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The first seven terms of the high-temperature series expansion for the true range of correlation are

derived for general dimension on the fermi&y of hypercubical lattices. Analysis of this series shows that
a cross-over phenomenon occurs at high dimension so that for d = co one obtains for the
correlation-length critical index v = 1 instead of the classical value v = 1/2. This behavior is also

illustrated by a more tractable, analogous, random-walk problem. The behavior of the critical

temperature as a function of dimension is discussed. All present evidence is consistent with an essential

singularity at d = 4.

I. INTRODUCTION AND SUMMARY

One of the more dramatic predictions of the re-
normalization-group approach of Wilson' has been
the existence of a distinguished dimension, 4,
above which the classical Bragg-Williams approx-
imation, in some sense, holds. In this paper we
seek to investigate by high-temperature series-
expansion techniques some aspects of this high-
dimensional region for the ferromagnetic nearest-
neighbor spin--, Ising model on a d-dimensional
hypercubical lattice. (The plane square and simple
cubic lattices are the d=2, 3 members of this
family of lattices. )

To this end we have derived the first seven
terms for general dimension of the expansion for
the true range of the spin-spin correlations. We
do not find an expansion in powers of d ' for the
behavior of the temperature at which the spin-
spin correlation length becomes infinite, in con-
trast to the results of Fisher and Gaunt' on the
susceptibility. We trace this behavior to a cross-
over phenomenon. The critical region for the
spin-spin correlation range is only (1-T, /T) =
O(d '). For temperatures above this range, the
spin-spin correlation length behaves as though its
critical index were v =1 instead of the expected
value, v = &. This cross-over phenomenon may
explain the failure of Abe' to obtain an expansion
for y in powers of d '.

To further clarify the nature of this behavior
we consider a more tractable, closely analogous,
random-walk problem. Basically one needs to
consider the d-dimensional random walks which
begin and end in a (d-1)-dimensional hyperplane.
The results of this calculation confirm in detail
the above observations on the Ising problem. We
also give bounds on the Ising-model coefficients
in terms of the coefficients to the random walk,
and hence an upper bound on the critical tem-
perature.

Finally, we consider the behavior of T, (d). We

show that in the renormalization-group approach,
this function is expected to be regular for real d
greater than 4 and to have an essential singularity,
having all derivatives finite, at d =4. We analyze
the series data of Fisher and Gaunt' for this func-
tion and find that they are not inconsistent with
the renormalization-group predictions in this
regard. A more definite result would require
additional data.

II. TRUE RANGE OF CORRELATION

In order to calculate the true range of correla-
tion, we follow Fisher and Burford. ' First, we
define the true (inverse) range of correlation to be

s, =-lim lim sup((1/r) ln)Fs(re) ~}, (2.1)

where e is a unit vector in the direction r and
I'„(r) is the spin-spin correlation function between
a spin at the origin and a spin at r in a lattice of
N spins. Fisher and Burford4 give the following
series expansion for ~; (we select x, along the
first coordinate axis for study):

(2.2)

w„(L;N} is the number of configurations of
L+n lines on a lattice of N sites
(L)s, and N& Ln ') in which (a}
each lattice bond is used at most
once, (b) an even number of lines
meet at each site, and (c) a chain
of bonds reaches around the lattice
i n the direction e, and passes
through the origin. (2.3)

Here the lattice considered is made up of L,(d-l)-
dimensional layers. A chain of L bonds will just

where a is the lattice spacing in. the x direction
and v =tanh(J/kT) The su„are. the coefficients of
N in cv„(L=1;N), where
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+ 2(d-1)(2d-3} vs+ 2(d-1)(2d-3)~v4

+ 2(d-1)[(2d-3)4+ 2(d-2)(2d-2)] vB

+ 2(d-1) [(2d-3)'

(2.4)

+ 2(d-2)(12d'-30d+ 11)]v'+ ~ ~,

reach from the top to the bottom and close if we

impose "skew-periodic" boundary conditions, as
required by Fisher and Burford. ' [We thank
Prof. Fisher for making his unpublished deriva-
tion of Eq. (2.3) available to us.] Using these
rules, we have derived for general d, by enumerat-
ing the different allowed configurations, the follow-
ing expression for hypercubical lattices;

&u, = v [ 1+2(d-1)v+2(d-1)(2d-3)v'

(1-&u, ) '=(x„a) '~ (1-,T, /T) ", (2.5)

when the true range of correlation is large. The
critical index v is defined by (2.5). Rewriting
(2.4) in the form (2.5), we find

which exactly checks the results of Fisher and
Burford' for d=2, 3. It would appear that Moore'
has calculated, but not published, these terms for
d= 4. We have taken the number of self-avoiding
walks in d dimensions from the work of Fisher
and Gaunt. '

We are in a position to make some observations
concerning the structure of (2.4) for large d.
First, to examine the expected divergence in the
range of correlation, we consider

(I-&o„) ' = 1+v + (2d-1)v'+ (4d' -6d + 3)v'+ (8d'-20d'+ 20d-7)v~ + (16d~-56ds+ 84d'-60d+ 17)v'

+ (32d '-144d~+ 296d'-340d '+ 214d-5V) v'

+ (64d'-352 d '+ 928d4-1496d' + 1484d'-782d + 155)v + ~ ~ ~ (2.6)

which, for large d, has the structure
G(v) = + O(d ') . (2.10)

(1-&u, ) '=1+
d f (2dv) . (2.7)

More precisely, since the contributions to lead-
ing order in d to a fixed w„come exclusively from
the number of self-avoiding random walks in d-1
dimensions, and as for each retrograde step in
the x direction there must be a corresponding
forward step which reduces the contribution by a
factor d ', we can show that the coefficients of

(2.8)

have the structure, for d»n, n& 3,
—'n'- ~+7

Instead of analyzing (2.6) directly by Pade ap-
proximants which Fisher and Burford' had found
to be unsatisfactory, we have rather preferred to
analyze G(v).

First, we note that an expansion, for the critical
value v, at which G(v) becomes singular, in powers
of d ' is not available; Fisher and Gaunt' found
such an expansion from the susceptibility. The
reason here is that [lng„(d ')] is not formally
proportional to n. We will return to the expected
behavior of g„, n»d, in Sec. III. Fisher and
Gaunt' found that v, = 1/(2d-1) +O(d '}. If we use
the Fisher and Gaunt value for v, then it is easy
to show that for 0 & 2dv& 1 that in the limit as
d- we have, term by term

Thus, if we adjust the exchange integral, J, to
keep the total interaction energy per lattice site
fixed, J=J,/2d, then we have, for fixed kT &J„

I-j/kT (2.11)

which implies, for d=~, the value v = 1, instead
of the expected value of v =-,'.

There is however, more to be said than (2.11)
about the index v. From structure (2.7), the
range of correlation does not get large until
f =2dvG gets large compared to 2d, or by (2.11)
until (1-T, /T) = O(d '). This region is beyond
the range of validity of (2.11). Thus, as far as d
large, but not infinite, is concerned, the true crit-
ical region only occurs for T very close to T„
and we have cross-over behavior as d-~.

We have analyzed G(v) by forming Pads ap-
proximants to [din G(v)/dv]. These Pades are
expected to have a pole at v = v, with residue -v.
The [2/3] also has the property of being exact for
d=1 and d=2 as

d ln G,(v) 1
dv 1-v '

din G, (v) 3+v+v'
d v 1-v—Sv2-v3

(2.12)

by the exactly known solutions for those problems. '
We find, comparing with the results of Fisher and
Gaunt, ' that the pole of the [2/3] is correctly
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III. RELATED RANDOM WALKS

In this section we show that bounds on the co-
efficients w„ in Eq. (2.2) may be obtained in
terms of the number of self-avoiding random walks
on the d-dimensional lattice which begin and end
in the same (d-1)-dimensional layer. The fun-
damental result needed is Fisher's' inequality

I'„(re) ~C„(re), (3.1)

where F„(xe) is as in Eq. (2.1) and C„(re}is the
generating function for the self-avoiding walks
between the origin and ye. As in Sec. II we will
select for study e parai. iel to the first coordinate
axis. From the definition (2.1) and from (3.1) we
obtain

&u, =e ""'~lim lim supgC„(re, )]'~"}. (3.2)
g ~oo N-ace

located to at worst within a 2% error for all values
of d. For d large, using the notation )=1/(2d)
and x=2dv, we compute, to order g,

5-2x+ $ (-VO+ 34z-25x')
2/3 =

5-Vs+2@'+ $(-65+112z-68z'+27z } '

(2.13)

which vanishes at z = 1+2(+O($') or v, =[2(d-1)]
instead of v, = (2d-i, ) ', and has a residue of
-1+O(P). Note that if we set (=0, (2.13) re-
duces to (1-z) ' as expected.

For v we obtain from the [2/3] Pade approxi-
mants the results given in Table I.

These results are consistent with our picture
that the critical region shrinks as d increases
and, instead of v= 0.64 (d=3), ' v= 0.536 or 0.5
(d=4), "' and v= 0.5 (d&4), ' we see progressively
more of the perturbing influence of d= behavior
on our short series results. Our results on the
size of the critical region in high dimension may
also explain the failure of Abe' to obtain an ex-
pansion for y in powers of d '.

(u, &vQ b„v"=B(v),
n=o

(3.3)

where &„ is the number of self-avoiding walks in
d dimensions which begin and end in the same
(d-1)-dimensional layer. We remark that b„and
w„are identical for n=O, 1, 2, and 3, and the
two leading powers of d in the polynomials in d,
b„and w„, are equal for all values of n.

We will now estimate the asymptotic behavior
of the b„. First for ease of presentation we will
compute this behavior for unrestricted random
walks which begin and end in the same layer. It
is well known, if we assign a weight x to steps to
the right and z ' to steps to the left, and similar-
ly y and y ', etc., in other directions, that the
number of n step random walks is given by

counted in C„(re ), as each makes a positive con-
tribution, we will continue to have a bound. We
will therefore include the following: (i}all the
self-avoiding random walks which begin at the
origin and end in the L =r/a layer (ii.) Since for
the purposes of deriving a series expansion we
are concerned with those walks which are only a
finite number, n, of steps longer than L, it is
convenient to classify them by the number of
breaks in the chain of steps leading directly from
the origin to the Lth layer. For m breaks there
will be (~) ways in which these breaks can be
positioned. At each break we can put a self-
avoiding random walk which begins and ends in
the same (d-1)-dimensional layer. This pro-
cedure may over count, as if the two random
walks start close to each other they may intersect.
or even overlap. We explicitly include them even
st

Now, if we take the Lth root and the limit as
~ (formally equivalent to setting L = 1)' we

see since (') = 0, m& 1, that the only contribution
comes from the case with a single break in the
main chain of steps. Thus we have found

If we increase the number of configurations (z+z '+ ~ ~ ~ +z+z ')". (3.4)

TABLE I. ~(d) based on [2/3] .
We may select those for which the number of
right and left steps is equal by the Cauchy formu-
la

1
2
3
4
5
6

10
20
50

1.000 (exact)
1.000 (exact)
0.778
0.688
0.692
0.728
0.870
0.969
0.998

1 dz 1 n=0,
2gi x'+' 0 otherwise, (3.5)

where the contour of integration encircles the
origin. Thus, the number of unrestricted m-step
walks, s„, which begin and end in the same (d-1)-
dimensional layer, is

u„(d) = . (z+x '+ +z+z ')"— (3.6)1 dg

27r i x
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or, letting x=e'~, and the other weights be unity,
we have

IV. CRITICAL TEMPERATURE AS A FUNCTION

OF DIMENSION

1
N„(d) = — [2 coscp +2(d-1)]"dy .

2n'

This integral can be evaluated explicitly, as

5

Qm (d)
( }2( )

[2(d 1)]
j =0

(3.6)

but it is more informative for our purposes to
give an approximate, asymptotic evaluation by
means of the saddle-point method. The integrand
has a single peak at @=0. Ne find, by direct
ealeulation that

«„(d)=( ) («d)", (3.9)

where n»d is required for the validity of this re-
sult. It is to be noted that the function

U(v) =+M„(d) v""

mimics the behavior found in Sec. II for (v„(v).
That is, if we take the limit of U(x/2d) for 0 & x & 1,
we see from (3.8) that

As pointed out by Fishex and Gaunt' one may
study by series techniques for general dimension,
the behavior of the critical temperature as a func-
tion of dimension on the hypercubical family of
lattices. In this section we first discuss what
behavior is to be expected from the renormaliza-
tion-group approach, and then how this expectation
compares with the a,ctual series data.

The renormalization-group approach of %'il-
son"'" has been extremely successful in calculat-
ing many of the thergnodynamic properties of
critical phenomena. One of its more dramatic
predictions has been that in dimensions higher
than 4, the Bragg-Williams approximation should
be valid. "'" Much of the underlying behavior of
the approach is exemplified by an approximate set
of nonlinear integral recursion relations. These
recursion relations can be thought of either as an
approximation to the usual Ising model" or (slight-
ly modified) as the exact solution" to an Ising
model with a certain long-range non-translation«m
ally-invariant interaction. The Hamiltonian for
this system [of size (2 )' spine] is

»m 2d U(x/2d) = x(1 -x) '

yet, if we take the limit x-1 before the limit
d-~ we see from (3.9), if we use the known rela-
tion9 where

2-L {@+a)
1—--J

f
(4.1)

Q n (a)/s), )"~(1-w/a), ) ' " S m 1+i = {S2m-i,l S2m ()/&2& W I& ' ' ) 2

U{v}~(1 —2(fv} '~' (3.13)

as g '-2d. This exponent corresponds to the ex-
pected value of v=-,', where as (3.11) corresponds
to v =1. %'e presume that the behavior of the true
range of correlation for high dimension parallels
that of the U function.

By use of matrix methods" and perturbation
theory, we can do an analogous calculation for
random walks in d dimensions with no immediate
reversals which begin and end in the same (d —1)-
dimensional layer. In this case we compute

and the spin weights usually considered are
exp(av~ —O. lv,'). For this model, the effective
spin-spin interaction decays in a stair-step fashion
and behaves roughly like 1/r~". By renormaliza-
tion-group techniques one can compute, for ex-
ample, for d =3, o= 1.94 (this value corresponds
to @=0.06) that the standard critical indices have
the values y=y'=1. 256, P=0.3429, and 5=4.66.
For d &2o, we find y=y'=1.000, P=0.500, 5=3
which are the Bragg-Vfilliams values. The model
obeys the identities"

i/2
)„=«(«—()(«« —()" '( (3.14)

which displays a shifted critical point [v, =(2d —1)
instead of v, =(2d) '], but otherwise the same es-
sential features as were seen in the U(v) function.

P =w/(~ —1)

Now, in order to compute T,(d), we follow

(4.3)
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Wilson" and expand the fundamental Q, ( y) func-
tion" in powers of y' as

Q, (y}=r,y" +u, y'+ (4.4)

Then the approximate recursion relations, .ne-

glecting terms of the order I,' are

r„,=2' (r, +3u, q, —Qu', q', ),
= 2" ' '(u —9u'q')

(4.5)

(4.6)

where q, =(K+r, } ' and K= J/kT. The equation
for the critical temperature is lim, „r,=0. For
the range of dimension, d &2o, which we are now
treating, we see from (4.6} that the u, tend to
zero automatically as the prefactor is less than
one. We can therefore use recursion relation
(4.5} to compute the critical-point requirement
for finite l. Thus to first order in u„

2-(n -l ) g/tl
l

n=
(4.7)

A2
l

p
(4.8)

suggested by the solution to the analogous differ-
ential equation

dQl 2

di
=-al-bu . (4 9)

The result is

[ 2-'K2(1 2-I'I}/9 sgn(~) ~2~r

1 —[2 '(1 —2 I~I)K'/9u, sgn(e)] —2&~ '

(4.10)

where sgn(e} is the algebraic sign of e. Since u,
is necessarily positive, this expression is valid
for all real ~ and reduces to

If we now examine (4.6), we may give an approxi-
mate solution. We use the form (e=2o/d —1),

lated to the & expansion. " Nevertheless, inspec-
tion of (4.10) and (4.12) show that d=2o is a limit
point of poles which get closer and closer to e =0
as we contemplate higher and higher values of i.
The poles approach from the plus and minus imag-
inary & directions. Therefore d = 2o is an essential
singularity of the T,(d) function for this model.
We speculate that with a = 2, the short-range equi-
valent value, the same may be true of the Ising
model —that is, d=4 is an essential singularity of

T,(d) for the hypercubical nearest-neighbor spin--,'
ferromagnetic Ising model.

We give a mathematical example, which illus-
trates a possible behavior for the power series
of a function with a "smooth" singularity when
expanded about another point. We use

e''dt
F($)= =Fo+E,$+E,$ +

Q

(4.13)

which has its singularity at $ =1 and has all right-
hand derivatives there. The coefficients are easily
calculated in terms of exponential integrals. Thus
we get

E(F)=0.219383934+0.070888427$

+0.032 084 887$'+ 0.016 910823 $'

+0.009 757 982$'+ 0.005 987 308'g'+ ~ ~

(4.14)

which yields the ratios

0.323, 0.453, 0.527, 0.577, 0.614 (4.15)

which increase rapidly and then flatten out well
below unity.

We have available, to investigate this problem,
the series expansion of Fisher and Gaunt'

kT,/d=q —1--,'q '-~3q '
Q0

1+9u0lK ' (4.11} —21@~5) —133 gg ip (4.16)

for e =0 in conformity with Wilson's" results.
We have approximated q, by & ' in this solution.
If we use the same approximation, we have by
(4.7)

r ~ =-3 2 n~~'u
0 c n

n=
(4.12)

which gives an approximate equation for the criti-
cal temperature in terms of d by way of (4.10).
For d c 2a we predict perfectly smooth, regular
behavior for T,(d). For d =2&&, we obtain a finite
continuous value, and a little computation shows
that all left- and right-hand derivatives exist at
d = 2o. The left-hand (d & 2o) derivatives are re-

0.125, 0.167, 0.469, 0.628, 0.770 . (4.17)

These ratios are in the rapidly increasing phase,
but showing some signs of slowing down. It seems
likely that the next few terms would reveal if the

where q=2d. The ratios of successive terms are
rapidly increasing, and the constant sign locates
the nearest singularity at positive real d. Origi-
nally it was supposed that the series was asymp-
totic, but it may be that it is convergent and in-
dicating a singularity at a distinguished dimension.
For ease of comparison we give the ratios, nor-
malized so that d~ = 4 corresponds to a ratio of
unity.
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ratios are stabilizing at a finite value (assuming
it is near d =4) or simply continuing to grow.

A Padd analysis [actually of the series in
(2d —l) ') predicts a weak singularity at around
d =3&. This result is not inconsistent with our
expectations of a singularity processing all deriv-
atives at d =4. Internal evidence" on error esti-
mation suggests the available Pads approximants
have converged to one part in 10' at d = 8, one part
in 10' at d = 6, and one part in 10' at d = 5. Actual-
ly, at d = 5 they agree to about one part in 10' with
the direct analysis of Fisher and Gaunt' based on
the usual susceptability series and with our Pads

reanalysis of their data. Our reanalysis yields
v, = 0.11354 a 0.000 02 and y = 1.039 a 0.003. The
error estimates here are of the traditional (op-
timistic) self-consistency sort. If one forces the
renormalization-group result, y = 1.000 as an
assumption into the analysis, then the larger error
quoted previously would be appropriate.

It would seem that available series evidence on
the existence of a distinguished dimension at which

T, (d) has a singularity is not inconsistent with
our expectations based on renormalization-group
theory. A stronger statement will have to await
more data.

*Work performed under the auspices of the U. S. Atomic
Energy Commission.
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