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Critical points of higher order can exist in complex, magnetic and fluid systems. By definition, at a

critical point of order &, 8 phases become identical simultaneously. Here the Wilson

renormalization-group method is generalized from ordinary critical points (6 = 2) and Gaussian

tricritical points (0 = 3) to critical points of arbitrary order Q. An expansion scheme in

c& = 2'6/(6 —1)-d is proposed. The nontrivial fixed points and the critical exponents for 6 = 3,4 are

calculated to order a&. We present the relevant scaling fields and densities for 6 = 3, and, in an

appendix, justify the validity of the approximate recursion relation to order e&.

where, in obvious generalization of the cases
0 =2, 3,

Qi(s) = & r.i
s" .

0=1

The approximate recursion formulas are

Q„z(s) = —2 in[I, (2 s)/I, (0)]

where

(lb)

(2a)

I,(z) = f dy exp[-y ——2Q, (z+y) ——,'Q, (z —y)] . (2b)

The basic motivation of using the form of (1b)
for Q, is suggested by the general Landau model
used by Griffiths~" to provide a phenomenological
theory of critical points of higher order. It can

The concept of a "critical point of higher order"
has been introduced for complex magnetic systems
and for ternary and quaternary fluid mixtures. ~

At such a critical point three or more phases can
become critical simultaneously.

The Wilson renormalization-group approach
has been extensively applied to critical points of
order 6 = 2. Of particular utility have been the

expansions, due to Wilson and Fisher, in the var-
iable ez —= 4- d, where d is the lattice dimensionality.

Can these results be generalized to criticaI
points of arbitrary order e? Recently, Riedel and

Wegner' have treated tricritical points (e =3) for
the special case d = 3. Since this corresponds to
the Gaussian fixed point for 6 = 3, one might ex-
pect the existence of expansions in the variable
e3=—3-d, for 0 =3. There also exist examples of
critical points of still higher order '~'6 (e ) 3), for
which there has been no renormalization-group
work done of any sort.

In this paper we give the appropriate generaliza-
tion of the Wilson renormalization-group procedures
and propose a generalized Wilson-Fisher expan-

sion scheme for critical points of arbitrary order
0. Our starting point is the reduced Ising Hamil-

tonian Hp of the general form

H, {s(x))=—f dx [-',
~

Vs(x) ~'+Q, {s(x)]], (la)

be shown that Qp is an appropriate linear combina-
tion of a set of ~ symmetric densities Q' ' which
contain even powers of s such that

0+1

'Qp = ~ Qof)
&=2

As x~- 0 for k = 2, 3, . . . , 6, 6 phases become iden-
tical simultaneously. Thus the model is expected
to simulate the behavior of a critical point of or-
der 6 .

It is possible to include other symmetry-break-
ing densities in Q, . This, however, will require
in general some modifications of the recursion
formulas (2), and will be considered elsewhere.
On the other hand, the inclusion of an ordering
density s in Q, is quite straightforward because
such a term remains completely uncoupled from
the other symmetric densities in the Hamiltonian

upon iteration. It will be shown below that for (1b)
and with the inclusion of an ordering density, there
will be exactly 6 relevant scaling fields for a
critical point of order &. The number of relevant
scaling fields can increase, of course, if other
symmetry-breaking densities are included. In a
separate phenomenological paper, ' ' we have
shown that for a critical point of order 6, there
are in general

s=n —x —d

relevant scaling fields. Here n is the total num-

ber of thermodynamic fields of the system, d is
the dimension of the critical subspace, and x is
the number of phases which are in equilibrium at
the critical subspace but are not critical.

Substituting (1b) into (2b) and expanding the
non-Gaussian terms for r» «1, it can be shown

by induction that for k = 1, 2, . . . ,6,
r~ i,q

= 2' [L„({r))))+Nq({r;,})], (3)

where LI, and N„are linear and nonlinear functions,
respectively, of the set of variables {r~,], and j
ranges over 1, 2, . . . , V. From the structure of
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the approximate recursion relations (3) (cf. Table
1) we note that to the first order of re„ the fixed
points for (2 —d) e + d = 0 [or d = 2 e/(e —1)] must
be of the form

Q((s) =K(Q c»s (4)

+ terms of order «6,

where e» include terms up to order ee, f;;» are of

order «, and A = 1, 2, . . ., 26 —2. For consistency,
we find that it i,s again necessary to include in our
calculations the additional irrelevant parameters
xo„ to F36 3, which are assumed to be of order «q.
To first order of ee, Egs. (6) admit the nontrivial
fixed-point solutions

r ~ =Kee~«6 ln2+terms of order «z2,

where Ee is a constant and e~= 0 for k &8. Equa-
tion (V) justifies the ansatz. We find that exactly
the same results can be obtained using Feynman-
diagrammatic techniques and the exact recursion
relations (see Appendix A). Thus, these results,
are exact to the first order of «~. Vfe note that ~ &

fx c~ for k =1,2, . . . , 6, because the expansion
scheme requires the nontrivial fixed point Q* to
have the same form as (4).

Linearizing the recursion relations (3) with j,
0=1,2, ... , 26-2, we obtain, for small changes of

r», the following set of 26 —2 linear algebraic
equations:

36-2
(B~» —x5»)A»=0 (j=1,2, . . . , 2e-2), (8}

&1

where e~ are constants. To evaluate K&, terms
from 4'o, g, (s

' to r»e», (s ' are included in (lb).
From (3), which now includes the additional ir-
relevant parameters re„, to r»e», , (which are of
order re, , ), and from recursion relations for
these additional parameters, we find that

K, = Ko/(1+AKO eel),
where A is a positive constant. Therefore,
lim, „K,=0. Expression (4) corresponds to an
-well potential in the Hamiltonian. s

For lattice dimensions d4 2e/(e —1), we gen-
eralize the Wilson-Fisher4 expansion scheme by
defining an expansion parametex

~e=2e/(e~ —1)-d .
%e make the ansatz that the r» for k = 1, 2, . . . ,~6

are of order ae, and replace Etls. (3) for j,k =1,
2, . . . , 26 —2, by the following set of differential
equations:

1,=2(e-k)/(e-1) (k =1,2, . . . , e) . (10)

Thus far the ordering field was not included. To
consider the ordering field we include an additional
term k,s in Q, (s). The additional eigenvalue 14,

corresponding to the ordering field for the Gaussian
fixed point can be shown to be (2e-1)/(e-1). These
p, ~ characterize the homogeneous scaling laws for
the critical point, with additional logarithmic cor-
rectlons5(b) introduced by the fact that pe =0.

For a critical point of third order (i. e. , a tri-
critical point), we find

c,=(l, —-'„—,',); K, =-,'(e, ln2) .
Starting from an initial condition of r»0= (45, —15,
1)ro with e» xo &0, the recursions relations indicate
that for e» & 0 the nontrivial fixed point of Eg. (11)
is stable. For «3 & 0 the Gaussian fixed point wins
the competition and p»=d(l -k)+2k, with k =», 1,
2. Thus, there are three relevant scaling powers
for —1 & «3 & 0, with no logarithmic corrections.
At «~ = —1, the Gaussian fixed point for d = 4 is re-
covered and there are only two relevant scaling
powers with logarithmic corrections.

For e» & 0, y~~ = ln X»/in2 calculated from the
linearized recursion relations about the nontrivial
fixed point of Eg. (11) are

y, = 2+ O(e',),
y» = 1+» es+O(e») q

y4= —2e»+O(e»») .
(12)

The eigenvalue corresponding to the ordering den-
sity is y, =1+—,d= —,(5 —a»). Thus, we deduce from
Eg. (12) that the singular part of the Gibbs potential
scales as

G(f &%4, f »x», 1 ex») = fG(xg, x»„x»), (13)

where the x; are the relevant scaling fields. The
corresponding scaling powers, a»=y„/d, to O(e»)
are

where 8;~ includes terms up to order «6 and the
A„denote changes of y». To lowest order of «6,
the eigenvalues of Eq. (8) are

A» = 2"»+ 5» ee ln2 (k = 1, 2, . . . , e },
where p» = 2(e- k)/(e-1) and 5» are constants.
The eigenvalues Xe,~ to X~6 ~ are not included.

The eigenvalues may be relevant or irrelevant, e

according as X~ &1 or X„&1. Thus we must investi-
gate the relative values of 2"~ and b„«6 ln2, partic-
ularly for k =6, since this gives the smallest value
of p» (pe=0).

For ee = 0 [or d = 2 o/(e- 1)], Eq. (7) reduces to
the Gaussian fixed point for a critical point of order
e [cf. Eq. (4) ] and the relevant eigenvalues X» are

given by 2""with
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TABLE I. Approximate recursion relations for the
symmetric Hamiltonian (see Ref. 15 concerning notation).

General expression:

The scaling fields can be calculated by expanding
the function qo in the reduced Hamiltonian in terms
of the eigendensities Q'~' and the uncoupled density
Sy

N r' g2» =2 r (2 ~g2)»+1(2f~~2g) I(0
fa faf

2&-2

QO=X1S+ ~ Xg, Q
(a) (19)

a, =$(1+ foes),

a, = -', (1+—,'ss),

as = -,'(1+ )Isis) .
(i4)

Expressions for all tricritical exponents can be
obtained directly from E(l. (14). For example, we
have

(o(crossover exponent) = as/as

= 2 (I + 5 es) + O (es), (15)

S -2-, lr = r„ly (susc-eptibility exponent) = (2 =—
02 ]

= —,'(1+ os) + O(ass),

r„.(staggered susceptibility exponent)

(i6)

(1
—2s,

and

= 1+O(ass), (17)

P.t ==4.(1 —es)+O(es) .1-a1
CE2

(18)

where

I(g) = rf g * (2+2rf)~(2k —1)l l
N f

2k

2((A+Jw)(2 +sr ) (sag)

»2)2 j~2 ~Q~ g ~f 2k 2K

x [(2k —1)tl (2K 1)f t (2k —2K+1)t t]+ p(r&, k «2).
To order r3 (N=26-2=4)

—2 r +3 45 r3 105 4

(1+rf) 4 (1+rf) 2 (1+rf)3

r2 495 rz r3 3375 r3 (p)(1+rf)3 4 (1+rf) 8 (1+rf)&

24~ + 3 +15 r 105 r r4 9 2

2 (1+rf) 2 (1+rf) (1+rf)2

315 r2 r3 6075 r3
2 (1+rf)3 8 (1+rf)4

675r~ =26-ff r p14 4 45 2 3 3 + p(r )(1+rf) (1+rf)' 2 (1+rf)3

8&(» r 3 + pr4 — r4 —
4 (1+r )z

For 6 = 3 and a3 & 0, the relevant scaling fields are

X1 ko

«2 2[(1+ sg) r,~, +(6+, a)rs o+(45+66&)rs,o

+ (420+ 630 Z}ro, o], (20b)

«2=4[k«i, o+(I+ 2 g}rs 0+(15+ 2 }rs,o

(20a)

+ (210+ ""e)r, ] (20c)

where c=- E31n2. The corresponding densities are
Q(1) = S

q(2) 22 k 224
I

q "'= (- 6+ +, e) so+ s' ——,',c s' .

(21a)

(21b)

(21c)

Expanding (20) about the tricritical point (ko = 0,
g, , T,) and choosing «2=«2=0 there, we obtain, to
linear order, «2=Ass(g -g,}+Ass(T—T,} and
«2 =Ass(T —T,), where g is the nonordering field
and Aj& are constants. At the tricritical point,
x1 x2 x$ 0 and three separate phases become
identical simultaneously; by definition, this is a
critical point of order 6 =3.

For an 6=4 critical point, we find

cs = (1, —0. 3700, 0. 036 51, —0. 000 9651};

K4 ———(0. 046 00)(co ln2) .
Starting from an initial condition of r„=(-1036,
+383.4, —37.83, +1}r,with eo)ro)0, the recur-
sion relations for &4 &0 indicate that the nontrivial
fixed point of (22) is stable. The calculated scal-
ing powers aj for c4 & 0 are given in Table II.

For &4 & 0, the Gaussian fixed point wins the com-
petition and the scaling powers are given by p,„
=d(1-k)+2k, with k=2, 1, 2, and 3. Thus, there
are four relevant scaling powers for —3 & &4 & 0,
with no logarithmic correction terms. At E4 = 3,
the Gaussian fixed point for d= 3 is recovered and
there are only three relevant scaling fields (with
logarithmic corrections}.

In summary, then, we have considered the ap-
propriate generalization to arbitrary order 6 of the
Wilson renormalization group approach (and the
Wilson-Fisher expansion about a particular lattice.
dimensionality). Except for limited work' for or-
der 6= 3 (tricritical points}, previous attention has
been focused entirely on the case of ordinary crit-
ical points, 6=2, even though there exist numer-
ous systems displaying higher-order critical
points. '2'2 our results (some of which are sum-
marized in Table II) demonstrate the utility of the
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TABLE II. Expansion parameters &g, Gaussian eigenvalues p„(k=1,2, . . . 6), fixed-point
coefficients c& g =1,2, . . . , g) and K~, and the relevant scaling powers az (for &g&0) for
critical points of arbitrary order Q.

4 —d T-d8 26
6 —1

2 (0 —A')

6 —1

0 =1,2, . . . , I9

1
4

1
3 —0. 3700

0. 03651

—0. 000 9651

(signs alternate)

Cg

Ko —~ E2 ln24
7&3 ln2 —0. 046 00&4 ln2

&0 (for even 6)
&0 (for odd 5)

g(1+ -' ~2)
12

—.'0. +- ~2)
f2

—(1+—e3)5 2

8 15

3(1+3 es)

1 (] + 8 g )

Y (1 sc

4 0+-' ~4)

—,(1 +1.061~4)

4(1 +1.446~4)

a& =yz/d

ln X~
~+~ ln 2

26-II
2I9 j

26(26 —1)

renormalization group methods for handling more
complex systems. Although the results presented
here are only to first order in the expansion vari-
able Ee, and are for spin dimension unity, similar
results can be obtained for higher-order expansions
in &6 using the exact recursion relations or cor-
relation function, and these ideas can be extended
to higher spin dimensions.

We are indebted to Professor K. G. Wilson for
advice and discussions, as well as to M. E. Fish-
er, R. B. Griffiths, B. D. Hassard, J. Nicoll,
L. L. Liu, and E. K. Riedel. We were informed,
after submission of this manuscript, that two of

the three critical point exponents have been sub-
sequently obtained, for the special case 6 = 3, by

M. J. Stephen and J. L. McCauley, Jr. (these
authors do not calculate the crossover exponent
and the scaling fields, nor do they locate and con-
sider the stability of the fixed points).

APPENDIX: JUSTIFICATION FOR USING THE
APPROXIMATE RECURSION RELATION TO FIND THE

FIXED POINTS TO ORDER ee

Wilson ' ' for 0=2. For the sake of simplicity,
we restrict ourselves to a discussion of the tri-
critical case, 0= 3.

First note that the exact recursion relations
are in the form of functional integral equations
A, r the momentum-dependent variables ~ r~(q),
r2~q1 % q3 q4& +3&qi q2 ' ' qs~ +4&qi q2 . qs ~

An exact fixed point of these functional equations
is some set of fixed functions r, (q), r2 (q» q». . .,
q4) ~3(q1tq2& ~ ~ &q6)t +4(qi~q r ~ ~ ~qa). We wish

to show that, to order e3, these reduce to the mo-
mentum-independent fixed values determined by
the approximate recursion formulas (cf. Table I).

The combinatorial factors for the Feynman dia-

~ ~ ~ ~ ~

To show that the exact recursion relations re-
duce to the approximate recursion relations (ARR),
to order c~, we follow closely the arguments of

FIG. 1. The (r2) contribution to rs (Ref. 15). For a
contribution to r3'(0, 0, 0, 0, p, —p), the momentum
constraint on the connecting leg requires I p I =1.
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(a)

)( )(
(b)

FIG. 2. The (r3) contributions to r4 (Ref. 15). Dia-
gram (a) does not contribute to r4(0, 0, 0, 0, 0, 0, p, —p),
while diagram (b) does.

rs (q„qs, . . . , q4) =rs +O(e3),

rs (qg qs . . . qs) =rs + O(e )

rs (q„q„.. . , qs)
- O(e2'),

(Al)

where r,*,rz, r3 are of order c'3. That is, the mo-
mentum dependence of each fixed function [aside
from r~(q), which always has a bare qs term] is
carried by a term which is smaller by at least one
order of &3 than the corresponding momentum-in-
dependent term. Wilson's arguments' then show

grams leading to the exact relations are shown by
Wilson to be the same as those for the correspond-
ing terms of the approximate formulas. Further,
setting the momenta of the external legs of these
graphs equal to zero reduces the set of separate
graphs in the exact relations to precisely those of
the ASM of Table I. Thus to begin we assume that
the exact fixed functions can be expanded as:

r~~(q) =r", +qs+O(ess),

where by definition

v~(0, . . . , 0) = 0 . (AS}

Using this expression (A2) and that of (Al) for
rs(q„. . . , qs), the exact recursion relation for
rs (q„.. . , qs) reduces to

that, if these expansions are substituted into the
exact functional integral equations, the resulting
relations for the momentum-independent terms
are just those given by the AIM, to order e3 for
r," and rs, and to O(es) for rs. There is one mod-
ification in the tricritical case, however, which in-
volves feedback from the r4 term.

It has been shown' that an irrelevant variable,
say sv, can affect the fixed point value [to O(e)] of
the last relevant variable, say u, provided w* is
of order &6 and w enters the u equation linearly. "
In the 6=2 case, w corresponds to r3 and u to r2.
In the zero-external-momentum limit, r3 enters
the rs equation only in the form rs(0, 0, 0, 0, p, —p). ,

But rs(0, 0, 0, 0, p, —p) can be shown to be 6 (ez), as
follows: The only 8(zz) term contributing to
rs(0, 0, 0, 0, p, —p} consists of two rs (four-leg) ver-
tices connected once (Fig. 1). If all but two ex-
ternal legs have zero momentum, the internal leg
can carry at most momentum I p). By the momen-
tum constraint (Ip, 1 ~1, Ip„,(~1), this contribu-
tion therefore vanishes.

For the tricritical case (6=3) we note that rs
enters linearly into the r3 equation in the form
rs(0, 0, 0, 0, 0, 0,p, —p). Now the rs relation contains
two diagrams (Fig. 2) involving (rs) . While Fig.
2(a) does not contribute to r,'(0, 0, 0, 0, 0, 0, p, —p},
Fig. 2(b) does, and rs~ indeed enters into the rs~

equation in an important way.
To take into account r4, we write

rs(q„q„. . . , qs) =r, +vf(q„qs, . . . , q,), (A2)

r4 =2 '3 ' r4 —225 r3 p g +terms of 0 &~2 ps~r 2 (A4)

vf(qi, q2 ''' 'qs)=2"' '[vf(sq&, sqs, ",-'qs)+esFs (q&, qs, ",qs)] ~ (A5)

Equation (A5) admits a convergent series solution for vf in terms of Fs:

v4~(qi~ qs~ ~ ~ ~ ~ qs) = es Q 2'"s ""F
s (2 "q„2-"q». . . , 2 "qs) .

n 0

(A6)

This means that vf -O(es). Therefore, to order es, the exact equation for rf(q~, qs, . . . , qs) does not con-
tain vs. Under the momentum-integral approximations of Ref. 14, Eq. (A4) reduces to the approximate
relation given in Table I. Therefore the last two equations of Table I suffice to determine r3.

*Work supported by the National Science Foundation, Of-
fice of Naval Research, and the Air Force Office of
Scientific Research. Work forms part of a Ph. D. thesis
to be submitted by G. F. T. to the Physics Department
of MIT.
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