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An interchain exchange J' = 500 + 100 6 is found in Cu(NH, )4PtC14, a nearly one-dimensional
crystal with intrachain exchange J = 5200 6 along the ...CuPtCuPt. .. stack of square-planar complexes,
by combining EPR measurements of ao = 0 Fourier components of high-temperature spin correlation
functions with numerical results for purely one-dimensional systems. J' is obtained from approximate
theories of three-dimensional cutofFs to the slow t '" decay of oneMimensional spin correlations. The
method is generally applicable to nearly one-dimensional crystals in which the angular and frequency
dependence of the EPR linewidth yields high-temperature Fourier components of spin correlation
functions.

We have recently shown' that the angular and
frequency dependence of the exchange-narrowed
EPR linewidth in single-crystal Cu(NHs)sptCls
(hereaf te r CTP) provides a, direct measurement
of Fourier components of high-temperature spin
correlation functions. CTP is a nearly one-di-
mensional crystal, with strong exchange along the
. . . CuPtCuPt. .. chains~ formed by alternately
stacking square-planar paramagnetic Cu(NHs), "
and diamagnetic PtC14 complexes. We show here
that the v = 0 Fourier components provide a con-
venient method for evaluating the small exchange
J between second-neighbor Cu(NH, )s" complexes
in different chains. The present method requires
only that various spin correlation functions for a
purely one-dimensional system, such as those
shown3 in Fig. 1, be known at high temperature.
Thus CTP also provides detailed comparison be-
tween measured and calculated Fourier components
of specific spin correlation functions.

When J «J, the short-time behavior of any spin
correlation function is largely determined by the
nearest-neighbor intrachain exchange J. Weak in-
terchain or lifetime contributions are important at
long time, where they effectively cut off the slow
diffusive decay t ' ' of one-dimensional systems. '
The short-time behavior of the correlation function
C&(t) = 4(St (t)St,&(0)) was shown by Blume and Hub-

bard~ (BH) to depend on the rms exchange J, which
for the body-centered tetragonal lattice of Cu in
CTP is

Js=g Js —2Js+S(J')s

The BH model does not explicitly invoke dimen-
sionality. The purely one-dimensional case, with
J' the exchange between successive S= s Cu(NHs),
sites in the . . . CuPtCuPt. . . chain, is

(2)

and has been recently solved numerically for clas-
sical (S, = w) spins. At infinite temperature, there
cannot be significant differences between a chain of
$= —,

' and $= ~ spins, and CTP was shown' to be in
the infinite temperature limit even at 77 'K.
Curves I and VI in Fig. 1 show the similar short-
time behavior of Ce(t) for nearest-neighbor exchange
in a linear chain 3C,' ' and in a simple cubic lattice
with the same J. All high-frequency Fourier com-
ponents in CTP (at sr =&ox, 2&ox, &o, 2++, with
wx-9. 5 GHz and co -35 GHz, the X- and Q-band
Larmor frequencies) were quantitatively given byJ =7400+ 500 G. The rms exchange [Eq. (1)] in a
nearly one-dimensional system (J «J) thus gives
the intra. chain exchange J= J/ 2-5200 G. The
high-frequency (w & J'/R) Fourier components based
on the BH expression for Cc(t) are negligibly
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with Ro, -J is often convenient. All two-spin cor-
relations C&~ '(t) governed by K',0' are truncated
around g-co, ', while four-spin correlations involv-
ing a product of two C&~0'(t) are truncated around
t-(2to, ) . For simplicity we instead choose here
a sharp cutoff to defined by
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for all spin correlations. As shown below, the
cutoff 280 for four-spin correlations suggested by
Eq. (3) does not change the results significantly.

The cutoff to is only important near ~ = 0, since
the largest correction to the autocorrelation is,
for J =0,

og(tc) fdtc=ostst ct' (t)
tp

Assuming to to occur in the asymptotic region
b(Jt) '1~, with 5 = 0. 27 obtained from C,(r) in Fig.
1 for v&5, we obtain

0

og(rs)=s(—) (—I 'dscos ',sss)-(6)

FIG. 1. Numerical results (Ref. 3) for infinite-tem-
perature spin-correlation functions in a linear chain 3C~

'

in Eq. (2). Curve I is the autocorrelation function Co (t)
=4 (S';(t)S';(0) ); curve II is the first-neighbor correlation
C& '(t) = 4(S';(t)S;,&(0)); curve III is C2 '(t) = 4(S';(t)S;,2(0));
curve IV is C3 =4(S&(t)St 3(0)); and curve V is the in-
trachain four-spin correlation F(t) = 4(S&(t)St f (t)S f(0)
+St f (0)). Curve VI is the two-spin autocorrelation func-
tion (Ref. 6) for nearest-neighbor exchange in a simple
cubic lattice normalized to the same rms J.

changed' on using a purely one-dimensional C P(t).
The ~ = 0 Fourier components reflect the long-

time behavior of the spin correlation and depend
sensitively on J, since go(0), the zero-frequency
Fourier component of Co(t), diverges" for J = 0
and is finite for J + 0. The Lorentzian EPR lines
observed in CTP also indicate three-dimensional
interactions which spoil the characteristic one-
dimensional line shape. We introduce below a
three-dimensional cutoff" to to limit the ar = 0 di-
vergence of the purely one-dimensional two-spin
correlations. The CTP data gave three v = 0
Fourier components~: go(0) from the Cu hyperfine
broadening and both an intrachain and an interchain
four-spin correlation arising from dipolar broad-
ening. As shown in Table I, all three are consis-
tent with the cutoff to = 21J '.

The exact shape of the three-dimensional cutoff
of the t decay of one-dimensional two-spin cor-
relations cannot be important ~'~' when J «J and
the short-time effects in Fig. 1 occur before J
contributes. An exponential cutoff ~'

C,(t)=CJ"(t)e " (3)

where we have introduced v= Jt= (1/W2) Jt. The
sharp cutoff to thus permits a simple integration of
purely one-dimensional correlations, in this case
curve I of Fig. 1, and does not require difficult
longer-time results. ' The approximation Co (r)
= bv ', with b = 0. 27, was used for r & 9. The
CTP results of X=7400+ 500 G and g(0) = (0. 55

TABLE I. Comparison of co =0 Fourier components of
spin correlation functions in CTP with calculation based
on cutoff to=21 J ~.

Spin correlation function CT P data Calculated

2. 86 +0.20
1.15 +0.10
2.18+0.15

2. 86
1.18
2. 16

Reference 1, with quoted error limits.
Two-spin autocorrelation function, 4 (S&(t)$;(0)).
Defines to; fit is automatic.
Intrachain four-spin correlation function, Eq. (9).

'Interchain four-spin correlation function, Eq. (11).

with Xo= (2(oto/v) ~ . The v ~ singularity, and the
rapid oscillation of the Fresnel integral" in Eq.
(6) about 2 as Xo increases, ensure that, for J «J
or large to, hg(td) is small except near v = 0. As
already indicated, the high-frequency (short-time)
Fourier components reflect the rms exchange Z.

to is obtained from the co = 0 Fourier component
of C,(~),

dg, (C) f C',"(t) dc,
0
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The region from 7 = 9 to ~ = 21 was approximated
by the decoupling'~ 'p [C~p)(r)] and is less than 10%
of the contribution 0~ 7 ~ 9, where no decoupling
was used. Thus, neither the assumed decoupling
for v )9 nor the possibly different cutoff for two-
and four- spin correlations is important. The
measured' and calculated values of f,(0) in Table
I agree to within experimental error.

The interchain dipolar contributions decouple
exactly for J = 0, with

(s;{t)s;(t)s; (o)s; (o)) =4c,(t)c.(t) (lo)

for spins ik on one chain, and jm on a different
chain. We retain Eq. (10) even for 0&J «J. The
(d = 0 Fourier component of interchain dipolar con-
tributions to the EPR linewidth'~ '~" is

Jf(0) = 'dv C'," v '+ 2 C,'"
ga 1

which involves squares of the curves I-IV shown
in Fig. 1 for j= 0, 1, 2, and 3. The usual Van
Vleck approximation' is to retain only the Cp )(r)
term in (11), since the other C& vanish at r= o; this
approximation is very well satisfied for the cox,
2~x, m and 2' Four ier components of CTP, and
only the Fourier components of [C(p@]P were re-
quired at high frequencies. ' The integral (ll) to
7 = 21 yields 0. 97 for j= 0; 0. 54 for j= 1; 0. 31 for
j= 2; and 0.22 for j=3; or a total of 2. 04

Jf(0) potentially contains contributions from
j& 3 terms in Eq. (11), as well as from cross
terms discussed below. Large j contributions can
be estimated from the long-time behavior' for
C, (t),

C, (t) = [ I/(2Dvt)' I']e " 1'' (12)

For 8= &, D = 0.69J in one dimension. " The times
of interest in CTP are Jt-10 (for a cutoff at
Jtp= 21), and the exponential in Eq. (12) is unity

+ 0. 02) x 10 P 0 ' lead to the cutoff Jtp = 21+ 2, which
is well outside the short-time region.

The only important' ~ '3 intrachain four- spin cor-
relation function arising from electron dipol. ar in-
teractions in a linear chain is

F(t) = [3/2s(s+ 1)]'(s;(t)s;.,(t)s;(o)s...(o)&, (io

where 8'; = 8& + 8~&, 8= & and i, i + 1 are successive
Cu(NHp)4 sites in the. . . CuPtCuPt. . . chain.
The correlation function (S((t)sf„(t)s,„(0)s,,z(0))
is an order of magnitude smaller, '3 while other in-
trachain correlations can be neglected in the line-
gidth on account of the rapid r&&3 decrease of the
dipolar factors. E(v), with v. = Jt, is shown' in
curve V of Fig. 1, and is related to the measured
intrachain Fourier component f,(0) by

J't, = x(J'/J)-' ~' (15)

for relating gp and J in nearly one-dimensional
systems. The numerical factor A is 1. 19 (Ref. 5)
and 0.Vo (Ref. 14) for a simple tetragonal lattice.
Since CTP forms a body- centered tetragonal Cu
lattice, and the sharp cutoff is approximately tp
= (21+2)J ', we use A = 1 in Eq. (15) to obtain J
= 500+ 100 G for J= 5200 G. The estimated uncer-
tainty includes the factor AP~4 from Eq. (15), the
uncertainty in tp, and the neglect of other small in-
ternal fields. A rougher estimate ~ ' can be ob-
tained by assuming an exponential cutoff [Eq. (3)]
to a purely t '~ decay (which of course is a good
approximation only for long t). The relative ef-
fectiveness of exchange narrowing in one- and
three-dimensional systems is then {2JJ)'I to J
The three-dimensional BHP result is gp(0) = 0. 29

for j- 5. 2. Thus j~ 6 contributions are small for
times up to the cutoff. The j= 4 contribution of-0. 12 is estimated from the extrapolation b~t ' be-
tween 9 & v & 21; j= 5 is even smaller. The values
Jf(0) =2. 04 (based on j=o, 1, 2, 3) and Jj(0)-2. 16
(including j= 4) are in excellent agreement with ex-
periment, as shown in Table I.

The m = 0 interchain Fourier components also
contain contributions from cross terms of the type
Cp '(v)C&~ '(r). The coefficient of the j=1 term for
the second neighbors is

q Q F(P) F(P) „.
Pl

where M ~ is the secular second moment' for spins
in different chains, the secular dipolar coefficients
are E&~P = (3 cosPe&& —1) r, z~ in terms of the angle
8,&

between the applied field Hp and r&&, and both
sites i+ a and i+ a+1 in the sum (13) are second
neighbors of site i Th.e contribution to f(0) is

Jf (0)=Q J. Go"(v)c,'"b)dr . (14)

and similar contributions arise for other neighbors,
with the four sites always on just two chains.
These contributions depend on the orientation of
Hp, can be either positive or negative, since the
numerator in Eq. (13) is no longer positive de-
finite, and turn out to be small, ' at most 1-2 G for
any orientation of Hp. Thus a single f(0) was ob
tained experimentally for the full angular variation
of the CTP linewidth (Table II of Ref. 1), and the
experimental accuracy of about + 1 G is insufficient
to detect the (() = 0 contributions (14) arising from
cross terms of two- spin correlation functions.

The cutoff Pp = 2 leT ' is thus consistent with all
three (d = 0 Fourier components measured in CTP'
and shown in Fig. 1. Hennessy et aE. 5 and Reiter'4
have suggested the general relationship (with
5= 1)
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x 10 ~ G ~ for P = 7400 G, which is 0. 53 times the
observed value. We find (2J /J)'~2=0. 53 and J
= 0. 14J= 730 G.

In summary, the ar = 0 Fourier components pro-
vide a sensitive evaluation of J = 500+ 100 G in

CTP, which consequently has a J /J ratio of
-0. 10. The generality of the present method de-
pends on measuring specific Fourier components
from an analysis of the angular and frequency de-
pendence of the EPR linewidth. CTP presents
several experimental advantages'. all Cu(NH, ),
sites are magnetically equivalent; the diamagnetic
PtC14 sites provide sufficient dilution to make the
hyperf inc broadening important; the rms exchange
J=7400 G, or J=5200 G, permits a strong fre-
quency dependence at the convenient X- and q-band

frequencies. The magnitude J -500 G is also con-
venient, as it exceeds by more than a factor of 2
any of the local fields (hyperfine, intrachain di-
polar, interchain dipolar) in CTP. As pointed out
by Boucher' and by Reiter, '4 these local fields
also limit the divergence and cannot be neglected
in nearly one-dimensional' crystal. The occur-
rence of diamagnetic PtCl, units between
Cu(NH~)~ sites in CTP is especially important in
reducing the large intrachain dipolar fields typical
of nearly one-dimensional systems.

We thank M. Blume for providing us with nu-
merical results for two-spin correlation functions
prior to publication, and for undertaking with B.
Farrell to compute the intrachain four-spin cor-
relation function.
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