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Band structure of nickel: Spin-orbit coupling, the Fermi surface,
and the optical conductivity*
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A previous self-consistent calculation of energy bands in ferromagnetic nickel using the tight-binding

method has been extended to include spin-orbit coupling. Exchange was incorporated using the Xa
method with a = 2/3. Energy levels were obtained at 1357 points in 1/16th of the Brillouin zone. The

direction of spin alipn~ent was taken to be [001]. The density of states was computed by a hybrid

method. Cross sections of the Fermi surface were determined, and effective masses were obtained. The
interband contribution to the conductivity tensor was calculated using matrix elements computed from

wave functions including spin-orbit coupling. Results were obtained for both the diagonal and the

off~gonal elements of the conductivity tensor.

I. INTRODUCTION

This paper reports an extension of a previous
band calculation for ferromagnetic nickel to j,n-
clude the effects of spin-orbit coupling. ' Results
are presented for the density of states, the Fermi
surface, and the optical conductivity tensor. A
detailed comparison of theory and experiment is
attempted.

Spin-orbit coupling is of major significance in a
description of the properties of ferromagnetic
transition metals. It leads to the existence of
magnetic anisotropy, the anomalous Hall effect,
and magneto-optical effects. Substantial modifica-
tions of the Fermi surface result from changes in
the connectivity of the energy bands. Attempts
have been made to study spin-orbit effects in the
band structure of nickel for more than 30 years.
Much of this work, however, has been based on
oversimplified tight-binding models of the d band
structure. Other investigations have employed
interpolation schemes designed to fit empirical
information concerning the band structure, mag-
netic properties, and Fermi surfaces. '" We
are not aware of previous attempts to include spin-
orbit coupling into a first-principles band calcula-
tion for this metal.

The plan of this paper is as follows. We sum-
marize, in the remainder of this introduction, the
essential features of the calculation reported in
Ref. I on which this work is based. Section II con-
tains a discussion of the methods employed to in-
corporate the spin-orbit interaction and an outline
of the procedures of the present calculation. The
method used to calculate the density of states is
described in Sec. III. Our results for Fermi-
surface properties are presented in Sec. IV and
are compared with experiment. The calculation
of the optical conductivity is summarized in Sec.

V. Finally, our general conclusions are stated
in Sec. VI.

The band calculation described in Ref. 1 em-
ployed the tight-binding method as reformulated
by Lafon and Lin." The following set of basis
functions was used: Atomic wave functions for all
states except. 3d (e.g., ls, 2s, 3s, 4s, 2p, 3p, and
and 4p) were represented by the linear combina-
tion of Gaussian-type orbitals (GTO) determined
by Wachters' from a self-consistent field calcu-
lation for the free nickel atom. Five independent
GTQ were introduced for each of the five l =2
angular functions. The orbital exponents used in
defining these functions were the same as em-
ployed by Wachters. Exchange was included ac-
cprdjng tp the Xe apprpxjmatjpn wjth e = 3.
The Hamiltonian and overlap matrices are of
dimension 38 ~ 38. Since a spin-polarized potential
was employed, separate matrix problems result
for states of majority and minority spins. The po-
tential for the first iteration of the self-consistent
calculation was obtained from the superposition
of neutral atom (d's') charge densities. The tech-
niques employed in the iterations to achieve self-
consistency have been described elsewhere. "
Eleven iterations were required to achieve self-
consistency. In the final three iterations, the
charge density was sampled at 89 points in ~«th
of this Brjlloujn zone. The calculated energies
were found to be in reasonably good agreement
with those obtained in a self-consistent augmented-
plane-wave (APW) calculation by Connolly. '8 We
will not repeat a detailed description of the re-
sults.

II. SPIN-ORBIT COUPLING

The calculation previously described was ex-
tended by the inclusion of spin-orbit coupling.
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Qther relativistic effects were neglected. Intro-
duction of spin-orbit coupling into a band calcula-
tion for a ferromagnet causes substantial com-
plications. First, since spin-orbit coupling con-
nects states of 0 and 0 spin, the size of the Hamil-
tonian matrix is increased (in our case 76X 76),
and the elements become complex. This causes a
considerable increase in computing time. Second,
the symmetry group is reduced. The appropriate
group theory has been presented by Falicov and
Ruvalds. " In addition, the band structure depends
on the direction of spin alignment. Separate band
structures must be computed for each direction
spin alignment investigated. However, because of
limitations of computer time, we have restricted
our calculations to a single direction of spin align-
ment: the [001] axis.

The computation of the matrix elements of the
spin-orbit interaction was performed as follows.
The additional term in the Hamiltonian has the
form

(0 o

(pt(v, (p4)=~ 0 0 iA
kA i-A 0 )

In these equations,

(2.5)

A =(3//4s)N QV(K)K F(K), (2.6)

in which

82
F(K) ~3/2us/2 e-sK /4

24m 2C2 (2.7)

Q =
Q~ +%2

(2.8)

(a r) [2(2a )s/2/s3/2]1/2ze-az" (2.9)

The sums include all reciprocal-lattice vectors;
o., and e2 are the exponents of the Gaussian orbi-
tals; thus

, ,o (vV xp).4m c (2.1)

The potential V used in Eq. (2.1) was that obtained
in Ref. 1 from the self-consistent band calculation,
expressed as a Fourier series

V =g V ( K,)e'"~' (2.2)

The same Gaussian-orbital basis set was used for
this calculation as in Ref. 1. Use of Gaussian
orbitals is advantageous, as all matrix elements
of the H can be reduced to sums of simple analy-
tic functions of the reciprocal-lattice vectors. We
found in several tests that the only nonnegligible
matrix elements of H are those in the p-p and
d-d blocks, with orbitals centered on the same
atomic site (' central cell" ).

Since this calculation appears to be the first for
nickel in which the spin-orbit coupling strength is
not simply regarded as an adjustable parameter,
we will give some details below. The central-cell
matrix elements of H„have the following form:

0 0 0 iB0
0 0 iC 0 0
0 -iC 0 0 0

-zB 0 0 0 0
0 0 0 0 0

(2.10)
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(2.11)

and N is the product of the appropriate normaliza-
tion constants. The corresponding formulas for
the d-d block are, ' with states arranged in the
order xy yz xg x -y 3g -y

v* v* (2.3 } where

in which the spin states considered are 0, 0, re-
spectively. The forms of the submatrices v, and
v, are as follows for the p-p block:

(0 iA 0)
&p~[v, ) pS) =

~

-~A O O

o o 0$
(2.4)

The spatial symmetries of the basis states are (in
order) x, y, z:

B=— V KFK
K

x [a,u'(K,'+K'„+K,')

+ (2 a, —a, )u'(K,'K'„+K'„K',+K,'K', }—4K'],

(2.12)

C =— Q V (K)F)[u (K2K~ ~K2K2
15 NN,

+K,K,) —2K ] . (2.13)
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All of the basis functions are assumed to be nor-
malized with respect to the angular integrations
so that N depends on the orbital exponents only.
Spherical symmetry of the potential has not been
assumed in writing these formulas. There are, in
this case, two independent constants involved in
the d-d spin-orbit Hamiltonian. In fact, spherical
symmetry is a good approximation, since it is the
potential close to a nucleus which is important.
For a spherically symmetric potential, we have
simply

where g is the usual spin-orbit coupling parameter
if atomic wave functions are employed in the usual
form, H~=$L ~ S.

In our calculation, the spin-orbit parameters A,
B, C, depend on the indices of the pair of orbital
functions used in calculating the matrix elements.
In order to compare calculations of properties of
nickel which are dependent on spin-orbit coupling,
it iz useful to compute an equivalent atomic spin-
orbit coupling parameter. This calculation was
performed with the wave functions of %achters"
and our self-consistent potential. %e found

( =0.006'7 Ry. This result is somewhat larger than
the atomic value $ =0.0055 Ry. The difference be-
tween B and 2C was found to be zero within the
accuracy of our calculation.

The Hamiltonian including exchange and spin-

orbit coupling was diagonalized at 135V points in
~6th of the Brillouin zone. The lattice parameter
was taken as 6.644 a.u. The calculated band struc-
ture is shown along certain symmetry lines in Fig.
1. Some calculated energy levels at symmetry
points are listed in Table I. Since the actual sym-
metry group for this problem does not permit a
particularly informative classification of states,
we have labeled states at symmetry points in Fig.
1 in terms of the predominant component; that is,
neglecting the mixing of states of majority and
minority spin components. This labeling is pos-
sible since spin-orbit coupling is small eomyared
to the exchange splitting.

It will be noticed that the band structure shown
in Fig. I is quite similar to that formed by super-
posing the majority and minority spin bands ob-
tained in Ref. 1. However, spin-orbit coupling
removes many of the accidental degeneracies
present in such a picture. The interplay of spin-
orbit and exchange effects can be illustrated by
considering the points X. In the present case,
there are two inequivalent points of this type which
are not connected by an operation of the symmetry
group: these are denoted X(0, 0, l) and X(l, 0, 0).
Since the exchange splitting is large compared to
spin-orbit coupling, we can qualitatively consider
the latter as a perturbation. Specifically, let us
consider the states X5) near the top of the d band
For X(l, 0, 0), the basis functions are of the sym-

Q.O

r
% PWg,

~iz&

r~~
u»»~

~ist

Xil
.~~ »»I

K3t

Ki)

~~»»

x)f--- x»

—I.O
W Z X

(-,OI) =(I-,O) (OOI)

I

X Z W

(IOO) (I 20)
Q L

( ~ ~ ~ )I I I

222

I

K S X

(~~ ~~o) (IIO)-(OOI)

k IN UNITS OF 2 ~/0

FIG. l. Band structure of nickel along some symmetry lines in the Brillouin zone. States are labeled according to
the symmetry of the largest spin component. The solid lines indicate states of minority spin, the dashed lines of
majority spin.
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III. DENSITY OF STATES

Gilat has reviewed different methods of calcu-
lating the density of states. " We employ here the
Gilat-Raubenheimer ' method in combination with
an interpolation scheme. The method is similar
to that used by Cooke and Wood, "except that our
interpolation procedure is based on second-order
%'p perturbation theory. The band calculation in-
cluded 1357 points in ~6th of the Brillouin zone.
Energies, wave functions, and momentum matrix
elements were obtained at these points. A finer
mesh was constructed by dividing the original step
size by three —this represents 26 additional points
around each previous general point. The k p cal-
culation was performed as follows. If a given band
at the "original" point (k,) was separated by 0.005
Ry or more from all other bands, ordinary per-
turbation theory was employed to determine the
energy at the additional points %. Thus

E„(Tt)=E„(ko}+—(k —ko)'w„„+ (k —ko)+
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[(k —k,) m„,][(k—k,) ~ w,„]
u „& E„(ko}-E~(fjo}

The matrix element is

(3.1)

(2m)'
m„z= u„*(ko,r)[p +(jg/4mc')

x «VV(r)]u&(ko, r)d'r,
(3.2)

in which 0 is the volume of the cell and u is the
cell periodic part of the Bloch function. Numeri-
cal tests showed that the spin-orbit contribution
to the matrix element [the term in (3.2) propor-
tional to (oxpV)] was negligible; hence in prac-
tice m„& was always replaced by p„~. Only 12
bands were included in the sum in (3.1). Thus,
the second-order term is not computed exactly,
but since the other energy denominators are much
larger, the accuracy should be sufficient. When
two or more bands at k0 were separated by less
than 0.005 Ry, an effective Hamiltonian was
diagonalized. The elements of this Hamiltonian
are
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5
H, „(k)=[E,(ko)+ (k- ko) ]6,„+—(k-k O)'Pr,

„

I I I I

MINORITY SPIN
EF

k' P'[(k-k, ) ~ m„][(k-k,) s,„]
E~ -E~(ko}

(3 3)

in which E„is the average energy of the nearly
degenerate levels at k0. The prime on the sum
indicates that the nearly degenerate levels are ex-
cluded. As before, only 12 bands were included
in the sum in (3.3), so that second-order term is
not exact.

The linear analytic integration scheme was then
applied to each minicell constructed around each
mesh point. " Projection operators were used to
separate the contributions from majority and
minority spins to the density of states Qu.r re-
sults for the majority- and minority-spin-state
densities and for the total are shown in Figs.
2-4. The total density of states at the Fermi en-
ergy was found to be 23.56 electrons/atom Ry.
The magneton number was found to be 0.62, some-
what higher than the experimental value of 0.56."
Our calculation predicts that a minority spin hole
pocket associated with the X» level should exist.
This has not been observed experimentally, al-
though it has also been predicted by other self-
consistent calculations. " This hole pocket is
probably responsible for the disagreement be-
tween theoretical and experimental values of the
magneton number.

IV. FERMI SURFACE

The Fermi surface of nickel has been carefully
studied through measurements of the de Haas-
van Alpen effect ' and cyclotron resonance.
These observations are of great importance in
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FIG. 3. Projected density of states for minority spin.

that they confirm the genera, l picture of itinerant-
electron ferromagnetism in nickel, in which the
electrons responsible for magnetic order are not
localized, but instead have wave functions extend-
ing throughout the crystal and contribute to the
formation of a Fermi surface.

The major features of the Fermi surface of
nickel can be understood on the crasis of a calcula-
tion in which spin-orbit coupl'. ng is neglected, but
this interaction must be included in a detailed
comparison of theory and experiment. " As was
noted above, the spin-orbit splitting of the states
X»(0, 0, 1) and X»(1, 0, 0} is quite different. This
leads to a significant difference in the sizes of the
hole pockets around these points md to large an-
isotropy of de Haas-van Alpen frequencies. "A
rapid variation of the de Haas-van Alpen ampli-
tude when the applied magnetic field is tilted a few
degrees from the [110]direction in a (1 10) plane
has been interpreted as resulting from magnetic
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FIG. 2. Projected density of states for majority spin. FIG. 4. Total density of states.
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r (o,o,o) r(o,o,o) X(O,O, I)

X( I,O,O) X(I,I,o)
=(O,O, I)

FIG. 5. Fermi-surface cross sections in the (100)
plane. The solid and short dashed curves are our re-
sults. A solid line indicates that states are predominate-
ly (I) minority spin, the short dashed line indicates
majority (t) spin. The open circles, triangles, and
squares are the experimental results of Stark, Ref. 27.
The long dashed lines are obtained from an empirical
formula given by Tsui (Ref. 26). The sheet (a) is the
X5& pocket, (b) is the X2& pocket, (c) is the I' centered
dI sheet, (d) is the large (spt) square, (e) is the small
(spt) square.

breakdown across a small gap resulting from the
removal of an accidental degeneracy between spin-
orbit split bands. "

In our calculation, spins are quantized along the
[001]axis. We therefore limited in principle to an
investigation of the Fermi surface in the 0, =0
plane. However, the dependence of the band struc-
ture on the field direction is probably not large
except for the small hole pockets at X, and we
will discuss cross sections in a (1 TO) plane as
well. Our Fermi surface cross sections shown in
Figs. 5 and 6, where they are compared with re-
cent results of Stark" for the large portions of
the surface and of Tsui" concerning the hole
pocket at X. Stark has derived Fermi surface
radii from his measurements using the kubic har-
monic expansion method of Mueller and Priestly. s

His inversion program included seven kubic har-
monics. We have plotted the Fermi surface radii
obtained in this manner on the figures. An em-
pirical formula given by Tsui has been used to
outline an experimentally determined cross sec-
tion for the small hole pocket at X. Some numeri-
cal results for dimensions of the X» hole pocket
are given in Table II and extremal areas are listed
in Table III. Comparisons are made with experi-

FIG. 6. Fermi surface cross sections in the (110)
plane. The notation is the same as in Fig. 5. Note that
the s-pt neck at L merges in to the large d& sheet.

TABLE II. Comparison of X&h hole pocket dimensions
in atomic units. Numbers underlined are dimensions in
the plane normal to the applied magnetic field. These
dimensions contribute to the observed dHvA areas.

Location of
pocket &xr

Present
calc.

(0, 0, *1)
(+1, 0, 0)

0.179 0.077 0.076
0.195 W(1, 0, ~) 0.080

W(1, 2, 0) 0.077

Ref. 10 (0, 0, +1) 0.201 0.092 0.095

(Parameter
set IV) (+1, 0, 0) 0.218 W(1, 0, 2) 0.096 0.104

W(1, g, 0) 0.104

Ref. 25

Ref. 26

(0, 0, +1) 0.184
(+1, 0, 0) 0.208

0.207

0.095 0.089
0.106 0.102

0.099 0.087

ment" "and with the calculations of Zornberg. "
There is a substantial degree of agreement be-

tween the theoretical and experimental results.
It is apparent that the band calculation is able to
describe the major pieces of Fermi surface cor-
rectly. The most significant disagreement con-
cerns the X,~

hole pocket, which is not observed
experimentally, but is predicted by our calcula-
tions. Since this pocket is predicted by other band
calculations using a local-exchange potential, "it
is possible that this prediction indicates a basic
inadequacy of the local-exchange approximation.
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TABLE III. Extremal areas of Fermi-surface cross
sections in atomic units. Refer to Figs. 5 and 6 for
designations.

TABLE IV. Effective mass associated with Fermi-
surface portions. Refer to Figs. 5 and 6 for designa-
tions.

Present Ref. 10 Ref. 25 Ref. 26 Ref. 27
results Band Ref. 28

Present Ref. 10
results parameter set IV

Small square (sp i)

Large square (sp t)

1 centereddi sheet

X5 gi) pocket (1,0, 0)
(0, 0, 1)

X2 g i ) pocket (1, 0, 0)
(0, 0, 1)

0.84 0.86

1.24 1.18

2.20 2.05

0.038 0.0665
0.018 0.0270

0.144
0.089

1.12

1.33

2.25

0.0665
0.0270

Not
observed

0.90

1.15
I' centered d i sheet
Large square (sp t)
Small square (sp i)
X5 pocket (di)
X2 pocket g&)

,5..09
4.33
0.75

Not observed

8.84
2.22
4.75
0.66
1.97

8.0
2.9
3.7
0.89

Goy and Grimes have observed cyclotron reso-
nance associated with the majority spin Fermi
surface neck at L, the hole pocket X» and, ac-
cording to our interpretation, the two large pieces
of Fermi surface around I'. The wave functions
associated with the smaller piece have predomi-
nately e i symmetry near the I -X line, but mix
components of s-p4 and t~i near j. -K. The states
associated with the larger, nearly square section,
are of predominately majority spin but have the
same spatial symmetry as those on the smaller
square, except near the [100]axis where there is
a strong, spin-orbit-induced mixing with minority
spin d band states.

The experimentally observed cyclotron effective
mass has been compared with the effective mass
m,* obtained from the band structure according to
the formula

(4.1)

iNe' 1 2ie'
(u&+i/r) m* 8 m'h

xgg ( "/')Re(w v')
rk nk nr

~„,=a -'[Z„(k)-Z, (k)], (5.2)

and m* is the optical effective mass. .The sum
over nk includes unoccupied states only while that
over lk includes occupied states only. The optical
effective mass is specified by

~ I a+i Im(7r r„7f~r) 2, . i i2 ~

co„r—(co + gy7')

(5.1)

The quantities mr"„, etc., are the Cartesian compo-
nents of the matrix element vector defined by Eq.
(3.2); N is the electron density, r is the relaxa-
tion time, here assumed to be a single constant,
~„ris the energy difference between bands n and

l,

in which m is the free-electron mass, and A is the
area of the cyclotron orbit. Our results and the
experimental findings are presented in Table IV.
The results of the semiempirical calculation of
Zornberg" are also shown. It will be seen that
the agreement is fairly good for the X,i pocket,
with the deviation between theory and experiment
being of the amount and direction expected to al-
low for a reasonable enhancement through the
electron-phonon interaction. However, our result
for the minority spin square is larger than the ex-
perimental value, while that for the majority spin
square is much smaller than that observed.

(5.3)

where

mr k a
(5.4)

and the sum in (5.4) includes all n el .
The ordinary optical properties of ferromagnetic

nickel are determined by the diagonal components
of e (we have o„=&r„„g&„,z being the direction
of spin alignment). The result of setting o.'=P in
(5.1) is

iNe' 1 2ie'

V. OPTICAL CONDUCTIVITY

We have calculated the interband optical con-
ductivity of nickel. We will present results in two
cases: (i) including a phenomenological constant
relaxation time r, and (ii) in the limit r ~ so
that the band states are sharp. The general ex-
pression for the conductivity tensor in case (i) is
obtained from the Kubo formula"

It can be directly verified that this expression
satisfies the sum rule

~ OQ

Re(o~~) 0&u = vN e'/2m,
4 p

(5.6)
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where m is the free electron mass. In the limit
in which the band states are sharp (r -~), we ob-
tain the familiar expression for the real part of
the conductivity for positive frequencies

Re[o„„((o)]=, 5 ((o) +
2 isl

IO.O —
iCP

)wi„i 5(&d —&d„i).
n

(5.5b)
IO

O 8,0 —'

The off -diagonal components of the conductivity
vanish except for o„,(and & ). In this case, we

have

(5.7a)

The sharp limit of this formula is, for positive
frequencies,

Im[o,„(&o)]=, lm(wf„w„",)5(& —&u„,) .m'5~

3
6.0—

b

40—

2.0—

0.0
I

0.2
I

0.4
~4—

0.6 '0.8

ENERGY (IV)

ooooooooo o c

d d gd d d

l.p I.2

(5.7b)

If the matrix elements in these expressions are
treated as constants, the conductivity is propor-
tional to the joint density of states. Vfe have com-
puted this quantity by the same method described
in Sec. III in connection with the ordinary density
of states. The joint density of states is dominated

by an enormous spike, resulting from the nearly
parallel upper d bands, especially in the region
X-8'-I.. However, the approximation in which the
matrix elements are treated as constant is a bad
one since in particular the transition associated
with this spike has a very weak matrix element.
(The states involved in the spike are predominate-
ly of opposite spin, and the matrix element would

vanish except for the mixing of opposite spin
components in the wave function. )

W'e have calculated the optical conductivity in-
cluding the Tc dependence of all matrix elements
both in the sharp limit, Eqs. (5.5b) and (5.7b),
and with the inclusion of a relaxation time. The
integration was performed by the method de-
scribed in Sec. III, in which the k p method was
used to calculate the energy for k corresporxiing
to a subdivided mesh in the Brillouin zone. The
momentum matrix elements at the additional mesh
points were found by linear interpolation between
the values calculated at the basic 1357-point grid.
Numerical tests showed that the contribution of the
spin-orbit coupling term to the matrix element

f„,[Eq. (3.2)] was negligible for the determination
of both the diagonal and off-diagonal elements of
the conductivity. We therefore replaced 7„,by

p„,throughout the calculation. This implies that
the off-diagonal conductivity should be regarded

as being produced by the modification of the band
wave functions produced by the spin-orbit inter-
action.

Our results for the real part of 0'„between 0 and
1.2 eP are shown in Fig. 7. The solid line repre-
sents the contribution from the interband con-
ductivity in the sharp limit (7'- ~) to which has
been added an empirical Drude term

0'0
s( ) =I+~272 (5.8)

in which the constants have been taken to be vo

=18.6@10"sec ' and 7 =11.3x10 "sec as deter-
mined by Lenham and Treherne. ~' The dashed
curve is the sum of the same empirical Drude
term plus an interband contribution computed as-
suming a relaxation time ff/r =0.06 eV. We have
also computed Re(o„),which is not the same as
Re(c„)in the present case. However, the differ-
ences are quite small and are not significant on
the scale of this graph. The conductivity in the
energy region 1.0-6.0 e7 is shown in Fig. 8. The
experimental results of several authors" "are
also shown in these figures. Although there is a
large amount of scatter in the experi. mental data,
there is a reasonable degree of general agreement
between many of the measurements, particularly

FIG. 7. Real part of the xx component of the conductiv-
ity tensor from 0 to 1.2 eV. Long dashes indicate the
empirical Drude term I, Eq. (5.S)]; solid curve, the inter-
band contribution in "sharp" limit, plus the Drude con-
tribution, dashed curve, the interband contribution with
{I/p=0.06 eV) plus the Drude contribution. Experimental
results are shown as follows: E3, Ref. 33;0, Ref. 35;
6, Ref. 34; i, Ref. 38, Q, Ref. 37, 0, Ref. 36.
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FIG. 8. Real part of 0»» from 1.0 to 6.0 eV. Notation is the same as in Fig. 7.

in regard to the magnitude and the general trend.
There is less agreement in regard to detailed
structure. We believe that it is significant that
our calculations are in good agreement with the
general magnitude of the observed conductivity in
the low-energy region. In particular, the depar-
ture from the Drude term seems to be given satis-
factorily. There is little agreement between the-
ory and experiment in regard to specific struc-
tures at low energies except, possibly in the
0.2-0.5-eV region where structure in our calcu-
lated conductivity appears in some of the observa-
tions and is confirmed by thermoreflectance mea-
surements. "

A most important feature of our calculated re-
sults is the peak at 0.80 eV which results from
transitions between the nearly parallel upper d
bands near the zone face. This transition is a di-
rect measure of the exchange splitting responsible
for ferromagnetism. This peak is quite pro-
nounced when the band states are considered to be
sharp; however, it is much reduced if reasonable
allowance is made for finite lifetimes of the
states. We do not notice any comparable struc-
ture in the experimental data in this energy re-
gion, and we infer from this discrepancy that our
calculation has probably overestimated the ex-
change splitting. It is not obvious from the data
available to us whether or not this transition has
actually been observed; however, we tentatively

suggest that the broad rise beginning at 0.5 eV in
the results of Lynch et al.34 may be associated
with this transition. If this interpretation is cor-
rect, the d band exchange splitting is about 0.5 eV,
in fair agreement with other estimates, "and sig-
nificantly smaller than our calculated value.

Some structure is present in our calculated con-
ductivity in the 2-3-eV range, but this is much
reduced when lifetime broadening is included.
Failure to observe structure in this energy range '
suggests that lifetime effects are indeed apprecia-
ble. At higher energies, the experimental con-
ductivity shows a large increase, beginning near
4 eV. A corresponding feature is present in our
results, but it is displaced to higher energies by
about 1 eV. In our calculations, this peak results
from transitions between the lower s-d bands and
the s-p bands above the Fermi energy. The bands
involved are in the outer part of the Brillouin
zone, along the Z axis, and in the vicinity of the
symmetry points X and L. The discrepancy in en-
ergy between theory and experiment is probably
an indication of the inadequacy of our use of atomic
wave functions rather than separated orbitals to
represent s- and p-like states.

The absorptive part of the off-diagonal elements
of the conductivity tensor can be determined from
measurements of the ferromagnetic Kerr effect.4'

This effect involves spin-orbit coupling in an es-
sential way. Previous calculations have been
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based on perturbation theory and simple models
of the band structure. 4' A major conflict developed
between the results of different measurements. 4~'~

However, more recent work ' "has tended to
confirm, in a general way, the results of Krinchik
and collaborators.

We have calculated the off-'diagonal element rr,
„

of the conductivity tensor. Qur results for
+ Im(&r,„)are shown in Fig. 9, where they are com-
pared with results of Yoshino and Tanaka, '
Krinchik and Artemjev ' and Erskine and Stern. '
Our calculated results do not include any intraband
contributi, on" since the experimental data do not
extend to low enough energies to permit determina-
tion of this quantity. Such a term would simply
shift the calculated curves by a constant. The
theoretical cu~es have the same general shape
and order of magnitude as the experimental ones.
However, the agreement in detail is not particu-
larly good. The negative portion of ~,„atlow en-
ergy can be interpreted as indicating the domi-
nance of transitions of minority spin electrons. '
The experimental curves become positive at a
lower energy than the theoretical results. This is
presumably a consequence of our overestimation
of the exchange splitting. The negative peak at
high energies is found in our calculation to be dis-
placed by about 1 eV with respect to the corr'e-
sponding experimental feature. A similar result
was found for the diagonal elements of the conduc-
tivity and the explanation is probably the same.
The smooth behavior of the experimental curves
probably indicates the presence of substantial
lifetime broadening.

VI. DISCUSSION

We believe that the comparison of the results of
this calculation with experiment indicates that
simple energy-band theory employing a local ex-
change potential can successfully predict the es-
sential features of the Fermi surface, and of the
optical properties of nickel. Although numerous
discrepancies in detail exist, there is a large de-
gree of general agreement between theory and ex-
periment. There is no evidence for unexpectedly
large many-body effects, although some of the dis-
agreement between theory and experiment may be
due to our use of a simple, single particle ap-
proach. This seems particularly likely in regard
to the exchange splitting of the upper d bands,
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which our calculation seems to overestimate. In
view of the success of these calculations, and of
previous work in which good results are obtained
for the charge ~nd magnetic moment distribution, '
it seems that band theory should provide a basi-
cally satisfactory account of the properties of
ferromagnetic nickel. The principal obstacles to
such a conclusion concern observations of tunnel-
ing, "and of spin polarized" "photoemission
which have been interpreted as indicating a con-
tradiction with the results of band theory. It is
possible, however, that detailed calculations of
such phenomena based on band theory may re-
move much of the apparent disagreement. ' '" We
hope to undertake this investigation.
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FIG. 9. Imaginary part of o„~from 0 to 6 eV. The
solid curve is the interband conductivity in the "sharp"
limit; the short dashed curve is the conductivity cal-
culated with 5/7 =0.06 eV. Experimental results are
shown as follows: ———,Ref. 49, ~, Ref. 45 0, Ref. 47.
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