the local-field term, is of the
order of V~4 and hence can be ignored. Using the
small-q expansion for the matrix element in Eq.
(4)

I(I, RIe "'If', %+q&I'=5 ~ +(I-5 )I& I'

where

I(I,RIQ pII, %)I'
I -'I'=

[E('f, ~) -E(f:.n]

ql [(&'-&)"1'Iy'iG G)l'-
The contribution to «(q, (e) from the second term
in Eq. (23) can be written as

(53)

Ep, K is the band energy corresponding to the wave
vector R inside the Brillouin zone and the band
labeled by the reciprocal-lattice vector K; s(Eg)
is the Fermi distribution function. To the lowest
order in the pseudopotential we get

I)6 =(w/2G(() )[F(gG +kl, G) - E(gG -kgG)],
(43)

It ls clear fl'onl Eq. (54) tllat wllen (() is higher than
the conduction bandwidth, the first term, cor-
responding to the one-electron intraband transi-

tions, cannot contribute to the plasmon damping.
However, in a metal it will give the main con-
tribution when ~ is smaller than the interband
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TABLE II. Band-structure effect on the plasmon fre-
quency in Li and Na.

Li

a {A)

V«0 {Ry)
~~ {eV)
a&P (ev)

3.49
0 11
8.05
7.49

4.23
0.02"
5.95
5.90

Reference 12.
b Reference 13.

energy. This term will be identically zero for an

insulator.
Using Eq. (53) and taking e large, Eq. (54) can,

after some manipulation, be written ase', /G~ j'
e,(0, co) =

4 g (VGI Gs

X [k'r G' —((u ——,'G')'] (55)

Here G is restricted, so that kz &(I/O')(&u ——,'G')'.
Equations (45)-(41) can be used to calculate the

plasmon frequency, while Eq. (55) can be used to
calculate its damping. These equations have been
applied to the case of Li and Na. The results
(along with the parameters used) are shown in

Table II.
The first entry in the table gives the lattice

constant, and the second the pseudopotentia, l pa-
rameter used. Only one coefficient, namely (110),
is used, since we are interested in a typical band-
structure effect and not a detailed calculation. The
pseudopotential parameter was obtained by fitting
the Fermi surface. "'" The next two entries Z~

and v~ are the plasmon frequency in the free-

klIG

QJ

EF qO+
qV2—

I

2 G

k/KF

FIG. 4. Energy of excitations shown as a function of
momentum. Shaded area shows the single-particle ex-
citation continuum. The dashed line located in the gap
of the continuum represents the zone boundary collective
state.

electron approximation and the one including the
band-structure effect using Eqs. (45)-(51). While
the shift of the plasmon frequency in Li is ap-
preciable, it is negligible in Na. This is not
surprising in view of the very weak pseudopotential
for Na. Before comparing to the experimental
result, one must correct for core polarization.
The effect of core polarization on the plasmon
frequency are -0.37 eV and -0.06 eV for Na and

Li, respectively. The results for the damping
are not tabulated. It is clear from Eq. (55) that
e, - Vo/&v~2 and in Li this ratio is -0.01. Thus this
simple treatment of band-structure effects on
plasmons gives a shift, in rough agreement with
experiment and gives a free-damping coefficient,
at q =0 which is much too small relative to the
experimental numbers.

VI. TWO-BAND MODEL

In 1.968 Foo and Hopfield' presented a simplified
one-reciprocal-lattice-vector model of the re-
sponse function of Bloch electrons in the solid.
The calculation was done in RPA and they arrived
at an expression for the dielectric function identi-
cal to Eq. (23) with only a single term in the sum.
The electronic energy denominators in the ex-
pressions for T~ and T;G, because of the single-
reciprocal-lattice vector assumption, had a par-
ticularly simple analytical form characteristic
of a two-band model. Besides the simplifications
introduced by such a model, several unusual and
unrealistic features were also present. In par-
ticular, the pair-excitation spectrum (see Fig. 4),
because of the one-dimensional nature of the
model, developed a gap in it. This gap led, in
a natural way, to an additional undamped plasmon-
like mode. This low-lying longitudinal mode will
surely be strongly damped in any real crystal
where by virtue of the crystal symmetry such a
two-band model is inadequate. For example, in
Li there are twelve equivalent (110) reciprocal-
lattice vectors and they will enter into the bands
in certain symmetr ized combinations. However,
the simplicity of this model permits a complete
calculation of the effect of the periodic potential
on the loss spectrum, including damping and
dispersion.

In Figs. 5 and 6 we present some numerical re-
sults for this model. Figure 5 shows the real
plasmon dispersion for an unrealistic set of pa-
rameters, i.e., ~~/EJ, =11.0 and G/k„=2. 0. We
choose these parameters to force the plasmon
out of the umklapp continuum and to position the
zone boundary, at 2G, considerably below the
critical momentum k~ [Eq. (6)] . In this case the
plasmon is always undamped and the spectrum is
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quite similar to that sketched in Fig. 2(a). The
HPA plasmon position is shown by the dotted
curve. The zone-boundary splitting of 0.7E~ is
consistent with Eq. (29).

In Fig. 6 we have plotted the plasmon dispersion
and damping for a set of parameters characteristic
of Be. The situation hex e is quite different. The
plasmon is damped near k =0 and in the neighbor-
hood of the zone boundary the plasmon has al-
ready entered into the, continuum, i.e., 4, & &6,
so that the spectrum has lost much of its sharply
peaked character. If we persist in plotting the
peak position, we see that [contrary to the predic-
tion of Eq. (29)j the location at this peak is in

good agreement with the simple HPA prediction.
Equation (29) would predict a depression of ap-
proximately 0.2E~. The reason for this apparent
contradiction is that damping effects change the
nature of plasmons near the zone boundary. This
is the reason that Eq. (29) gives good results in
the first case, where damping effects are neg-
ligible.

VII. CONCLUSIONS

The effects of band structure on the behaviox
of collective modes in metals and thus on the
dynamic structure factor are rather detailed and
quite complicated. It would be important and
extremely useful to have a detailed HPA calcula-
tion of the dynamic structure factor which includes,

FIG. 6. Plasmon dispersion in the one-dimensional
model. of Ref. 6; with (d&/Ez=1.4, Pz=2. 0, Vz/Ez=0. 1,
and Vg/E~ =0.

in detail, band-structure effects. Homever, in
the absence of such a calculation, our study,
based on rather general consideration, has re-
vealed a number of qualitative features. In gen-
eral, these effects are quite small, even in ma-
terials where the one-electron spectrum is not
very free-electron-like. The numerical reason
for this is simply that band-structure effects come
in as the square of some pseudopotential divided
by an energy which is characteristically of the
order of the full bandwidth. Thus, even in the
most favorable cases, band-structure effects mill
typically modify the free-electron spectrum of
most simple metals by a fem percent.

Experimentally' the spectrum seems to deviate
from simple (no band structure) RPA type ca-lcula-
tions by much larger amounts. In fact, in many
cases, the spectrum is qualitatively different
from what me expect. These differences probably
arise from a combination of lattice periodicity and
strong spatial correlations of electrons in the fluid
due to their Coulomb interactions. Such effects
have been completely neglected in our present
treatment and await inclusion into a more complete
formulation of the problem.
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