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The recent critical amplitude calculation of Barouch, McCoy, and Wu for the susceptibility of the
Ising model on a square lattice is extended to yield amplitudes for the triangular, honeycomb, and
kagomé lattices. The extension assumes the validity of the generalized law of corresponding states—as
first postulated by Betts, Guttmann, and Joyce—for the two-dimensional Ising model.

Recently, Barouch, McCoy, and Wu, ! in an in-
tricate calculation, have determined the four am-
plitudes Cy, and C,, of the reduced high-tempera-
ture zero-field isothermal susceptibility of the
nearest-neighbor spin-3 Ising model on a rectan-
gular lattice, as defined by

ETXo(T)/m? =Coy | 1- T,/T | *

(1)

where the subscripts + and - refer to 7> T, and
T<T,, respectively. It is presumably possible
with the expenditure of a great deal of effort to re-
peat the calculations for other two-dimensional
Ising lattices. It is, however, possible to calcu-
late the leading amplitude terms C,, and C,_ given
the results of Barouch, McCoy, and Wu, using only
the genevalized law of covrvesponding states, as
postulated by Betts, Guttmann, and Joyce.?

The law of corresponding states asserts that the
equation of state of, say, a magnetic system is a
universal equation valid for all lattices, once the
temperature, field, and reduced magnetization
are scaled according to t=7/T,- 1, h=puH/kT,,
and m = M(T)/M(0), respectively. That is, the
equation of state can be written

my(t, k) =m,t, h) (2)

+Cu| 1-T/T|* +0)

’

where x and y refer to two distinct underlying lat-
tices. This law holds for the Weiss model, but
not for the spherical model or the Ising model.
For these models the “generalized law of corre-
sponding states” is believed to hold, in which the
singular part of the free energy per site on lattice
x is related to the singular part of the free energy

TABLE I, Tabulation of the critical scaling param-
eters n, and g, for four common planar Ising lattices.

Lattice & -

Triangular  1.0000000000  1.000 0000000
Square 1.1345681212  1.299 0381057
Kagomé 1.2609589184  1.6529733763
Honeycomb  1.3841935033 2,000 0000000

on lattice y by
e felte ) =my £ty b)) = ft, ), (3)

where the reduced field and temperatures are
scaled by

nhy=nyh,=h
and (4)
xle=gyly=t .

The field derivatives of the free energy are there-
fore related by

12 18
n, Bh; n, 8hy ) (5)

while in zero field the derivatives behave as

81
3 fx =Cy,.t;" 1 even,

ohl t>0

(8)
=C;,. (- tx)"’; , t<0
so that combining the above equations we obtain
+ 21-1 -T2
G oo
Cal.v n&' g}'

and (7)

TABLE II. Tabulqtion of the critical amplitudes for four common planar lattices.

Lattice Cos Cy., Co- Ci-
Triangular 0.924 2069582 0.0634590701 0.0245189020 —0.0016835479
Square 0.962581 7322 0.074988153 8 0.0255369719 ~ 0.0019894107
Kagomé 1.0181422309 0.0881523429 0.0270109734 — 0.0023386522
Honeycomb  1,0464170761 0.099454 8793 0.0277610956 — 0.0026385047
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TABLE III. Tabulation of the latest available critical
amplitude estimates for three common planar Ising
lattices.

Lattice Cos Cis Co-
Triangular  0.92422+£0,00002  0.0633  0.0246+0,0002
Square 0.962589+0,00002  0.0742  0.0256+0, 0001
Honeycomb  1.04642+0,00003 0.0279 +0, 0002

Cix_ (1’1.)"1 (&)ﬁ' , <0
1y \"%y gy

The foregoing summarizes the discussion given
by Betts, Guttmann, and Joyce. The “law” was
tested using the best available data at that time.
One conclusion was that the theory seemed to be
valid for the two-dimensional Ising model. The
more recent series work of Sykes et al.® permits
this conclusion to be reaffirmed with even greater
confidence. In the following we will assume the
validity of the theory for the two-dimensional Is-
ing model.

The calculation of Betts, Guttmann, and Joyce
can be readily extended to yield amplitude relations
for the next most singular term in the free energy.
Rewriting Eq. (6) for the susceptibility (I =2) in
the notation of Barouch, McCoy, and Wu [as in
Eq. (1)], we have

9
giff=coo.xt;7+clo,xti'y , t>0

x

and (8)

S
%

=Cou, b7 +Cy_ L2, t<0

2

x

Combining Eqs. (5) and (8) and in addition making
use of Eqs. (4) and (7), we obtain

|©

o B )"
Co,y \ny/\gy Ci,y \ny/\gy

From Eq. (8) the exact values ¥y ==y and the
exact values for n,, n,, g., g, on a two-dimen-
sional lattice, we can extend all the results of
Barouch, McCoy, and Wu to other two-dimensional
lattices. The required input data is provided in
Table I for the four most common two-dimensional
lattices: the honeycomb, square, kagomé, and
triangular lattices. This same data is given by
Betts, Guttman, and Joyce, but is restated here
to a higher degree of precision.

These data are combined with the following re-
sults of Barouch, McCoy, and Wu for the square
lattice:

Cy.=0.0255369719... , Cy,=0.96258117322 ,
C,.=-0.0019894107... , C,=0.0749881539,

whence it is a straightforward application of Eq.
(9) to derive these four amplitudes for the other
three lattices. These results are summarized in
Table II.

The high-temperature amplitudes compare well
with those given recently by Sykes et al.,® which
were obtained by analysis of extended series, and
the low-temperature amplitudes C,_ also compare
favorably with those obtained by Guttmann® from
an analysis of extended low-temperature series
derived by Sykes, Gaunt, and co-workers at King’s
College. These results are summarized in Table
1.

In conclusion, by assuming the validity of the
generalized law of corresponding states, first
postulated by Betts, Guttmann, and Joyce, % we
have extended the recent work of Barouch, McCoy,
and Wu' to the other common two-dimensional lat-
tices.
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