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A general formulation is presented for the calculation of static field distributions caused by randomly
placed impurities in a lattice. Specific evaluations are carried out for the case of combined
Ruderman-Kittel-Kasuya-Yosida (RKKY) and dipolar interactions between magnetic impurities and host
nuclei. In this case the line shape is shown to approach a Lorentzian in the limit of great dilution, in
agreement with earlier theories for the dipolar case. Analytic expressions for the half-widths are given.
The Lorentzian shape is shown to be a consequence of the R ~* range dependence (i.e., to hold only in
this case) and to hold also for an arbitrary distribution of impurity-moment values. These results are
corroborated by explicit machine computations for the concentration range 0.01 < ¢ < 1.0 at.%, in which
no approximations of a serious nature are introduced. The linewidth law for combined RKKY and
dipolar coupling is derived and verified. This technique is applied to the problem of line narrowing due
to resistivity damping of the RKKY oscillations, obtaining a damping length greater by a factor of ~2
than that originally deduced by Heeger, Klein, and Tu. The self-damping of RKKY oscillations by the
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Mn impurities in CuMn is estimated to be significant for ¢ > 1 at.%. Further applications are

discussed.

I. INTRODUCTION

Over the past 15 years or so, the study of mag-
netic or nearly magnetic impurities in metals has
attracted the interest of numerous solid-state
theorists and experimentalists. Among the many
phenomena which characterize these systems are
the conduction-electron spin-density oscillations
generated by such impurities in the surrounding
host metal, which we henceforth refer to as Ruder-
man-Kittel-Kasuya-Yosida (RKKY) oscillations. L2
One of the important experimental manifestations
of these oscillations is the broadening of host nu-
clear-magnetic-resonance (NMR) lines through
hyperfine coupling with the perturbed spin density.®
In fact, this phenomenon provides the only feasible
method for measuring this effect at large distances
from the impurity. It is the primary concern of
this paper to calculate the breadth and shape of
NMR lines broadened in this manner.

In dilute alloys, it is the long-range (> a;

a is the lattice constant) portion of the spin-density

oscillations which is sampled by the NMR linewidth.

Fortunately, it is just this region that is most re-
liably calculated by available theories, whether
formulated in terms of direct and “mixing” im-
purity-host exchange couplingsz'4 or in terms of
scattering phase shifts. 5 It is especially important,
then, to be able to draw accurate inferences about
spin-density-oscillation amplitudes from linewidth
data.

The RKKY line-shape problem has been a mat-
ter of interest for over a decade; only recently,
however, has the correct answer begun to emerge
via the “successive-convolution” technique de-
veloped by Mizuno® and Alloul.” In the earliest
theories, emphasis was placed on the “one-im-

|

purity” nature of the broadening. Behringer® cal-
culated an approximate line shape by simply making
a histogram of all the RKKY amplitudes which oc-
cur within a sphere that contains, on the average,
one impurity. Chapman and Seymour9 modified the
statistics to ensure that no other impurities are
nearer the site sampled than the one considered.
This change reduced the broadening coefficient

a factor of 4 below Behringer’s. In more recent
work® ™10 it was realized that one must consider
the effect of many impurities in order to get an
accurate linewidth, which was then found to lie be-
tween those of Refs. 8 and 9.

Although the successive-convolution method is
statistically correct at low concentrations, we
develop here an alternate formulation which we
believe has several advantages. (i) It automati-
cally handles higher concentrations. (ii) It gives,
in some cases, an approximate analytic form for
the line shape. (iii) We feel it is less cumber-
some for computational purposes. Our method is
based on a statistical formulation of the random-
impurity problem due to Markoff!! and is also the
starting point of Anderson’s treatment'? of dilute
dipolar broadening, as well as Cohen and Reif’s
discussion'® of quadrupolar broadening due to ran-
dom crystalline imperfections.

After a brief description of the formulation in
Sec. II, we apply it in Sec. III to the problem of
broadening due to the combined effect of RKKY and
direct dipolar interactions. Both approximate cal-
culations for the limit of high dilution and direct
machine evaluations of the full line shape over a
range of concentrations are presented. Our re-
sults are compared with those of previous theories.
In Sec. IV these methods are applied to the case of
impurity-damped RKKY oscillations first investi-
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gated (for the system Cu,Al;_,: Mn) by Heeger,
Klein, and Tu. * QOur results and conclusions are
summarized in Sec. V.

II. BASIC FORMULATION

The linewidth calculation begins with the as-
sumptions (a) that the impurities are randomly
distributed, and (b) that each site ¢ in the lattice,
when occupied with a magnetic impurity, produces
at the origin a frequency shift w which is static,
(i.e., not time varying) but which varies randomly
with a (normalized) distribution p;(w) over an en-
semble of such sites. Any motion of the impurities
is thus assumed to be either fast or slow compared
with the time scale set by the inverse of the NMR
linewidth to be calculated. The p;(w) are further
assumed to scale_.according to some well-defined
range function n(R;)=n;, so that p;(w) = ni*plw/m;),
where p(x) is also normalized. Thus the impuri-
ties produce a nuclear frequency disturbance which
varies in a definite way with R, but with a random
distribution of amplitudes. This feature is de-
signedtohandle, in as generalafashion as possible,
cases of impurity moments which are randomly
oriented, whose magnetization is smeared out by
random exchange fields, etc. Special cases will
be discussed in Sec. III.

Under the above assumptions, then, the prob-
ability density (i.e., line shape) function g(w) be-
comes'!

g(w)Aw = wa:: as _fdgl o f dQNa(g) & —w- 9>

-Aw

X inIl [(1 - €)3(Q;) + eni'p (%‘)] ) (1)

where the factor [ ] in Eq. (1) is the probability
distribution of frequency shift at the origin due to
site ¢ and the product [in Eq. (1)] is taken over all
N sites of the system (assumed large) excluding
the origin. The occupation probability of any given
site is c.

Expressing the 6 function as

21_17 f: dt exp[z(Z) 9,-w—9)t]

and performing the [ d®; in Eq. (1) leads, as Aw
-0, to

1 fo ot N(
== dte l-c+c
g(w)=5- B g

x J:: dxp(x)e""’") . (2)

The product function in the integrand of Eq. (2) is
therefore the “characteristic function” of the dis-
tribution or, in resonance terminology, the free-
induction function f(f) corresponding to line shape
g(w).

It is important to note that if the p;(w) contain
discrete frequencies, then one may separate an
arbitrary number of sites from this product func-
tion to be considered as generating “satellite”
frequencies, with the remainder left to generate
the breadths of the spectral components so pro-
duced. f(¢) is thus divided as follows:

fo= II (1 —c+cfdxp(x) e""’i‘)
i (satellites)
x II (1 —c+clfdxp(x)e""’ft>, (3)
i (bren.dth)

withII; carried out over all sites considered to
produce satellites and IT; over the rest. All pos-
sible satellite frequencies with the correct statisti-
cal weights, normalized to unity, are generated by
II; in Eq. (3). Further, it is clear that II; gener-
ates a breadth function that is the same for all
satellites.

Dropping for the present the distinction between
satellite sites and the rest, Eq. (3) may be reex-
pressed as

Fi0) =exp{f) (1)'e” f) [1 —(jdxp(x)e“‘"i') "]} .

w21 =c) iy
(4)

Equation (4) is our principal result from which cal-
culations in subsequent sections will be developed.
The power series in ¢/(1 - ¢) enables one to cal-
culate as many terms as required to determine
f(#) to a desired precision. This is then Fourier
transformed to obtain g(w). The result given by
Cohen and Reif!® follows from taking the leading
term (z=1) in Eq. (4) and prescribing a § function
for p(x).

Equation (4) is employed in later sections to
make approximate calculations in very dilute sys-
tems, where an analytic form for the line shape is
obtained, as well as for computer evaluations where
the lattice sum }); is obtained to high precision. The
power of this technique lies in the potential for cal-
culating a frequency spectrum to arbitr_g.ry preci-
sion once p(x) and the range function n(R;) are
specified.

III. CALCULATIONS OF DIPOLAR AND RKKY LINE SHAPES

We now consider in detail the NMR line shapes
generated by magnetic impurities in solids through
the RKKY and dipolar interactions. To fix ideas
we consider the impurities to possess a spin § and
assume a range function which includes both RKKY
and dipolar interactions:

. _Acos(2kgR; + @) + B(1 — 3cos?6;)
i 3 ’
- £
where R; =|R;| and 6; is the angle between R; and
the applied field Hy,, which defines the z axis.
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is in units of rad/sec per unit spin. Next, we dis-
tinguish two cases.

(i) The motion of the spins S over their 25+1
sublevels is rapid compared with the NMR splittings
and broadening they produce. Thus, the nuclei
sense only the average moment (S,;) at any site 2.

(ii) In the opposite extreme, i.e., impurity-
spin transitions slow compared with NMR linewidth,
the nuclei sense the 25+ 1 separate impurity-spin
orientations. For convenience we restrict our-
selves to the case of a unique quantization axis
throughout the crystal and therefore take

p(x) =23 P(my) 6(x — my) (6)

where - S=m =S and P(m,) specifies a Boltzmann
distribution of populations. Equation (6) applies
either to very slowly relaxing electronic moments,
or to an approximate treatment'? of dilute like-spin
line broadening. In the latter case, for S=3, we
should retrieve the result obtained earlier by An-
derson.

In Eq. (5) we have taken the asymptotic (R; ~ =)
form® of the RKKY interaction in a nearly-free-
electron metal. This should be more than adequate
for the sake of line-shape assessment, as the first-
few-neighbor shells containrelatively little statisti-
cal weight except at very high impurity concentra-
tions.

Two types of calculated results are presented
here. First, we describe approximate calculations
valid in the limit of great dilution. These will sub-
sequently be compared with machine computations
in which the lattice sums of Eq. (4) are carried out
explicitly for the first 400-600-neighbor shells, a
continuum approximation being made beyond that
point. Comparison of these two results, then, al-
lows one to assess the effects of discreteness on
the line shape, and establishes the concentration
level at which the approximate (i.e., infinite-di-
lution) line shapes become valid.

A. Approximate calculations

Beginning with case (i), we set out to calculate
the breadth function of Eq. (3) for very dilute im-
purities. The sum on ¢ in Eq. (4) is therefore re-
stricted to sites far enough from the origin that the
lattice may be treated as a continuum, taking 3 ;
—p[dR, where p is the _density of sites available
to impurities. The [ dR is taken over all space
outside a loosely defined cutoff radius R,;,, which
marks the nearest distance at which the continuum
approximation is considered valid. Further, the
sum Y ; in Eq. (4) is averaged over the phase ¢ of
the RKKY oscillations. At large R the change in
R"% over one RKKY period becomes negligible,
whereupon the oscillation and decay variables in
Eq. (5) may be separated. Integration over the
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RKKY period introduces, in effect, an average
over ¢. This may also be regarded as an as-
sumption of infinite 2. - We also specify, at the
outset, a sharp frequency distribution: p(x)
=8(x-(S,)). The general case of unspecified p(x)
is considered below.

On the above assumptions, then, the lattice sum
in the nth term of Inf(¢) [Eq. (4)] may be rewritten

e L -
3 (1 - etnvityx £ J’ do .fdn J RZAR(1 - etmo®t)
i ™ Jo Rpin (7)
where w; =(S,) M;.

We note first that the imaginary part of (7),
which generates the shift and antisymmetric part
of the line, appears to diverge logarithmically as
R-=, Inthe RKKY case this divergence is only
apparent as it is prevented by the cos(2kzR+ ¢)
factor [Eq. (5)]. In the dipolar case, however,
there is a divergence which leads to a shift of the
NMR line by the familiar “demagnetizing fields”
from magneto-statics. We defer a detailed dis-
cussion of these matters to Sec. IIIB. For the
present we simply drop the imaginary part of Eq.
(7) and thus assume the line to be symmetric. This
is not always obvious, particularly in the case of
dipolar broadening by localized moments, where
the local field distribution from each neighbor
shell is asymmetric in the same sense. For such
a case one has to rely on the superposition of many
impurity fields at the same site to assure symme-
try. The ultimate test of this assumption is, of
course, the machine line-shape computation in
Sec. IIIB.

Let us proceed with our approximate evaluation
of the real part of Eq. (7) for case (i). _In accord
with assumptions spelled out above, w(R) in Eq.
(7) is written

2
w(ﬁ) _ <S‘z>Acos<p+III;‘(31 - 3cos®0) .
Then, to carry out the radial integral in Eq. (7),
one makes the change of variables

u=(S,) | Acos@+ B(1 - 3cos®0) | nt/ R,
leading to

T
Re ? (1-etmit)= 4P_<S§M f do
(]

1
X f dy| Acos® + B(1 - 3y?)|
1]

um
x J = fi—’; (1 - cosu), (8)
0 u

where #,,, results from taking R=Ry;,. We now
define the dilute limit to be that where #y,, is sub-
stantially infinite for the sake of evaluating [ du in
Eq. (8) for n=1 and for, e.g., t=% T%, where

T¥ is the inverse linewidth, to be obtained present-
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ly. This condition also implies that the “zeros”
of %y, in (@, 6) space have negligible weight. In
this limit we take

j;umudu (1 - cosu)/¥2 - 3w

and Eq. (4) becomes

tnlfan(0) - 220L 5 (_ 1y ()

n=1 l—C

T 1
xf do f dy| Acos¢ + B(1 -3y?)] .
0 0 (9)
The subscript dil denotes dilute line shape. The
sum on » may be immediately performed to give
- ¢, whereupon f4,(¢) is seen to be an exponential

decay with a decay constant linear in ¢. The cor-
responding line shape is a Lorentzian,
gan(w)=T3/1(1+W?T3?) | (10)

where
T 1
T’z“'1=21r ;<S>J d(pf dy|Acosg + B(1 -3y?)|
0 0 (11)

for case (i). (Note we take (S,)> 0 throughout.)
The Lorentzian shape function found here also
holds for arbitrary p(x). However, in the latter
case the power series in ¢/(1 - ¢) cannot be
summed. We recast this series to give

L] © n
10=ex[-5 ZD(1- [Taxpem)"], a2
n=1 w0
and treat only the linear term in ¢. The advantage
of Eq. (12) is that for a sharp distribution p(x) all
but the linear term vanish in the dilute limit.
Treating this term in the same fashion as in the
previous paragraph leads to a linewidth given, in
general, by

1 4 1

T;*:M f dtpj dy|Acose+ B(1 - 3y%)| ,

3 0 0 (13)
where (| x1)a=[1xIp(x)dx. In a [case (i)] situa-
tion where p(x) is limited to essentially positive
values of x, then, Eq. (11) is modified only to the
extent of replacing (S,) with (S,),,, where the aver-
age is over all spins in the system.

The upper limit of ¢ for which Eqs. (10) and (11)
are valid is determined by the assumption that the
mean distance between impurities is large com-
pared with Ry, and with #;'. For Eq. (12), one
must also consider the effect of terms in ¢ and
higher; it is clear from the series in Eq. (9) that
such terms are quite small for ¢<0.01. We
therefore focus our attention on the limits imposed
by Rpyin and kr. The condition for k'}% appears to
be easily fulfilled, since k3 is considerably smaller
than the lattice constant in a typical metal. Effects
of finite kr are discussed further in connection
with the results of Sec. IIB. R, appears to be
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a more serious problem, since one might guess
that this radius encloses ~ 100 neighbor sites in the
cubic metals. The associated concentration limit
is then straightforwardly estimated from an evalua-
tion of (Umax)ave, » for n=1, t=1 T, using Eq. (11),
giving

(Umardavo, o = (5TNy)™, (14)

where N, is the average number of impurities
found in a sphere of radius R,;,. Taking N,,/c
~100 sites, a generous estimate of the concentra-
tion where uy,, is large would be [from Eq. (14)]
¢k 0.01. The results of Sec. III B bear this out
as a reasonable estimate.

Both the Lorentzian character and the linear
concentration dependence of the linewidth are seen
to stem from the R range dependence of 7;. Ina
more general case where 7(R) separates into an
R™ dependence times some function of angle and/or
other variables, the sum in Eq. (7) will factor into
%" times an infinite series in ¢/(1 - c). The line
will, of course, have some shape other than
Lorentzian for n# 3.

The case (ii) (slow-relaxation) linewidth follows
straightforwardly from combining Eqs. (6) and
(13), giving

T,z.=211 c(lSl)J"d¢f‘dx
3 0 0

X |Acos@ + B(1 - 3x%)| , (15)
where

(|8 |y =20 P(my)| my|.

In the remainder of this section we consider the
consequences of Eqs. (11) and (15) in several
cases of interest.

(a) Dilute dipolar (and/or RKKY) line broaden-
ing, considering S,S; interactions only. This
comes under case (ii) [Eqs. (6) and (15)]. Ander-
son'? analyzed this case for purely dipolar broad-
ening with S=3. This leads in Eq. (15) to
(I'S,!) =% independent of polarization. For A=0
and B=37%%, Eq. (15) reduces to the result given
by Abragam, ' as it must. Interestingly, Eq. (15)
enables us to generalize this result to higher spin
values. For complete polarization (| S,|)sy~ S,
giving 731« S, as expected. In the more usual
case of high temperatures [P(m,) - (25+1)™], one
finds (I S;|)ay =3(2S+1) (half-integral spin), S(S+1)/
(25+1) (integral spin). Thus, large spin values
are only half as effective in line broadening per
unit moment as are spins of 3. For half-integral
spins this result can be expressed by

1 25+1
T¥S) 2TXS=32)’

where it is assumed that all parameters remain
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FIG. 1. Left-hand scale: half-width (T§);}eq for com-
bined dipolar and RKKY coupling as a function of RKKY
half-width, both in units of dipolar half-width (solid line).
Dashed line—RKKY half-width for comparison. Right-
hand scale: deviation of ‘mixed” half-width from RKKY
value in units of dipolar half-width. Solidline—numerical
integration of Eq. (11), dotted line—first nonvanishing
correction term derived in text.

fixed except for the spin value. It is also inter-
esting to note that the case (ii) linewidth is always
within a factor of 2 or less of its maximum value
[<| Sl >av]ma.x =S.

The remainder of the discussion is given in
terms of case (i) but applies as well to case (ii)
if we replace (S,)ay With (IS, )ay-

(b) Purely dipolar (A =0) or purely RKKY (B=0)

coupling. For these cases the integrals in (11) may
be carried out immediately to give
1 8n?pc
= B|(S 16

(TPatporar  9V3 | |< ) (16)

and
1 4mpc
—_— Al(Sy), , 17
e~ 3 A2 am

the difference in coefficients reflecting simply the
average magnitude of 1 — 3 cos?6 as opposed to that
of cosy.

(c) The case encountered for magnetic impuri-
ties in metals is one of mixed RKKY and dipolar
coupling. The double integral in (11) is not so
simply evaluated for arbitrary ratio of A to B, so
a machine evaluation was carried out. The results
are plotted in Fig. 1. The composite linewidth
(ordinate) is in units of the dipolar linewidth [Eq.
(16)] while the abscissa, shown as the ratio A/B
times a numerical factor, may also be regarded as
the RKKY linewidth [Eq. (17)] in units of the di-
polar linewidth. Deviation from the line of slope
unity (dashed line) shows the extent to which the
purely RKKY linewidth is modified by dipolar ef-
fects.
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It is of interest to examine further the way in
which these line-broadening mechanisms combine.
For B/A<1 this can be carried out with an ap-
proximate evaluation of (11) to obtain the first non-
vanishing correction term to Eq. (17). The cor-
rection factor is easily found to be (1+ Z(B/A)*
+...). The correction term 2 (B/A)? is also plotted
in Fig. 1 along with the deviation of the computed
(“mixed”) result from the RKKY linewidth. The
lowest-order correction is seen to give a good ac-
count of the composite line-broadening effect for
B/A values nearly as large as unity.

It is important to note that elementary arguments
about combining linewidths do not work here. Sim-
ple addition of widths, which applies to Lorentzian
broadening from independent sources, is obviously
incorrect. Adding squares of linewidths yields a
correction factor (1 + (& 21%) (B/AY+...), which
has the correct functionalform, but with anumerical
coefficient in error by a factor of ~2. The point
here is that these two sources of broadening in-
terfere directly with one another, yielding.a re-
sult which can only be found by detailed calcula-
tion.

B. Machine computations of line shapes

It remains to evaluate line shapes using the
formulation of Sec. II for a variety of impurity
concentrations in a specific lattice, under condi-
tions where no further approximations of a seri-
ous nature are introduced. In this way, effects
due to discreteness of the lattice and finite RKKY
period can be assessed and, moreover, the as-
sertion of a Lorentzian line shape as ¢-0 can be
examined further. Calculations are carried out
for the fcc lattice’under case (i) of Sec. IIL A, using
the range function of Eq. (5). We use the power-
series expansion of Eq. (12), considering primari-
ly the n=1 term with spot checks to determine the
importance of the c? term. For simplicity the
source distribution is taken as p(x) = 8(x - (S,)) as
inEgs. (7)-(11).

The primary quantity to be evaluated, then, is

70 =em (=2 (1 - ) (18)

for 0= #= t,,.~8T5, with w; =(S,)n; as before.
This function is then Fourier transformed to yield
a line-shape curve. Our procedure is to take a
discrete lattice sum over a spherical region of the
crystal of radius Ry such that w;#nx< 1 (i.e., w; T5
« 1), for sites at the surface of the sphere. The
contribution from sites outside the sphere is then
estimated from a continuum approximation as fol-
lows. For the real part we take

22 (1 - cosw;t)= 5 pf2 J- - dR (W RNayo, (19)
i IRIZR,
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where the brackets ( ),, , indicate an average over
the RKKY phase ¢. For the imaginary part we
take a linear approximation to sinw;?:

Y sinw, ? = fp f . dR(WR))ay, - (20)
i IRIZR,

Taking w(R) from Eq. (5) we immediately see

from Eq. (20) that the RKKY contribution vanishes.
The dipolar part produces a combined demagnetiz-
ing and Lorentz correction given by ¢} ; sinw;#
yi(4m - D)M, where v is the nuclear gyromagnetic
ratio, D the demagnetizing factor of the sample,
and M the volume magnetization due to the impuri-
ties. This effect is simply a frequency shift

Aw=($m-D)yM, (21)

which is to be added to that found from the dis-
crete contribution to f(#).

The Fourier transform of f(#) is obtained for
frequencies - 5/7; = w=5/T# by means of a
256-point Simpson’s-rule evaluation over the
range 0= {= 87,. This procedure yielded an
accuracy of ~3x10™ with an exponential input
function. In evaluating f(f) the frequencies w;
were truncated at + 20/ T; , since frequencies out-
side this range are not handled well by the Fourier-
transform procedure.

We now turn to a discussion of specific results.

1. RKKY case

The case of pure RKKY coupling was evaluated
first, since only the distribution of spherical shells
of neighbors is needed. This distribution was ob-
tained with a machine sorting technique for the
first 600-neighbor shells (~ 87000 sites), giving
agreement on the innermost shells with published
work. !* The free-electron value for k, was adopted
here, assuming one electron per site in the fcc lat-
tice. Thus we have kpa=(127%)!/3% where a is the
fcc lattice constant. The RKKY phase was taken
to be ¢=1.06m, corresponding roughly to one’s ex-
pectation for CuMn, ¢

Computer line shapes for a series of concentra-
tions ranging from 0.01 to 1% are given in Fig. 2,
where the discrete sum in Eq. (18) was taken over
600-neighbor shells (Ry=17a). The frequency scale
is in units of the dilute-limit linewidth [Eq. (17)],
which is (1/ T3)gkxy = 16mcA(S,)/3a® for the fcc lat-
tice. Note that the absolute frequency scale changes
by a factor of 100 over the stated range of c. The sol-
id curves are Lorentzians with the dilute-limit line-
width, but with shifts adjusted to fit the computed
results.

The dilute-limit shape and width are in excellent
accord with the 0.01% results, which deviate by
less than 1% of the peak value over the +5/75 fre-
quency range. The width agrees to better than
0.5%. Deviations from Lorentzian shape appear
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FIG. 2. Computer evaluation of RKKY line shapes for
fee lattice with RKKY phase ¢ =1, 06r, normalized to
peak values of unity (circles). Solid linesare Lorentzians
with dilute-limit RKKY half-width [Eq. (17)]. Concen-
tration ranges from ¢=0.01% up to 1. 0%.

for ¢>0.01%, but the width remains in good accord
up through 1.00%. The results of Fig. 2 are a
strong indication that the dilute-limit line shape
and width [Egs. (10) and (11)] are asymptotically
correct. However, it is not possible to say whether
the deviations from Lorentzian shape at higher
concentrations are due to finite RKKY period or to
discreteness of the lattice.

The shifts in Fig. 2 are generally less than 0.1/
T; and fluctuate from one side to the other. It
would clearly require extraordinarily careful work
to make an experimental interpretation of the shifts.
Satellite lines are easily identified by making a
histogram of w; for the first few neighbor shells.
The large one at - 3 for ¢=1.00% is, for example,
due to third neighbors.

Two checks were performed to validate our pro-
cedures in obtaining the results of Fig. 2. First,
the boundary between the discrete and continuous
regions [R, in Egs. (19) and (20)] was changed for
the ¢=0.01% case, for which the greatest sensitiv-
ity is expected. Shrinking the discrete region
from 600- to 400-neighbor shells was found to pro-
duce changes <0.1% of the computed spectrum. On
the other hand, the c=1.00% spectrum would be
most sensitive to the neglect of »>1 terms in Eq.
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FIG. 3. Computer evaluation of dipolar line shapes for
fcc lattice, normalized to peak value of unity (circles).
Solid lines are Lorentzians with dilute-limit half-widths
[Eq. (16)]. Concentration ranges from 0.01% up to 1. 0%.

(12). There, inclusion of the #=2 term was found
to alter the results by ~0.1% near the center and
at most by a few percent in the wings. Finally,
altering the RKKY phase for the 0.01% curve pro-
duced changes less than 1% of the peak value.

2. Dipolar case

The inclusion of dipolar couplings requires con-
siderable elaboration of the procedure, since one
must now tabulate the values of 1 - 3 cos?6; within
a given shell of neighbors. Such a tabulation was
carried out assuming the field to lie along (001) in
the fcc lattice for the first 400-neighbor shells
(Ry=14a). This includes ~45 000 sites and ~ 3000
distinct sets of [(1 - 3cos?®6;), R;] parameters. For
this case one finds w;Zpa.x~ 2. 8 at the surface of the
discrete region, for which Eq. (19) would not seem
sufficiently accurate. Evaluation of the t* term,
however, shows it to be, at worst, only ~7% of the
% term, so that the error produced in f(f) by Eq.
(19) is €0.2%. A further check was performed
by reducing the discrete sum from 400-neighbor
shells to 300 for ¢=0.01%. This produced errors
of less than 0. 5% in the computed spectrum.

The dipolar results are given in Fig. 3, again
for 0.01%=<c¢=1.00%. The solid curves are, as
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before, Lorentzians with the dilute-limit linewidth,
which is (1/ T3 )ayporar = 3272 Bc(S,)/9V3 a® for the fcc
lattice. There are two noticeable differences be-
tween these and the results of Fig. 2. First, the
dilute-limit theory is valid at considerably higher
concentrations in the dipolar case. This is attrib-
uted to the smoothing effect of the 1 - 3cos®6 vari-
ation over a given shell in the dipolar case and/or
the contribution of finite 2z to the irregularities
found in the higher-concentration results of Fig.

2. In any case, the smoothness observed at ¢
=1.0% in Fig. 3 is quite remarkable in view of

the criterion of Eq. (14).

Second, all the dipolar lines are noticeably
shifted by Aw~0.15/T¥ in a positive direction.
This shift arises from the discrete sum only, since
the continuum part of the shift [Eq. (21)] is not in-
cluded in Fig. 3. The origin of this shift may be
sought in the general expression

f wg(w)dw=£f- =c wj -

- dt t=0 i

What is striking here is that this sum vanishes in

a cubic system, a point which has been explicitly
checked with the array of [(1 - 3cos®6;), R;] param-
eters used here.!” The shifts in Fig. 3 can there-
fore arise only through satellites well removed to
the left of the line.

It is interesting to compare the shift [Eq. (21)]
with the dipolar width. For the flat-disk geometry
(D=47), one obtains Aw(T3)giporar = — 1/7, giving
a maximum shift still considerably less than the
half-width at half-height. This result applies only
to case (i). In case (ii) Aw(7T3)aiporar Will in gener-
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FIG. 4. Half-widths of computer-evaluated line shapes
with combined dipolar and RKKY coupling for ¢=0.01%
(circles), plotted as in Fig. 1 with dilute-limit half-width
from Eq. (11) (solid line).
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al be much smaller.

It is finally noted that the assumption of line-
shape symmetry for the dilute limit in Sec. IITA
is thoroughly justified by the results of Fig. 3.

3. Mixed RKKY and dipolar coupling

Computed line shapes were also obtained for
several B/A ratios at ¢=0.01% in an effort to cor-
roborate the calculations in Fig. 1. The resulting
line shapes, which are not shown in full, were of
the same quality as in Figs. 2 and 3 at ¢=0.01%.
The half-widths are plotted in Fig. 4 along with
the dilute-limit curve from Eq. (11) (Fig. 1), where
the agreement is seen to be excellent.

C. Comparison with previous results

The calculated Lorentzian half-width for the
RKKY case is compared with the results of earlier
work in Table I. The fcc lattice is assumed here,
and the broadening coefficient W is defined by
(T)ikky = WA(S,)c/a®. The earliest work®® as-
suming essentially a single-impurity broadening
effect is seen to err rather widely, but to bracket
the present result. The more recent work of
Mizuno® differs by only ~ — 4% from our value, a
discrepancy which is probably due to performing
the successive-convolution calculation in a sphere
of limited radius. Alloul’ has obtained values even
closer to our W=34&7 by this technique. It is grati-
fying that these two rather different computational
approaches yield essentially the same results.

IV. IMPURITY-DAMPED RKKY OSCILLATIONS

Several years ago it was demonstrated by Heeger,
Klein, and Tu'* that the addition of Al impurities to
dilute CuMn caused the Mn-induced RKKY broaden-
ing of the Cu NMR lines to diminish., This effect
was attributed to damping of the RKKY oscillations
through electron scattering by the Al impurities.

A rough theory for this line narrowing effect was
given, ' leading to an exponential decrease of

Cu NMR linewidth with A\J>, where X, is an effec-
tive mean free path for the damping of spin oscil-
lations. On the reasonable assumption that A3}

cc ¢’, the aluminum concentration, a qualitative ac-
cord with the experimental results was found.

As a further illustration of the methods of Secs.
I and III, we present calculations of line shapes
and widths for the case of damped RKKY oscillations
Following Ref. 14, we take [with p(x) = 6(x - (S,)) in
Eq. (12)]

,  (22)

A(S,) cos(2BxR; + @) e"Ri/ *sp
;= 1y(S,) = (S, cos( F?{ ®)

Rj

where for simplicity the relatively minor dipolar
effect is neglected—its importance will be assessed
later. de Gennes'® has shown that an equation of
this form is certainly not valid at short distances.
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TABLE I. Comparison of broadening factors W from
previous theories with the present result.

w Source
11.2r Behringer?®
2.8 Chapman and Seymour®
5,137 Mizuno®
5.33m Present work

%Reference 8. °Reference 6.

PReference 9.

However, for the asymptotic R; > a region that con-
cerns us here, Eq. (22) is probably a reasonable
ansatz if one thinks in terms of elementary resis-

© tivity theory. Unless otherwise noted, the discus-

sion here refers to the results of Ref. 14.

Before proceeding with the calculated results,
it is interesting to note that as a by-product of our
present calculation we shall be able to estimate
the self-damping effect that magnetic impurities
have upon their own RKKY oscillations when they
are present in a host metal at some concentration
¢. Thus we shall develop a simple check on whether
the range function 7(R;) introduced in Sec. II can be
considered independent of the impurity concentra-
tion.

The bulk of the calculations for this case were

made with the dilute-limit theory of Sec. Il A. Re-
calling the discussion there, we can conclude im-
mediately from the altered R dependence of Eq.
(22) that the resulting line shape will not be Lo-
rentzian, as was reported. However, the differ-
ence may be difficult to detect experimentally.
No simple line shape function is found to emerge
here. With the assumptions of Sec. III A one can
only say that the dilute-limit impurity line shape
is the Fourier transform of

70 =ex[~(25) [ hsinits expl-/mavir2 D).
(23)

where T3 =4mpcA is the dilute-limit undamped
RKKY value, and N,t=§~1rcp7\§, is the average number
of magnetic impurities contained in a sphere of
radius A;,. Equation (23) returns to the undamped
limit [Eq. (11), B~0] as N,~, as it must. One
can see that the exponential factor in the argument
of sin? in Eq. (23) has the effect of diminishing the
integrand for small « and thus the decay rate of
f(#). It is difficult to say more about f(#) without
machine evaluations, except that an appreciable
effect should be present when N,~ 1.

Computed line shapes have been obtained with
Eq. (23) for a series of N, values giving equal in-
crements of X], and thus of aluminum concentra-
tion ¢’ in the (Cu-Al): Mn experiments. The mini-
mum value of N, considered is unity, for which
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FIG. 5. Computer evaluation of exponentially damped
RKKY line shape for fcc lattice for ¢ =0.01% with
N) =1(,,=8.4a) (circles). Solid line is dilute-limit
line shape evaluated from Eq. (23), whose half-width is
taken to be 1/T#(,,). Dashed line is Lorentzian with
same half-width for comparison. Dash-dot line is un-
damped RKKY line profile under the same conditions.

case a discrete lattice-sum line shape evaluation
was also made for ¢ =0.01% using Eq. (22) with

the n=1 term of Eq. (12). The discrete and dilute-
limit line-shape curves for N, =1 are both plotted
in Fig. 5, where the over-all agreement is less
good than for ¢=0.01% in Figs. 2 and 3, but gener-
ally satisfactory. Also shown in Fig. 5 are a
Lorentzian curve of the same half-width, which
reveals a noticeable deviation from Lorentzian
behavior for the computed line shapes, and the
Lorentzian curve of the undamped RKKY line at
this concentration, which calibrates the line-nar-
rowing effect of the RKKY damping to be in this
case a factor of about 5.

Behavior of the computed half-width as a func-
tion of N5!/%(cc A7) is shown in Fig. 6. Interest-
ingly, the line narrowing is a very nearly exponen-
tial function of A;} as found experimentally, a fact
which appears to be accidental in the present treat-
ment. The behavior of Fig. 6 is quite accurately
represented by

T3() _ p-lesoNz1/®

Tz ()\sp) - (24)
As an initial assessment of the experimental re-
sults, we apply Eq. (24) to the observed decrease
in linewidth plotted in Ref. 14, yielding Xy, =74a
(a is the Cu lattice constant) for 1 at.% Al doping.
This value is almost twice the Ay,~40a deduced by
the authors in an approximate analysis. Further,
Eq. (24) may be seen to underestimate Ay, since
it applies to the half-width, whereas the peak-to-
peak derivative width (which was actually mea-
sured) decreases somewhat more rapidly. A close
examination of Fig. 5 shows that the latter quan-
tity is slightly smaller, relative to the half-width,
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than for a Lorentzian curve. This has the effect
of increasing the estimated A4,

We therefore find an effective mean free path
Agp rather closer to the resistivity value A, ~ 140a
quoted in Ref. 14 (for 1 at.% Al) than in the analy-
sis given there. Other data indicate, however,
that A, may be even larger. Vassel' reports for
this system a residual resistivity of Ap=0.8 p&
cm/at.% Al. Interpreted on a free-electron model
with one electron/atom, this gives A,~230a. It
appears then that A, and Ay, for this system are
significantly different.

As the RKKY width decreases in an experiment
such as this, the dipolar width contribution be-
comes increasingly important since it is not sensi-
tive to disorder. For the case at hand (i.e.,
CuMn) with Ju~1 eV, A is about an order of mag-
nitude greater than B [see Eqgs. (6) and (11)], so
that even after a reduction by a factor of ~ 3 in the
line-narrowing experiments, the RKKY width is
still several times the dipolar one. From Fig. 1,
then, we conclude that dipolar effects remain es-
sentially negligible.

Let us now apply the results of Fig. 6 and Eq.
(24) to the phenomenon of self-damping, i.e., to
the damping of RKKY oscillations by the impurities
which produce them. To do this we use electrical-
resistivity data to estimate the concentration at
which Eq. (24) predicts a 10% narrowing effect.
For the self-damping case, Eq. (24) becomes

%
Ta(=) _ exp[- 1. 61(pc)?/ 2o ,n],

TF (hap) (25)

where oy, is the effective scattering cross section
and 7 the number of conduction electrons/atom.
Equation (25) expresses the fact that, as the con-
centration is increased, the RKKY damping effect
grows more rapidly than the Lorentzian linewidth.
From residual resistivity measurements!®2° on

W

:% 0.7

)/ T

FIG. 6. Half-widths for exponentially damped RKKY
case in units of undamped half-width [T;‘(w)"] as a func-
tion of N5!/3«A;l. Solid line is exponential decay
exp(—1.59 N;!/3) for comparison.
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CuMn (Ap~4 pQcm/at.% Mn) we obtain the resis-
tivity scattering cross section o, =0.54a%. Adopting
this as an estimate of o, and taking n=1 in Eq. (25),
we obtain a 10% narrowing effect for ¢ =0.02. Fur-
ther, if o, for CuMn is several times larger than
o,, as appears to be the case for CuAl, then the
estimated ¢ for 10% narrowing could drop by near-
ly an order of magnitude. In any case it is clear
that self-damping effects are potentially important
even for concentrations less than 1 at.%.

We conclude this section by noting that the unique
range-function assumption of Sec. II may become
invalid in cases of relatively high concentration.
The onset of this effect is characterized by a de-
crease of the slope of linewidth versus magnetic
impurity concentration. In cases where magneto-
resistive effects are important one may also find
that impurity linewidth contribution fails to track
the magnetization curve. Finally, the results of
the elementary model of Ref. 14 are essentially
confirmed except for a numerical factor of the or-
der of 2.

V. CONCLUSIONS AND DISCUSSION

From a well-established formulation of the prob-
lem of randomly distributed impurities, we have
developed a technique for calculating the field or
frequency distribution at any point in a lattice.
Application here has been limited to the standard
cases of RKKY and dipolar couplings. Nonethe-
less, it is clear that this is a method of consider-
able generality, so that line shapes and widths can
be evaluated for any situation for which a range
function can be written down. It has been used,
for example, by Lang ef al.?! to estimate line-
width contributions from Co pairs in CuCo.

For the RKKY and dipolar couplings our results
show the dilute line to be Lorentzian and give the
linewidth law for combinations of these two inter-
actions, which cannot be derived by simple argu-
ments. The Lorentzian shape for dilute dipole-
dipole broadening has been derived some time ago
for spin 3 by statistical arguments'? and by means
of the method of moments. 2 The present work
generalizes this result to higher spin values and
shows that it does not simply scale with S. We
show further that the dilute line shape is Lorentzian
for any coupling which varies basically as R,
regardless of additional modulating factors which
vary with angle, spin orientation, etc. We also
conclude that interactions which do nof vary as R
will, by the same reasoning, nof generate lines of
Lorentzian shape.

It is to be emphasized that the line shapes cal-
culated here are strictly valid only in the absence
of other sources of line broadening. One can in-
corporate other (independent) sources of static
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broadening by a straightforward convolution pro-
cedure. Taking account of homogeneous (i.e.,
dynamic spin-spin) broadening is a rather more
involved question, since the inhomogeneous broad-
ening will detune neighboring spins to a degree
which depends on the relative amounts of homo-
geneous and inhomogeneous broadening present.
For strong inhomogeneous broadening then, one
need only take account of the static spin-spin cou-
pling.

As an example of dipolar broadening, we cite
the study of '*F NMR in impurity-doped antiferro--
magnetic MnF, by Butler ef al.?® There, by doping
of Zn"* into MnF,, one obtains a random distribu-
tion of “holes” in the magnetic lattice which act
as impurity moments of magnitude g S for the
sake of the dipolar line-broadening effect. Using
Eq. (13) with A=0, B=2yup, and p(x)=3[6(x - S)
+0(x+S)], we obtain Eq. (16) with (S,)=S and p
=2/dc (aPc is the MnF; unit cell volume). Numeri-
cal evaluation yields 1/yT5 =60 G/at.% Zn, in
good agreement with the measurements.

Another example of interest (see Sec. IV) is the
exponentially modulated RKKY interaction (due to
resistivity damping) first treated by Heeger et al.'*
This leads to a narrowing of the purely RKKY -
broadened line, and a distortion of the Lorentzian
shape which is noticeable in the calculations, but
which may be difficult to detect experimentally.
This effect may be divided into damping due to
the magnetic impurities which also generate the
RKKY broadening (self-damping) and damping due
to the resistivity of the host. In the former case
the line-narrowing effect increases initially as
¢?/3 (c is the magnetic impurity concentration) and
becomes appreciable for magnetic impurity resis-
tivity of the order of a few u® cm/at.% impurity.
at c~1 at.%. The host damping effect varies, in
contrast, as ppstc™t/®. It becomes important, for
example, in a metal having the resistivity of Cu
at 0°C (1.7 uQ cm) for ¢<0.01 at.%. It is clear
that one must be careful to avoid these effects in
RKKY linewidth studies.

One might also apply the methodology we have
presented here to the exchange-field distributions
which occur in RKKY exchange-coupled magnetic
impurity systems occasionally referred to as
“spin glasses.” Evaluation of such distributions
would help to determine whether the properties of
these systems can be understood with the RKKY
model and to what extent these properties scale
with concentration in the manner proposed by
Souletie and Tournier. 2

The application of our results to NMR linewidths
in dilute alloys such as CuMn, AgMn, etc., is
left for a future publication, since a detailed dis-
cussion of these matters goes beyond the intended
scope of the present paper.
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