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The thermodynamic behavior of the fcc Blume-Capel ferromagnet,

x=-J5' si(1)$ (2)+@/[st(1)]2—hgsi(1), si=o, +1,
(&2) 1

is studied by series-extrapolation techniques. By usingbothhigh-andlow-temperature series,
we are able to trace first- and second-order branches of the phase boundary and examine be-
havior at temperatures both above and below the phase transition. We find a tricritical point
at k&Tt/12J =0.2615 y0. 0070, 4t/12J=0. 4716 y0. 0010. Tricritical exponents are consistent
with y~=g~=1, Pt =1/4, yt=v&=et=a&=1/2, ingoodagreementwithtricriticalmean-fieldtheory
and the Gaussian tricritical fixed point of Riedel and Wegner.

I. INTRODUCTION

Griffiths' first pointed out indications of special,
characteristic tricritical behavior with particular
reference to He3-He4 mixtures. 2 The He~-He4 tri-
critical point (TCP} has by now been studied in
some detail. 3' Analogous behavior has been seen
in a variety of other systems, including the struc-
tural transition of NH4Cl ' and the metamagnetic
transitions of dysprosium aluminum garnet (DAGP 8

and FeC12 9'0
On the theoretical side, Riedel" and later Han-

key et al. ' and Griffiths'3 showed how to introduce
"scaling fields" to give a unified semiphenomeno-
logical description of the first- and second-order
regions, the tricritical region, and the crossover
between them. The values of the tricritical ex-
ponents and the shape of the scaling function are
left open by the semiphenomenological scaling
theory. Tricritical mean-field theory"4 supplies
both but is suspect, since it neglects fluctuations.
However, Riedel and Wegner, ' ' using renormali-
zation-group techniques to include the effect of
fluctuations, discovered a Gaussian tricritical
fixed point in three dimensions (d =3) exhibiting
mean-field exponents modified by logarithmic cor-
rections. '7 (Very recently Riedel and Wegner'
have studied the detailed structure of the scaling
function. ) Bausch'9 showed that the special status
of the d=3 tricritical point could be understood by
applying the Ginzburg criterion2: Close enough to
the TCP fluctuation effects dominate for d & 3 but
are negligible for d ) 3 (so mean-field theory is
applicable). The borderline d=3 (d=4 is the anal-
ogous dimension for critical phenomena) is char-
acterized by logarithmic corrections. "

Hee-He seems to fit well into the Riedel-Wegner

pattern. Data for NH4Cl, DAG, and FeCl, are
more tentative but, as of this writing, they appear
to show departures from mean-field exponents.
For further exploration, then, one turns to models,
the study of which is free of various experimental
difficulties (though it has, as we shall see, special
problems of its own).

The model we work with is a special case (K= 0)
of the so-called Blume-Emery-Griffiths (BEG)
model, ' originally introduced independently by
Blume ' and Capel in quite other contexts. It is
an s =1 lattice model defined by the Hamiltonian

X= —J Q S'(1 }S(2 }b+Q [S'(1)]~-hZ S'(1},
&12& 1 1

S'=0, +1.
The interaction J is greater than zero and the first
sum is over nearest-neighbor pairs (12). h is the
magnetic field. For h= —~ the S'=0 state is sup-
pressed, and the Blume-Capel model reduces to
the s = —,

' Ising model. For 6 = 0, it is just the s = 1
Ising model. At 4 =+ ~ the S' = +1 states are sup-
pressed, and the model is paramagnetic at all tem-
peratures. BEG' showed that the h =0 magnetic-
ordering temperature goes to zero when b, /q J= —,

'
(an exact result), where q is the coordination num-
ber of the lattice. They calculated the full phase
diagram in mean field theo-ry (see our Figs. 2-4)
and found that the h =0 transition remains second
order up to a tricritical point ~ at n/q J= —, ln2
(heT/qJ= 3), where it abruptly turns first order.

In this paper we perform a complete, detailed
analysis of the tricritical behavior of the fcc
Blume-Capel model (1.1) beyond the mean-field
approximation by the use of high- and low-tempera-
ture series expansions. P reliminary results have
been reported previously. Earlier high-tempera-
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ture work has been reported by Oitmaa, ' ' using
series shorter than ours. The second-order re-
gion of his phase diagram is in general agreement
with ours (Sec. IIIA); however, lacking low-tem-
perature series, he has no data in the first-order
region, was unable to locate the TCP with any

precision, and could not explore tricritical be-
havior. Arora and Landau 8 have reported Monte
Carlo results for the d =2 Blume-Capel model (see
Sec. V) and are presently using similar tech-
niques to investigate the fcc lattice. Finally, we

note that Harbus and Stanley ' ' have done some
high-temperature-series work on two d = 3 lattice
models more or less related to the Blume-Capel
model (see Sec. V).

Our plan of exposition is as follows: Section II
discusses the derivation of high- and low-tempera-
ture series (see Tables I and II) and their analysis.
It can be omitted by the reader interested in re-
sults only. Section III presents the mapping out of
the phase diagram, with particular emphasis on the
techniques for finding the first-order part of the
phase boundary and locating the TCP. These re-
sults are contained in Figs. 2-6. Section IV is
devoted to the determination of tricritical exponents
and amplitudes. Some principal results are sum-
marized in Tables III and IV. In Sec. V we briefly
recapitulate important points and compare our re-
sults with other work. The principal conclusion of
this study is that the tricritical behavior of the
d = 3 Blume-Capel model is consistent with the
mean-field, Riedel-Wegner, Gaussian-tricritical-
fixed-point picture.

II. SERIES EXPANSIONS

A. Derivation of high-temperature-series coefficients

= —ln(1 —7.) + In[1+ 7 (coshPh —I)]
M(Pn) (Ph)"

no nt
(2. 1)

where

0 & ~= (I+ ,'eBB)-' &1.-- (2 2)

f is even in h, so the odd semi-invariants vanish
at h=0. The even M, 's satisfy the recursion re-

High-temperature series for the thermodynamic
functions of the Blume-Capel model (1.1) take the
form g„"B c„(PA, Ph)(PJ')". The linked-cluster ex-
pansion3 3 provides a prescription for writing
down the coefficients c„as sums of products of so-
called bare semi-invariants, "

MB . The h = 0 semi-
invariants MB(Pn) are related to the noninteracting
(J=0) Helmholtz free energy per spin,

1
2

pf (p J 0 pQ ph) !n Q e Bds +Bhs-
s=-1

—Pf(P J, P n, P h) =—ln Tre ~/N.

At 8=0,

(2.3)

—pf(p J, pn, 0) = —ln(1 —v)+Z p„(r)(pd)"
(2.4)

The linked-cluster graphs contributing to the poly-
nomial p„(7.) a,re connected graphs with n edges and

no odd vertices. Each vertex with l incident edges
carries a factor M, . Since there are a total of 2n

bond ends, the maximum power of ~ in p„(~) is T"
The minimum power of v comes from the graph
with the smallest number of vertices, which gives

(n even) or r' (n odd) and, in fact, "
q/2n!, n even

P„(~)= Z P„.r , p„, =

0 n odd
(2.6)

where q is the coordination number of the lattice.
The expansions corresponding to (2.4) for the zero-
field susceptibility and second spherical moment
of correlations are

k T }l = —k T B
= Z(S(r) SR))

sh „B r

=r+ +m. '(~)(pd)" (2.6)
n 1

—
~

(S(r) S(0) &
= Z m."'(~)(Pd)", (2. 'I)

r ~] n=i

where a is the nearest-neighbor lattice distance.
It is not hard to show that the polynomials

L„=—n!p„(7')/6, H„=n!m„' '(v)/12, —

S =n!mg~(v)/12— (2.6)

have integer coefficients. Oitmaa2' 2' has calcu-
lated L„and H„ through orders 9 and 7, respectiv-
ely, by a method rather different from ours. No
second-moment polynomials have previously been
published. In Table I we present polynomials
L„(10& n & 13), H„(8 & n & 12), and S„(1& n & 12) for
the fcc lattice. To derive these polynomials we
proceeded as follows: Our computer codes ~ ac-
cept as input numerical values of the semi-invari-
ants MB„1& k & 6, and generate high-temperature

lation35

(2 )! "-'

n (=g (2n —2l)!(2l)!

so Ma=a, MB =a —3v, etc. , and, in general, MB„
is a polynomial in 7 with no constant term and
maximum order 7.". It follows that the coefficients
c„are also polynomials in ~, and we are now in a
position to calculate the minimum and maximum
powers of 7 which occur.

Consider the free energy per spin
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TABLE I. High-temperature polynomials. Definitions are given in Eqs. (2.4) and
(2.6)-(2.8). Low-order L„and H„are given in Refs. 25 and 27. The coefficients quoted
as integers are exact; those given as decimal fractions are approximate (see text).

Lgp = T + 23 250T + 10433 745T + 834 469 020T + 21 362 131980T
+ 166 388 342 400T + 271 169 054 100T + 320 312 588 400T
+ 267 023 116080T

L gg
= 59 048T + 48 618 240T + 5 908 617 000T + 236 340 886 320T

+ 3 484 135892 160T + 14 287 964 090 400T + 19761 751 548 OOOT

+ 27 695 383 531 200T + 19508 777 164 800T

L f2
= T + 191466T + 259 917603T + 12 f (92.749 131444T + 5195.317 582 1T

+115517.044 20T +987 508. 878 787 +2559334.3200T +3832466. 5511T
+ 5 256 430. 5090T + 3 354721.5596T )

L f3 531 440T + 1 309 788 480T + 13 f (37.641 591 677T + 4406. 406 064 6T + 123 206. 610 39T
+ 1 806 816.9269T + 9 105 601.8972T + 19 136 009.047T + 31 067 574. 821T
+ 3 968 4236. 365T + 2 3601 813.178T )

H8 = T + 12 054T + 3 506 055T + 225 509 088T + 5 009 298 210T
+ 43 580 077 380T + 172 155 981 060T + 304 363 203 480T

H9 = T + 33 09Q7 + (9 f /12) (552.828 548 10T + 53 377.546 41ST + 1815313.5969T
+ 25 458 599.084T~+ 164 626 517.98T + 544 943 773.61T + 836 643 829.46T )

Hip= T + 97 506T +(lpf/12) (269.49764203T +37787.964491T +1841534.9230T
+38753667.478T +383025259.24T +1984584648.3T +5680768591.1T
+ 7 705111699.5T )

Hg)=T +280038T +(ll f/12) (121.68658117T +24305.733138T +1643194.6805T
+ 48 535 982.236T + 699 482 071.56T + 5 290 642 945.6T + 23 062 573 672. T

+ 58 285 057 762. T + 70 795 082 864. T )

H)2=T +832 974T +(12f/12) (541.893 07921T —2433. 192 3026T +1578 958.4475T
+50461532.756T +1062812818.6T +11158178059.T +68956224515.T

+ 260 474 335 009.T + 590 481 944 720.T + 649 166 451 013.T )

S T2

S2= 48T3

S3= T + 66T + 23857

S4 = 240T + 10 080T + 133488T

SS=T + 450T + 51 105T + 1 156 500T + 8 474 040T

S6= 1 368T + 203 040T + 9 176 040T + 124 582 320T + 606 201 840T

S7-9 + 3 066T + 923 6851 + 59 855 040+ + 1 477 543 41 pT + ]3 532 339 52pT +48 427 921 7109

Ss = 9120T + 3 890 880T + 396 956 448T + 14 392 990 080T + 226 409 924 160T
+ 1 525 900 481 280T + 4 281 839 755 200T

Se= T + 23 250T + (9!/12) (594. 661 562 682 87 +84294. 383 697 93T '

+ 4 410 909.076 850T + 102 221 850.1385T + 1 134 215 232. 907T + 5 981857 240. 675T
+ 13743 018 904.44T )

Sgp = 68 424T + (10j /12) (270 619998 266 9T + 55 513~ 104 452 69T + 3 943 812~ 967 795T
+ 127 739 737.9327T'+ 2 066 854 791.541T'+ 17 380 438 625. 12TS+74 941 201760.29T"
+ 145 366 249 377. 3T )

Sgg =T + 191466T +(11f/12) (118.932 906 1899T +33 538.292855 22T +3 197 620. 768 745T
+ 137665 792.4022T + 306 381 3085. 557T + 36 980 537 599.12T + 248 244 844 269.4T
+ 903 379 027 460. 2T + 1 513692 561 261.T )

S)2=572400T +(12f/12) (761.2169708386T —5702. 401 272527T +275912Q.76Q728T
+129 871 665. 2661T +3 903 405 735.617T +63590860590.51T +603431062267.8T
+ 3 358 190461 783.T + 10 562 385 264 135.T + 15 559 184 767 727. T )

series for the zero-field (h = 0) correlations
(S(r)S(0)) through 12th order in (PJ) for any Ising-
like model on the three cubic lattices. Thus, for
a fixed, numerical value of T we can find numeri-

cal values of the coefficients m„' '(~) and m„' '(r) via
'(2. 6) and (2. 7), and P„(r) via the relation.

—Pf(P&, P&, 0) = —»(I —~) + 'q J d(P&)-&S(6)S(0))
(2. 0)
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where 5 is a nearest-neighbor lattice vector. For
each set of numerical values [r, p„(r)}, Eq. (2.5)
(and the corresponding equations for m„"' and m&~')

becomes a linear relation for the unknown poly-
nomial coefficients p„. Numerical data for n —2
different r's determine the full polynomial P„(r)
In practice we have calculated p„3 and p„4 exactly,
thus providing a check and reducing the number of
necessary data sets to n —4.

The numbers quoted as integers in Table I are
exact. Those given as decimal fractions are only
approximate: Because of rounding errors, the
original computer output p„(r) has only about 12-13
significant figures in higher orders. Further sig-
nificance is lost in matrix inversion. Integer pre-
cision in L„requires that the p„'s emerging from
the matrix inversion have enough decimal places
to identify the decimal fraction. In addition, the
graphs contributing in order n range in value from
roughly q" to q/n! and, when the ratio exceeds
10' ", coefficients of the smaller graphs become
entirely lost in the noise. Thus, the decimal co-
efficients in lower orders are good approximations,
but the smaller coefficients lose significance as
n increases. Finally, the highest order in our
program may ' have a small error, so the decimal
coefficients in L», H», and S» are approximate
at best, an effect exhibited graphically by the ap-
pearance of negative coefficients. Despite tnese
defects, all of the polynomials reproduce numerical
coefficients for an independently calculated value
of ~ to within the accuracy of the original computer
program.

Almost all of our series analysis (Sec. IIC) takes
I

the form of extrapolations in (PZ) at fixed, numeri-
cal values of (PA). There is, of course, no dif-
ficulty in rearranging (2.4), (2.6), or (2.7) as
true high-temperature expansions, g„"0 c„(J/&)
x(t!t&,)"; however, the series so obtained are empi-
rically quite poorly behaved in the vicinity of the
TCP. This probably reflects the fact that (i) the
Taylor expansion of ~ in powers of P4 has a radius
of convergence of only [v + (In2)~]'/~ and (ii) the
slope IdT, (a)/db I is large near the TCP (Sec. III
C), so a path T- T,(n.}'at constant 6 is close to
being tangent to the critical line and spends a long
time in the critical region.

B. Derivation of low-temperature-series coefficients

Low-temperature finite-field expansions for the
s = —,

' Ising model have been derived by the King' s
College group, ~ ' using strong lattice constants
tabulated by Sykes et al. '+ The procedure for
s & —,

' is complicated by the appearance of multiple
bonds but has been carried through by Fox, Gaunt,
and Guttmann' for s =1 and —,', and extended to
general spin by Saul and Ferer.

Our derivation of the Blume-Capel series fol-
lows the lines of Ref. 47 but uses a new trick4 to
simplify the multiple-bond problem. Consider two
distinguishable types of particles with occupation
numbers n, (1) and nm(1), respectively, at site 1.
Suppose each lattice site can be occupied by at
most one particle, so n, (1) +nm(1) = 0, 1. Rewrite
the spin variable S(l) = 1 -n, (1)—2nz(1). When the
Hamiltonian (1.1) is reexpressed!. n terms of n,
and n2, the partition function becomes

Z(Pg Pn Ph} esN &a/ /2-6j
(1), (1)}

I q ion (1) I a ~2vn (1) ~1(1)ni 2)+2ni(1)n2(2)+2n2(1)n1(2)+4n2(1)n2N
L+ P'g) 1 1 (0- P.) 'I 2 g&12&

(2.10)

B[G]= b&q[G]+ 2b&2[G] + 4b22[G], (2. 12)

with b, /[G] the number of i jnearest-n-eighbor
bonds in G. Each cluster occurs many times on
the lattice; however, because of the extensivity of

where p, —=e ~", g-=e, u=-e, N is the number of
sites on the lattice, and g &„&» „&»!denotes the
sum over all occupations. The ground state of the
system (at h =0) is the particle vacuum, provided
b & —,'q J. Each term in the sum corresponds to a
point cluster G of occupied sites (disconnected
clusters are included) and contributes a "weight"

m[G] = (u'pq)"&(u't&)'"2u ~&a', (2.11)

where N, and N, are, respectively, the number of
type-1 and -2 particles in the cluster G and

the free energy, it is only that term in the occur-
rence which is linear in N which survives in —Pf
= lnZ/N. Thus,

—pf(pJ, pn, ph) = 2 qJ+ h —4+ Z, m[G] u/[G],
(2.13}

where the multiplicity~8 m[G] is related to the
strong lattice constants '~ [G] by

[G] = [G]g[G]/g[G]. (2.14)

g[G] and g[C] are the symmetry factors~3 ~ 34 of the
original cluster G (with type-1 and type-2 particles
distinguished) and the "reduced" cluster G in which
the distinction between particle types is suppressed.
Figure 1 gives two examples.

It is convenient to collect powers of p. and to
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w [G]

(ut2l )2( t2~)4 7
t 2

(ni2pq) (ui2p) 4

2

262I- 1=5«(2&

(.»

holds, then ll„= 8,/p„where y, is the crossover
exponent.

The quantities with specific-heat-like indices
deserve special mention, since they seem to exhibit
somewhat anomalous behavior for T & T, (Pb, ) (Sec.
IV A). C~ is related to the fluctuations of the local
energy density,

hsT'NC~=((X —g))') . (2. ie)

FIG. l. Examples of contributions to the low-tempera-
ture free-energy series for the fcc Blume-Capel model.
Low-temperature lattice constants are taken from Appen-
dix IV of Ref. 42.

write the result

—Pf(PJ, Ph, Ph) = 2'qJ+h —6++ (u g)" L„(u, q),
(2. iS)

where L„(u, rj) = g", L„(u) g" is a polynomial in u '
and g. L;-0 unless n and m are both even or
both odd. The lattice constants necessary for n
(5 have been published by Sykes, Essam, and
Gaunt. The six-point clusters appear first in
L8&(u), where they are decorated only with type-1
particles. Such contributions can be taken quite
generally from the s = —,

' Ising polynomials given in
Ref. 44 with u "L„„(u)= [L„(u)]~„„. The fcc Blume-
Capel polynomials L„, 1 &n ( 6, are given in Table
II. For 6, = —~, g =0, they reduce correctly tp the
s = —,

' Ising results. For 4=0, g= 1, they are in
precise agreement with the s =1 polynomials.

All thermodynamic information can be derived
from (2.15) by appropriate differentiation. We do
not have low-temperature correlation-function data
such as contained in (2. 7). Series analysis is
normally done at h= 0 (p =1). For a fixed, numer-
ical value of p4, (2. 15) (and corresponding ex-
pansions for other quantities) is a series in ascend-
ing powers of u, which can be analyzed by standard
methods.

C. Analysis of series

Table III gives definitions and expected asymptot-
ic singular behavior of the quantities for which we
have analyzed series. Our notation for the critical
indices cpnfprms, in genera, l, tp thatpf Riedel. ' '

Analysis was done at 8= 0 along paths of constant
P4, i.e. , along straight lines passing through the
origin in the T, 4 phase diagram, Fig. 2. The
quantity x is the spin analog of the fractional He'
concentration in He -He mixtures" and is called
the "nonordering density" by Riedel. " We shall
denote high- and low-temperature versions of a
typical exponent 8 by 8 and 8, respectively. 8„
and g, will denote tricritical exponents along
paths respectively parallel and at finite angle to
the phase boundary. " If tricritical scaling

When h =0, the right-hand side has three terms
[see (1.1)]: The first is the flrctuations of the ex-
change energy —JT&,z&S'(1)S'(2), the third is the
fluctuations of the anisotropy energy hg, [S'(1)]3,
and the second is twice the cross fluctuations. The
third term is just N4 Y. A~T NC~~ is the first
plus half of the cross term. Scaling suggests that
all three terms should diverge similarly in the
critical region, and we expect &~ = n~~ = A. = 1 —(d

Such behavior is, indeed, observed away
from T&, however, near the TCP at T) T, the am-
plitudes of the direct and cross fluctuations have
opposite signs and appear to become nearly equal

TABLE G. Low-temperature free-energy polynomials
for the fcc Blume-Capel model. See Eq. (2.15).

L2p(u) = 1

L22(u) = —+—13 6

12
L,i(u) =- 13+ 7

211 120 42 8
L33(g) =———+ ~+

g g g

13 6
L4p(u) = ——+ ~g

120 240 84 42 24
L42(u) =211-——~+~+ ~+~g g g g g

2322 1653 126 123 24 2L«u)=-944k& —
2 +~+~+m+W

g g g g g g

240 78 84 24
L61(u) = 211—~—~ + ~ + 7g g g g

4644 3522 4568 426 84 296 168 48 8
L63(g) =-3777+ + 2

— 3
—~+ 7+~+~+M+ Wg g g g g g g g g

( =143 1 45792 49290 16296 2871 792 448 96 30
L56(g) = 14303—— + 2 3 4 +~+~+M+ IIg g g g g u g

211 120 42 8L (g)= ——~+~+m
g g u

2322 9288 2244 2046 1248 1680 804 180

276 240 96 24 12+~+~p+~+~+~
137376 17010 144356 40758 17280 5914 708L64()»»6- —

2 + 3 —
4

—
5

—
6

—~g g u g g g g

1521 952 480 168 54
g g g g g

922152 1329240 771272 64224 65070 6904
66g 6+ 2 + 3 4 5 6g g g g g g

3930 1212 776 168 30 1
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Q =g c„(PZ)"-At
n*o

(2. IV}

(t= 1 —T,—/T), then the ratios of successive coef-
ficients go asymptotically for large n as

c„k'~T i&1 8-1
(2. 18)

in magnitude. The resulting cancellation makes
o~ and a~~ 4'&ficult to observe.

Most of our series analysis was done by now-
standard techniques. ' ~ In the determination of
high-temperature exponents and amplitudes we
have (with one exception noted below} relied on
direct ratio analysis of the series coefficients.
If the quantity to be analyzed

-0.5

O. I—

0.0
6/l2 J

I I I
I

I

PHASE
RY

AN- FIELD
TGP

SERIES TG P
\
l

I
I
I
I

I

I
I I I I I

0.5

TABLE III. Definitions and expected singular behavior
of quantities for which series were analyzed. All analy-
sis except the critical isotherm data (involving 6) was
done at k= 0 along paths of constant P&. t =—

I 1—T,(P&)/
TI.

Definition

B
Xp= —

Bp z

Singular behavior

Q~TXp -Axt-"

p2 [see (2.7)]

M= |',S(1))=— M A~I

PS APf (T= T~)

Z-A r'"'~'

~=1—(S (1))=1——Bf
aa

B& BPY- —--
B4 BL

T BS
NBT g,

T 8$'
Csa =—

BT pg

x-x, +A„t" (TPT )

Y-Ayt-"

—-AztC~
k~

: '~-AN, t ~
k~

Neville-table extrapolation of p„gives estimates
of ksT,/J. When e is known or can be guessed
with confidence, the approximants n p„/(n + e —1)
converge to kT,/J more rapidly than p„. Con-
versely, when T, is known, (Jnp„ /k sT, -n + I) con-
verges rapidly to 8. For given T, and 8, the am-
plitude A can be found by Neville extrapolation of
the approximants c„(d/ksT, )"/("'„' '). Results of the
above methods were often corroborated by logarith-
mic derivative series and Pads methods.

The part of the second-order line near the tri-
critical point presents special problems. Univer-
sality predicts that the critical indices are n, in-
dependent (i.e. , remain rigorously Ising-like)
right up to the TCP and then cross over discon-
tinuously to their tricritical values. Furthermore,

FIG. 2. T,(b,) phase diagram. Mean-field results are
plotted for comparison. Second-order and first-order
parts of the phase boundary are shown as full and dashed
lines, respectively. Below the series TCP, mean-field
and series first-order phase boundaries are indistinguish-
able on this scale.

even at 6 = 0 (s = 1 Ising), the ratios (2. 18}plotted
against I/n are significantly curved compared with
n, = —~ (s=-,' Ising), in away which is not removed
by Neville extrapolation and indicates the presence
of a confluent singularity as a correction to leading
scaling behavior. '~" To incorporate these fea-
tures —universality, conf luency, and crossover-
we hypothesize [cf. (2. 18)]

q-At-'+ Br" (2.19)

at f-0. In the fully second-order region a deter-
mines the strength of the confluent singularity. At
the TCP, 8, = 8 —e, A = 0, and the tricritical am-
plitude A"' -=B. The asymptotic expression for p„
which follows from (2.19) is more complicated
than (2.18). With 8 now assumed known, each c„
may be expressed in terms of the four parameters,
T„A, B, and e. Conversely, each set of four
successive coefficients, c„c„.„c„,z, and c„,
produces estimates (T,)„, A„, 8„, and e„. In favor-
able cases these estimates converge smootmy
and rapidly (Sec. IV B). We refer to this as the
"four-fit"technique.

It is well known from work on the Ising model
that the low-temperature series typically possess
singularities in the complex u plane closer to the
origin than the physical singularity u, . Ratio tech-
niques are, therefore, inapplicable, and at low
temperatures we have relied exclusively on Pads
methods. 50 5' If Q -A(u, —u) ~, then Padhs of the
log derivative d/du lnQ have a pole at u =u, with
residue 8. Furthermore, Pads approximants to
the series (u, —u)Q'~~ may be evaluated at u =u, to
obtain estimates of A': Where data are available,
we have generally taken u, to be determined from
the high-temperature evaluation of T,.
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III. h = 0 PHASE DIAGRAM

A. Overview

The computed T,(h), T,(v), and T,(x) phase dia-
grams are shown as Figs. 2-4. Second- and first-
order phase boundaries are shown as full and
dashed lines, respectively. Mean-field results'4
are plotted for comparison. Figures 5 and 6 show

T,(&) and T,(x) data in detail in the vicinity of the

TCP and will be discussed in Secs. III C and IV C.
Phase-diagram data are available in tabular form. 59

The parameters of the tricritical point are

(Ph)q = 1.60 + 0.05,vq =0.248 +0.010,

ks T,/12' = 0.2615 + 0.0070,

&,/12/= 0.4716 +0.0010, (3.1)

xq = 0.665p'O~q .
Determination of v, is discussed in Sec. IIIC. The
temperature T, is marginally higher than previously
quoted~4 (see Sec. III C). The uncertainty in ksT, /
12J at a fixed value of ~ near v, is only about
+ 0.001. The larger uncertainty quoted reflects
the uncertainty in the actual value of 7, . A similar
comment applies to 4 t, but the corresponding un-
certainty is smaller because of the steep slope of
T,(n.) near the TCP. The determination of x, in-
volves an additional extrapolation to find x at fixed
v = 7, and T = Tt from high- or low-temperature
series (Sec. IV B and IV C} and is accordingly
rather crude.

The principal features of the phase diagram are
as follows: (i) The mean-field phase diagram is
qualitatively correct; however, as expected, mean-
field transition temperatures are uniformly high.

I i i } i I

0 0.5 I.O
Y

FIG. 3. T,(T) phase diagram. 7' =—(1+2 e™). Mean-
field results are plotted for comparison. Second-order
and first-order parts of the phase boundary are shown as
full and dashed lines, respectively. For small & the
mean-field first-order boundary becomes indistinguish-

, able from series results on this scale.

I.O

0.8

0.6

ksT

I 2 3'

0.4
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0.0
I }

02 04

ASE

~MEAN- FIELD
TC P

SERIES T C P

I

I I i I

0.8 I.O
I
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FIG. 4. T~(x) phase diagram. Mean-field results are
plotted for comparison. Second-order and first-order
parts of the phase boundary are shown as full and dashed
lines, respectively.

(ii) The slope of the phase boundary across the
TCP appears finite and continuous in both T,(7) and

T,(a). (iii) The three branches of the phase bound-
ary in T,(x) appear to be linear near the TCP and
to have unequal slopes. (iv) The slope —dT, (z)/dn
is not monotonically increasing with 4; the phase'
boundary T,(h)is concave upward in a small region
just below the TCP.

Points (ii)-(iv).are in agreement with mean-field
theory, except that the two high-temperature
branches of T,(x) have equal slope in mean-field
theory. The data plotted in Fig. 6 make clear
that the evidence for point (iii) is comparatively
weak: The high-temperature data, while quite lin-
ear, show only a small discontinuity in slope at the
TCP; the low-temperature extrapolations are so
crude (Sec. IV C) as to provide little more than the
suggestion that g is only weakly dependent on x for
0. 4&x&x,. Point (iv) is in disagreement with the
best He -He data of Behringer, Goellner, and
Meyer.

%e divide our data into three regions: the fully
second-order region (1.0 & 7 & 0.3), the tricritical
region (0.3 & 7 & 0.2}, and the fully first-order re-
gion (0.2 & 7 & 0.0). In the second-order region we
have relied for phase-diagram determination on
ratio estimates of T,(7) from susceptibility series
(2. 6), using the Ising value y=f. These series are
extremely well behaved and we put uncertainties at
one part in 10 or better. Ratio values are con-
firmed by four-fit analysis (Sec. IIC). This part
of the phase diagram has previously been studied
by Oitmaa. a~ ~' His values of T, are slightly higher
than ours near the TCP, a discrepancy which we
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FIG. 5. T,Q,) phase diagram; detail near the tricriti-
cal point. Unless shown explicitly, uncertainties are
smaller than plotted points. In addition to the phase-
boundary curve, the spinodal line (dotted) from high-tem-
perature series and the free-energy intercepts and points
of equal slope (light lines) are shown. , See text.

low temperatures. We have also tried direct ex-
trapolation of the partial sums in (2. 4), a line
which gives almost identical results. Figure 7
shows some typical plots. For tIA» (ph), there is

l.5 I I I

FIG. 6. T,(x) phase diagram; detail near the tricriti-
cal point. Series data, given as points, show apparent
extrapolation uncertainties. Lines are our best estimate
of correct phase boundaries. High- and low-temperature
data should (but do not) agree at and above the tricritical
point. High-temperature data are the more reliable,
when the two disagree. See Sec. IVC and Ref. 79.

attribute to his shorter series (seven terms in Xo

as opposed to our 12) and his use of y values ap-
preciably less than f.

The discussion of the first-order and tricritical
regions is presented in Secs. III B and III C below.

B. Free-energy intersection and the location of the first-order

phase boundary

Quantities such as Xo, which are strongly diver-
gent at second-order transitions, are believed
for Ising-like models to exhibit at most a very
weak (essential) singularity on approach to a first-
order boundary. ' Conventional series methods
for locating a second-order transition are, there-
fore, inapplicable to a first-order transition. The
method we use depends on the fact that the free
energy has discontinuous first derivatives at a
first-order .transition. At a second-order transi-
tion it is, of course, second derivatives which are
divergent.

Our procedure consists in extrapolating the h = 0
high- and low-temperature free-energy series
(2.4) and (2. 15) at fixed values of PA. Extrapola-
tion is carried out simply by evaluating diagonal
and near-diagonal Pads approximants to —Pf, us-
ing the variables PJ at high tempera. tures and u at

2/ 3

~f ' OIO'

0.4—

0.2—

O.I5 0.20
r

r

0.0
OA5

0.50
J/k~T

0.55

FIG. 7. Typical free-energy-intersection curves for
the first- (7

y
) and second- (v=3) order regions. v is

x0
defined by (2.2). The solid curves plot the high-tempera-
ture [7, 6] Pade approximant. The dashed curves plot
the low-temperature [33, 33] Pade approximant. Points
of intersection and equal slope are marked by heavy dots
and arrows, respectively. Note that the peculiar behavior
of the &= 3 [7, 6] Pade takes place at J/k&T=0. 167, well
beyond the range of validity of the high-temperature
series.
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a single, well-defined intersection of the high- and
low-temperature free-energy curves (with the cor
rect limiting beh'avior near T =0, 6 = 6J), which we

identify with the first-order transition. Because
of the essential singularity mentioned above, + it is
a moot point whether or not the tnce high- and low-

temperature free-energy functions possess analyt-
ic extensions beyond the first-order phase bound-

ary. Our finite-series approximants do not, of
course, contain such singularities, though they do

have a variety of real poles and zeros beyond the

intersections, which may or may not indicate a
spinodal line. In the fully first-order region the

dominant uncertainty comes from the low-temper-
ature series, and we have found transition temper-
atures by calculating the intercepts of successive
low-temperature Padds with the (7, 6) high-temper-
ature Pads. The estimated uncertainty in the
transition temperature is as large as 2/q at r = 0. 2

but decreases rapidly with r and is smaller than

one part in 104 below v = 0. 1.
The free-energy intersection method is also ap-

plicable in the fully second-order region, though

as a determinant of T, it is appreciably less pre-
cise than the method described in Sec. IIIA. Its
importance at high temperatures lies in the fact
that it is the only method which spans the tricritical
point. By comparing it in the second-order region
with the more precise kgT&p method, a judgment of
its accuracy may be made. The ~=-', (iI = 0, s =1
Ising} curves shown in Fig. 7 are typical of this
region and illustrate the inherent difficulties. Rig-
orously speaking, the high- and low-temperature
free-energy functions should meet and have a com-
mon tangent at T,. Finite-series extrapolants do

not, of course, meet exactly, and there is difficulty
in finding an a priori criterion for locating T,.
By following the behavior of the approximants from
the first-order region, one can argue that it is the
middle one of the three intercepts which is physical.
Nearby, at a slightly higher temperature, the
slopes of the two free-energy approximants are
equal. Empirically one finds that the average posi-
tion of the intercept and the point of equal slope
agrees with the susceptibility-based critical tem-
perature to better than —,'% throughout the fully
second-order region. 3 Note, in addition, that the
true free energy has infinite curvature at the crit-
ical point. Finite-term series cannot mimic such
behavior, and it is perhaps not surprising that
there is an "overshoot" which carries the point of
equal slope away from the intercept. For v = —,',
depicted in Fig. 7, we find J/ksT=0. 152 (inter-
cept), 0. 140 (equal slope), and 0. 147 (Xo series).
Both the high- and low-temperature series are less
well converged in the second-order region than in
the first-order region, and the apparent uncertainty
in the intercept itself is as much as 2%.

C. Phase boundary in the tricritical region and the location

of the TCP

The vicinity 0.2& 7& 0.3 of the tricritical point
is depicted in Fig. 5. Our phase boundary follows
the ks Tyo critical temperature (Sec. III A} down to
r = 0. 25 (ksT/12J =0.263). Beyond this we inter-
pret the critical temperatures from the four-fit
analysis (which also appear in standard ratio analy-
sis~6) as at best tracing out a spinodal curve or at
worst being entirely a figment of too-short series.
On the first-order side the phase boundary follows
the free-energy intercept (Sec. III B) up to v=0. 21
(ksT/12J=0. 235). Beyond this the intercept is,
we believe, below the phase boundary because of
the overshoot mentioned above. Both first- and
second-order boundaries develop appreciable un-

certainties near the TCP. For 0.21 & w & 0.25 the

phase boundary shown in Fig. 5—which we take
henceforth as standard —is a smooth curve joining
the first- and second-order regions and drawn
through the upper edge of the envelope of uncer-
tainty.

Our data cannot strictly rule out the possibility
that the true phase boundary follows the k~T~ and

intercept curves right up to their intersection at
k~T/12J=0. 239, b/12J=0. 473. This would, how-

ever, put the TCP a good deal below our preferred
position. Moreover, it would make the slope of
the T,(b) phase boundary discontinuous across the

TCP. Such a discontinuity is not seen in Hes-He4

mixtures3'4 and is not easily reconciled with pres-
ent theories of tricritical behavior.

Despite the large uncertainties in the phase
boundary near the TCP (+ 0.002 in b, /12J), two ob-
servations can be made with some confidence: (i)
The concavity of the T,(4) phase boundary [point
(iv) of Sec. IIIA] is real. Note that the existence
of the dip is already established well outside the
uncertain region 0.23& ksT, /12J& 0.27. (Such a
dip is found for d =2 by Monte Carlo calculations. +)
(ii) The point of vertical tangency, dT, (a) / d&-—~, of the four-fit T,(ksT, /12J =0.242) is very'
close to the intercept curve in a region where the
intercepts are expected to be below the correct
phase boundary and, therefore, is not a likely can-
didate for the TCP. 6

Having fixed now the position of the phase bound-

ary, we turn to the location of the TCP, itself.
The methods given so far locate the TCP. only
crudely. Approaching from the second-order
side, one expects the relatively well-determined
susceptibility index to retain its universal Ising
value, y=P, right up to the TCP. Finite-series
effects make this a poor criterion for choosing the
TCP, since direct ratio estimates show y smoothly
decreasing from 7. =0.4, and already by the time
7. =0.3, y=1.12. Taking the point, of vertical tan-
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0.4

0.3

and amplitudes. We discuss in turn the tricriti-
cal region (Riedel's" region III), the second-order
or critical region (Riedel's region II), and the
first-order region (Riedel's region I).

A. Tricritical region

7 I.O

0.9

0.8

0.22

0.2

O.I

I I I I I

0.23 0.24 0.25 0.26 0.27 0.28

FIG. 8. Dependence of the effective tricritical expo-
'nentsonthechoice of the TCP &g. 'T is defined by (2.2).
Reading uncertainties in y~ and g& are + 0.01, while those
in P& are +0.02. The dotted line shows mean-field tri-
critical values.

gency as the lower limit, one can only conclude
0.22 & 7, & 0.30. On the other hand, the free-en-
ergy intersections should develop a continuous
slope as the TCP is approached from the first-
order side. With finite series, the discontinuity
never disappears entirely, although it first van-
ishes to svithin extrapolation uncertainties in the
region 0.23 & ~ & 0.26. To'fix the tricritical point
more precisely we are forced to use secondary
methods.

Direct reading of ratio estimates and Pads ta-
bles (Sec. IVA) for 0.23 & v & 0.26 gives (see Fig.
8) 0.91 & y& 1.03, 1.04 &y' & 1.17, and 0.15& P
& 0.30. 'These values are notably consistent with
the Landau tricritical exponents y, =y,' =1, P, = ~,
which also agree (logarithmic corrections aside)
with the renormalization- group calculation of
Riedel and Wegner. ' ' Assuming that any one of
these exponents is valid provides a criterion for
picking 7, Referring to Fig. 8, we choose the
value (3.1) for r,

Alternately, we may study the behavior of the
critical amplitudes A„and A, defined in Table III.
If tricritical scaling" "'~' holds, then near the
TCP A„should vanish as (r —rt)'" "t t = (r- rq)
(using+ ~8

y, =1, y, = —,'). Similarly, A„should van-
ish as (~- rt)" "', where the uncertainty allows
0.625& p& 0.638' ~ ' with"' v, =-,'. Figure 9
shows A„and A„as determined from four-fits (Sec.
IV B). This consideration suggests a value of v,
slightly higher than (3.1); however, we consider it
somewhat less reliable because of the difficulty of
getting good amplitudes.

IV. EXPONENTS AND AMPLITUDES

On the basis of the phase diagram constructed in
Sec. III, we now summarize our results for indices

1.0—

4(r)

0.5—

4X

x =4+
X ~

X

~ X

~ X

0.2 t 0.3
7t

I I

04 05
I I I

0.6 0.7 0.8 0.9 I.O
T

FIG. 9. Critical amplitudes A„(v) and A„(~), as deter-
mined from four-fits to high-temperature series. Un-
certainties are shown on Fig. 10.

Table IV tabulates our tricritical results. In
these determinations the position of the TCP (v„T,)
is regarded as input data. We have relied on ratio
methods above T, and on Pads log derivatives be-
low, as outlined in Sec. II C. The sources of un-
certainty are (i) apparent reading uncertainties of
Neville or Pads tables, (ii) discrepancies in the
determination of the same quantity by two or more
different methods, e. g. , the high-temperature A„
and A„may be studied by ratios or identified as
the coefficient B in the four-fit (2.19) (these un-
certainties are not quoted; however, see Ref. a,
Table IV), (iii) uncertainties in the location of the
TCP, and finally for amplitudes only (iv) uncer-
tainty in the assumed value of the tricritical ex;
ponent (these uncertainties are not quoted; how-
ever, see Refs. b and i, Table IV). The most im-
portant source of uncertainty is usually (iii), though
the others can also be appreciable, especially for
amplitudes. Figure 8 illustrates the dependence of
some typical exponents on the assumed location of
the TCP along the standard phase boundary. We
have not tried to place over all conf-idence limits
on the numbers in Table IV.

Bausch' has argued on the basis of the Ginzburg
criterion that tricritical exponents should be mean-
field-like for dimensionality d & 3. By analogy with
ordinary critical phenomena, where mean-field
theory holds for d & 4 and there are logarithmic
corrections at d =4, one might expect logarithmic
corrections to tricritical mean-field theory at d = 3.
The calculations of Riedel and Wegner' ' support
these expectations. (Historically Ref. 15 predates
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Thus,

8"
~2 og 2l gp'8@21/g (4.1)

while Cz ~ would have a term going as

i o-y p @2
824'

(4.2)

Assuming mean-field tricritical indices, a, = y,
= —,', we would observe along the tricritical path
T —T

C -t'" C -t'+t'"
b, Bb, 7

(4.3)

while in the second-order region'

(r r )5/4 t-1/8 C (r r )1/4t-1/8 (4 4)

The behavior (4.3) is in agreement with our obser-
vations. We believe, however, that the actual
slope of the phase boundary at the TCP is large

Ref. 19.) With the exception of the poorly behaved
high-temperature specific-heat data, our tricriti-
cal exPaments agree gvith tricritical mean-field
theory. We have not attempted to analyze for pos-
sible logarithmic corrections. 6'

The high-temperature tricritical specific-heat
index is crudely consistent with (a~), = ——,

' and well
below the strong, mean-field divergence~s (u~),
= (a~~), = —,'. The fact that the related exponents
(Table III) 1 —&u, = A., =-,' suggests that there is a
cancellation or near cancellation of the leading
high-temperature tricritical singularity of C~. A
careful look at the tricritical behavior of the three
terms in C~ discussed after (2.16) confirms this
suspicion: All three diverge separately as t '
The first and third are equal but are canceled by
the cross fluctuations to within uncertainties. The
tricritical ratios (2. 18) of the series coefficients
belonging to C~~ show an even more dramatic be-
havior: They should asymptotically rise to ksT, /J
=3.138; instead, they decrease monotonically
after n =7 and p»=1. 40, suggesting that our short
series miss the tricritical singularity altogether
and are dominated by a singularity at a much lower
temperature.

There is a simple scaling argument which cor-
relates both these observations with the steep slope
IdT, /dh I near the TCP. If this slope were infinite
at the TCP, then we could identify the scaling
fieldS6' p. y

+ Q, and p,2- T- T, . The SCaling
Ansatz for the free energy is

—Pf (Pg, 42) = t/y & &(t/g/t/y ~)

[where 6:(x) denotes some function of the variable
x, not generally the same function from one usage
to the next] so the entropy would go as

y -(r —r )'" "&'/ "&t ",

( ) (y+2v-y~Wv]) tt yq 't - (y+2v)
(4.6)

near the TCP but in the second-order region.
There are large uncertainties, but in ~, & 7 & 0.3
the data for both A„and A, are compatible with
0.27 & y, & 0.62. The mean-field exponent y,

but finite (Sec. III C). We hypothesize, therefore,
that the cancellation, while good enough to "fool"
the high-temperature series, is actually incom-
plete. There seems to be no theoretical reason
why a vertical tangent of T,(n.) should be a general
feature of the TCP. If, for example, a term
—Kg &~& S~(1)Ss(2) were added'4'~' to the Blume-
Capel Hamiltonian, one would expect the tricritical
slope of T,(4) to be K dependent. This understand-
ing of the high-temperature specific-heat anomaly
is, of course, speculative and leaves moot the
question of why the low-temperature specific heat
appears normal.

There is another example of the effect of the
steepness of T,(h} near the TCP. We have done a
direct ratio analysis of the susceptibility series at
constant n/J=4, /J (see Sec. IIA). These series
are quite poor but give crudely yo- (T —T,) '~"' '.
This appears inconsistent with y, =1, since scaling
predicts the same exponent for all paths at a finite
angle to the phase boundary. The explanation is
that near the TCP )(,

- p,"t 6: (g2/p, "s)- yz"~ 't p (g"/
pz). For a phase boundary vertical at the TCP, p,, = 0
along 4=6, and Xo-t, where we have used mean-
field tricritical indices.

B. Critical region and the cross-over exponent y,

We study in this section the behavior of the am-
plitudes A (Table III) along the second-order phase
boundary (r & r,). In contrast to some previous
work, ' we assume the validity of universality
in feeling free to set all exponents equal to their
Ising-like values' for any ~ & ~, . The results of
four-fit analysis (Sec. II C) for the high-tempera-
ture amplitudes A„(r} and A (r) are shown in Fig.
9. & values for Xo remain within +0.1 of the ap-
parently universal value & = —,

' for ~ & 0.37.
Below this they cross over smoothly (presumably
because of finite-series effects) to e = -,' at r = r, .
For ~ & 0.45 ratio and four-fit amplitudes A„are
within 3 /q agreement. Below, ratio amplitudes
are progressively higher and do not vanish at T,.~s

Both A„and A„are well determined and remark-
ably linear for 0.3& ~& 1.0. Below ~=0.3 un-
certainties are appreciable; however, vanishing of
the amplitudes at the TCP (3.1) clearly requires
curvature in the region ~, & ~ & 0.3. Figure 10
shows the same data plotted against (r —r, ) on a
log-log scale. Tricritical scaling "2 predicts the
"amplitude scaling" relations
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FIG. 10. Log-log plots of high-temperature amplitudes
Ax(&) and A„(~) versus (~ -~&), showing apparent reading
uncertainties. The straight lines show the fits (4.7) to
the data near the TCP.

=-,' falls in this range, and we quote

(4.6)

I I I I I I I

With the crossover exponent now fixed at y, = —,', we
find for ~, & ~& 0.33

A„(v) =0 4(r .~I)' ', A, (~) =0.8(r —rI), (4.7)

as shown in Fig. 10.
Series for the other amplitudes are not sufficient-

ly regular to support four-fit analysis, which
clearly separates out the coefficient of t 8, even
for v near ~, . Other methods of amplitude deter-
mination tend to see a single "effective" singular-
ity and, thus, cross over smoothly between critical
and tricritical behavior. The difficulty is illustrat-

A„(&) [A„(~)/A„(1)]'"
A~(1) [A (g)/A (1)]3~~ (4. 8)

so, using (4. 7) and the s = —,
' data from Table V,

A„(v) = 0. 64(7. —r, ) ' in the tricritical region, as
plotted on Fig. 11. Considering the crudeness of
(4.7), agreement is not bad [changing the constants
in (4. 7) to 0.5 and 0. 7 improves things a lot].

Expressions of universality such as (4.8) should
also hold away from the tricritical point. The dis-
crepancy between the measured and predicted A„(v)
(see Fig. 11)—which constitutes an apparent viola-
tion of two-scale-factor universality —is harder to
explain for r )0.4, where the amplitudes A„(v)
and A, (v) have much smaller apparent uncertainties.
Consider the relatively well-studied s =1 Ising
series (v=-', ). Our amplitudes, given in Table V,
agree well with values quoted by other workers;
yet, the discrepancy in Fig. 11 is 18%. An even
more direct test of universality is the equality of
the high- and low-temperature susceptibility ra-
tios,

ed by the magnetization amplitude A„(r) shown in
Fig. 11. The Pads analysis uses the Ising exponent
P =~~8 and a g determined from high-temperature
susceptibility series. Beyond 7 =0.3 the series
have switched over to the tricritical exponent P,
= 4 and the approximants to A„systematically fail
to converge. Tricritical scaling predicts A„
-(v- r, )' I ' "I=(v —v, ) ' . The series ampli-
tudes decrease as ~ decreases and seem at first
glance to be in disagreement. Actually the coef-
ficient in the proportionality can also be predicted
by invoking two-scale-factor universality. A„
and A„ fix the scales (n and g) and we deduce

2.0—

1.5—

~ =
AM FROM LOW-TEMPERATURE SERIES

x = A~ CALCULATED FROM (4.8)
TABLE V. Selected amplitudes for s= 2 and s=1 fcc

Ising models (v=1, 3). &=1 numbers are from our v=3
Blume-Capel data (other references given) and carries
apparent reading uncertainties only.

A

I.O—

~ ~ ~
~ ~

X

X

-/8I64(~-~ )t

X

X

Ax
A„

Ax
A6

1S=2

0.9750 + 0. 0003
1.137 y 0.001
1.4869 y 0. 0018
0.1892 y 0. 0002
0.375 + 0.010

0.565' 0.005
0.631+ 0.002
1.350 + 0.006
0.1273 y 0.0002
0.868 + 0.010

I

0.7 0.8 0.9 I.O
I I I

0.4 0.5 0.6
0.5

0.21 O.s
T'

FIG. 11. Critical magnetization amplitude A~(~). Dots
show data from series analysis (Pades). Crosses show
Az(~) as calculated via universality, Eq. (4.8). The solid
curve shows the tricritical region, as calculated from
(4.7) and (4.8) .

Reference 77.
Reference 75 quotes & Ax= C2= 0.877, which seems

rather too high.
J'. M. Essam and D. L. Hunter, J. Phys. C 1, 392

(1968).
Reference 48 quotes A&=1.361+0.001 and Ax ——0.739

g 0.053 on the basis of series somewhat longer than ours.
D. S. Gaunt, Proc. Phys. Soc. Lond. 92, 150 (1967).
Reference 47 quotes A6 ——0.84+0. 05 on the basis of

series somewhat longer than ours.
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A„(~) A„(~)
(4.0)A„(1) A„(1)

'

For ~ = —', our data give 0.579 and 0.673 for the left-
and right-hand sides, respectively. Similarly,
universality predicts

A, (l) A„(r) A„(7')
AII(r) A„(1) AII(1)

(4.10)

and for v = —', our data give 0.432 and 0.394. Either
there is a real failure of universality or some am-
plitudes with good apparent convergence are actual-
ly in error by as much as 10%. Both possibilities
are distasteful; however, we tend to opt for the
second. Amplitudes are exceedingly sensitive to
nearby and/or confluent singularities.

C. First-order region

According to scaling" a quantity Q which goes
as Q- p, ,~I p (pz/p, 'I) near the TCP should behave
along the first-order phase boundary (gI =0) as
Q-lI, a~a-(7I —v) eu with 8„=8,/yI. For v& 7.

I all
thermodynamic quantities are for practical pur-
poses (see Sec. III B) nonsingular on approach to
the (first-order) phase boundary. To calculate the
value of Q at the boundary, we have simply formed
the Pads approximants to Q and evaluated them at
the appropriate transition temperature. '8 High-
temperature series are apparently quite well con-
verged even for small values of ~, for which the
transition temperature approaches zero. Low-
temperature series are comparatively poorly con-

vergedd

except for ~ & 0.22.
Figures 4 and 6 illustrate our data for the con-

centration x in the first-order region. The high-
temperature data are linear in the vicinity of the
TCP and appear to suffer a small but distinct dis-
continuity in slope~a Ipoint (iii) in Sec. III A]. Tak-
ing +„=1from the linearity of the phase boundary,
we compute yI =IJI/Id„=0. 5 in confirmation of
(4.6). The low-temperature data, on the other
hand, are very poor above x=0.3 (7. =0.21): At
the tricritical temperature low-temperature ex-
trapolation gives x=0.42 (cf. x=0.665 from
above). Above the TCP, where high- and low-tem-
perature determinations of x should coincide, the
low-temperature data continue to rise to a maximum
of x=0. 54 (at v=0. 30) but remain always well
below the high-temperature data. 79 Disturbingly,
the apparent uncertainty in the low-temperature
extrapolations (Fig. 6) is entirely insufficient to
reconcile them with the high-temperature data,
which we regard as reliable. Between x=0.3 and
the TCP the low-temperature phase boundary in
Fig. 6 is no more than a well-informed sketch.

Figure 12 shows the magnetization M„just be-
low the phase boundary in the first-order region.
According to scaling M„should vanish as8 (z, —v)~M

with p„= —,'. The observed slope gives P„=0.2
(=P,). Apparently the low-temperature series,
poorly converged near the TCP, are unable to fol-
low the rapid decrease of the magnetization at
fixed ~, as T approaches the phase boundary from
below. ' Thus, the. series data never really pen-
etrates into Riedel's" region I, and we are in-
clined to regard the observed slope in Fig. 12 as
evidence in favm of P, = —,

' rather than against P„= & .

20 I
I

t.o

0.5

0.5—

0.2
0.008

0.0I

I I I I I I I I I

0.02 0.05 0.05
(7 -7)t

O.I 0.2 0.3

FIG. 12. Magnetization at the first-order phase bound-
ary. Data points are from Pade extrapolation of low-
temperature series. The slope at ~-~

& should give the
first-order index P„. See text for discussion.

V. CONCLUSIONS

Our results are almost entirely in agreement
with the mean-field, Riedel-Wegner ss, M scalingss-ss
picture of a d = 3 tricritical point. In particular,
(a) we find a phase diagram (Figs. 2-6) in which
T,(h) is linear near the TCP and has continuous
slope, while T,(x) is linear but has discontinuous
slope. (b) Tricritical exponents are symmetric
and agree with the mean-field, Riedel-Wegner in-
dices (yI=I, vI=eI=-'„pI=-,', etc. ) with the sole
(and explainable) exception of the high-temperature
specific heat. We have not tried to analyze for
logarithmic factors. I~ (c) Critical amplitudes be-
come singular as the TCP is approached from the
second-order side with exponents which are com-
patible with tricritical scaling and a crossover ex-
ponent Q] = g.

Various other theories are not compatible with
our results. Reatto's droplet model 3 gives a
susceptibility amplitude near the second-order
phase boundary which is independent of the distance
from the TCP, in disagreement with (4.7) and
Figs. 9 and 10. Stauffer's modified version" pre-
dicts y, = —'„ in disagreement with our y, = 1. Kort-
man's theory predicts a susceptibility amplitude
which vanishes as (4I —4)" '=(h, —4)'~~, in dis-
agreement with (4.7). We have been unable to
compare our results with the theory of Rice and
Chang.
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How do results for other models compare with
ours'P Harbus and Stanleyw recently used high-
temperature series to study a metamagnetic sys-
tem with competing in-plane and out-of-plane in-
teractions. They found a tricritical susceptibility
divergence y „,-. t ', a result corroborated by
Arora and Landau using Monte Carlo methods. ~s

The magnetization in the metamagnet is the non-

ordering density, so their )t,« is the analog of our
Y and their result agrees with our X, = —,. However,
not all models studied have shown mean-field-like
tricritical exponents. Arora and Landau~a find
(Monte Carlo) for the d =2 Blume-Capel model y,
=1.1+0.4, ye =1.0+0.3, but P]=0.09+0.02 and

6, =10.8+0.7. This is perhaps not surprising,
since it is well known that critical indices are d
dependent and, more specifically, the Ginzburg
criterion' suggests that for d =2 the Blume-Capel
tricritical point is fluctuation dominated (Sec. I).
More provocatively, a d=3 Ising model with com-
peting nn and nnn interactions, studied by Harbus

and Stanley, ' and by Landau shows A., = 4 and v,
= 0.78 ~ 0.20. These data seem to require the ex-
istence of a non-mean-field-like TCP in d =3, i.e. ,
a non-Gaussian tricritical fixed point.

Is there more than one type of tricritical point
in d = 3? The experimental data are still inconclu-
sive: He'-He' seems mean-field-like'; however,
both DAG~ and FeClz ' show strong indications
of non-mean-field exponents. This nice question
remains open, pending further and more definitive
work.
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