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Susceptibility amplitudes for the two-dimensional Ising model
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The recent critical amplitude calculation of Barouch, McCoy, and Wu for the susceptibility of the
Ising model on a square lattice is extended to yield amplitudes for the triangular, honeycomb, and
kagome lattices. The extension assumes the validity of the generalized law of corresponding states —as
first postulated by Betts, Guttmann, and Joyce—for the two-dimensional Ising model.

Recently, Barouch, McCoy, and Wu, ' in an in-
tricate calculation, have determined the four am-
plitudes Co, and C„of the reduced high-tempera-
ture zero-field isothermal susceptibility of the
nearest-neighbor spin- —,

' Ising model on a rectan-
gular lattice, as defined by

Lattice

Triangular
Square
Kagomb
Honeycomb

gx

1.000 000 000 0
1.134568 1212
1.2609589184
1.384 193503 3

nx

1.000 000 000 0
1.299 038105 7
1.652 973 3763
2. 000 000 000 0

TABLE I. Tabulation of the critical scaling param-
eters n, and g„ for four common planar Ising lattices.

+c„l l- T./T I

"' +0(l)
where the subscripts + and —refer to T& T, and
T& T„respectively. It is presumably possible
with the expenditure of a great deal of effort to re-
peat the calculations for other two-dimensional
Ising lattices. It is, however, possible to calcu-
late the leading amplitude terms Co, and Co given
the results of Barouch, McCoy, and Wu, using only
the generalized lair of eorresPonding states, as
postulated by Betts, Guttmann, and Joyce.

The law of corresponding states asserts that the
equation of state of, say, a magnetic system is a
universal equation valid for all lattices, once the
temperature, field, and reduced magnetization
are scaled according to t = T/T, l, h = pH/kT—, ,
and m=M(T)/M(0), respectively. That is, the
equation of state can be written

on lattice y by

n„f,(t, , h„)= n„f„(t~,h~) =f(t, h)

where the reduced field and temperatures are
scaled by

n„h„=n„h, = h

and (4)

(6)

while in zero field the derivatives behave as

g„t„=g„t„=t

The field derivatives of the free energy are there-
fore related by

m, (i, h) = m„(i, h) t =C; „t„"' l even, t&0
(6)

where x and y refer to two distinct underlying lat-
tices. This law holds for the Weiss model, but
not for the spherical model or the Ising model.
For these models the "generalized law of corre-
sponding states" is believed to hold, in which the
singular part of the free energy per site on lattice
x is related to the singular part of the free energy

=c, ,(-t,) "&, t&0

(7)

so that combining the above equations we obtain

TABLE II. Tabulation of the critical amplitudes for four common planar lattices.

Lattice

Triangular
Square
Kagome
Honeycomb

0.924 206 958 2
0.962 581 732 2
1.018 142 230 9
1.046417 0761

Ci,
0. 063 459 070 1
0. 074 988153 8
0. 088 152 342 9
0. 0994548793

Cp

0. 024518902 0
0. 025 536 9719
0.027 0109734
0. 027761 095 6

Ci

—0.001 683 547 9
—0.001 989 410 7
—0. 002338652 2
—0. 002 638504 7
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TABLE III. Tabulation of the latest available critical
amplitude estimates for three common planar Ising
lattices.

Lattice

Triangular 0.92422+0. 00002 0. 0633 0. 0246~0. 0002
Square Q.962 589+ Q. 000 02 0.0742 0. 0256 ~ Q, 0001
Honeycomb l.04642 ~ 0.000 03 0.0279 + 0.0002

The foregoing summarizes the discussion given
by Betts, Guttmann, and Joyce. The "law" was
tested using the best available data at that time.
One conclusion was that the theory seemed to be
valid for the two-dimensional Ising model. The
more recent series work of Sykes et al. ' permits
this conclusion to be reaffirmed with even greater
confidence. In the following we will assume the
validity of the theory for the two-dimensional Is-
ing model.

The calculation of Betts, Guttmann, and Joyce
can be readily extended to yield amplitude relations
for the next most singular term in the free energy.
Rewriting Eq. (6) for the susceptibility (l = 2) in
the notation of Barouch, McCoy, and Wu [as in
Eg. (1)], we have

(8)

Combining E|ls. (5) and (8) and in addition making
use of Egs. (4) and (f), we obtain

Co+a~ ~r gz
" C&+„~zl gz

0 sx ~~ gg 1 ~g +~ gg

From Eq. (8) the exact values y =+4=@ and the
exact values for n„, n„, g„, g„on a two-dimen-
sional lattice, we can extend all the results of
Barouch, McCoy, and Vfu to other two-dimensional
lattices. The required input data is provided in
Table I for the four most common two-dimensional
lattices: the honeycomb, square, kagomd, and
triangular lattices. This same data is given by
Betts, Guttman, and Joyce, but is restated here
to a higher degree of precision.

These data are combined with the following re-
sults of Barouch, McCoy, and Wu for the square
lattice:

Co = 0.0255369 719. . . , Co, = 0. 962 581 732 2,
Ci„=-0.0019894107. . . , C~, = 0. 074988153 9,
whence it is a straightforward application of Eq.
(8) to derive these four amplitudes for the other
three lattices. These results are summarized in
Table II.

The high-temperature amplitudes compare well
with those given recently by Sykes et uL. , 3 which
were obtained by analysis of extended series, and
the low-temperature amplitudes Co also compare
favorably with those obtained by Guttmann from
an analysis of extended low-temperature series
derived by Sykes, Gaunt, and co-workers at King' s
College. These results are summarized in Table
III.

In conclusion, by assuming the validity of the
generalized law of corresponding states, first
postulated by Betts, Guttmann, and Joyce, we
have extended the recent work of Barouch, McCoy,
and %u' to the other common two-dimensional lat-
tices.
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