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Two elastic spin models with nonclassical tricritical points are discussed. The singular parts of the free
energies near the tricritical points have homogeneity properties which must be formulated in terms of
curvilinear coordinates, although the linear variables of Griffiths or Riedel may be used more generally
than recently noted. One of our models, though not an example of the recent theory of constrained
systems, exhibits the same tricritical behavior as these systems. This similarity is explained on the basis
of a Curie-Weiss-like four-spin interaction occurring in our models as well as in the constrained spin
model of Rudnick, Bergman, and Imry. A more general equation of state for tricritical systems with

long-range interactions is suggested.

I. INTRODUCTION

A tricritical point (TCP) is a special critical
point in the space of thermodynamic states at
which a X line (second-order transition) turns into
a triple line (first-order transition). The critical
behavior in the neighborhood of these points is
quite different from that near normal critical points
and hence a great deal of recent attention, both ex-
perimental and theoretical, has been devoted to
their study.!

Although a number of models with a TCP have
been constructed, so far as we know the Baker-
Essam model?>? is the only example of a Hamil-
tonian model for which the exact equation of state
near the TCP is known.*® The singular part of
the free energy is a homogeneous function®=® only
in terms of certain curvilinear coordinates.* The
tricritical exponents are nonclassical, being sim-
ply related to the ) line exponents via Fisher’s re-
lations for renormalized exponents.® The Baker-
Essam model is an example for a theory of con-
strained systems® !° which applies to systems hav-
ing a line of “ideal” second-order phase transitions
with an infinite specific heat. Imposing a certain
macroscopic constraint on the ideal system both
induces a TCP, characterized by the ideal expo-
nents, and causes the usual Fisher renormalization
along the A line. Identical exponents and exponent
relations have also been found in the “constrained”
Ising model of Rudnick, Bergman, and Imry.!
Thus a certain class of tricritical scaling systems
with similar properties exists and one may ask
whether this type of TCP occurs even more general-
ly.

In the present paper we introduce two models,

A and B, one of which (A), though not an example

of the theory of constrained systems, exhibits the
same tricritical behavior as these systems. In
particular, we find for both models that the exist-
ence of homogeneity properties of the free energies
near the TCP depends on a proper choice of thermo-
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dynamic variables. The appropriate scaling vari-
ables are the same curvilinear coordinates as used
in the Baker-Essam model and in the constrained

systems, although the linear variables of Griffiths”

. or Riedel® turn out to be applicable more generally

than previously noted. %10

Our models are based on the elastic spin model
solved by Jasnow and Wagner, 2 for which magneto-
thermomechanics'®!® (MTM) is exact. The essen-
tial feature of the models—and generally of MTM—
is the existence of a Curie-Weiss-like four-spin
interaction which induces a TCP, provided that the
specific heat of the rigid spin system is finite
(model A) or a special type of spin exchange is as-
sumed (model B). It is just this long-range inter-
action which seems to explain the similarity be-
tween the tricritical behavior of model A and that
of the constrained systems, since this interaction
also induces the TCP in the constrained model of
Rudnick ef al. We conjecture that other tricritical
systems exist where long-range interactions play
an important role, and we suggest a general equa-
tion of state for such systems.

The outline of this paper is as follows: In Sec.
II our models are discussed qualitatively. Their
tricritical and scaling behavior is analyzed in
Sec. III, and alternative choices of scaling vari-
ables are considered. In Sec. IV we compare the
equations of state for our models with those of
the Baker-Essam model and the constrained sys-
tems, and discuss the reason for the similarity
of their tricritical behavior. A more general set
of phenomenological tricritical equations is given.
Our results are summarized in Sec. V.

II. TWO ELASTIC SPIN MODELS WITH A TCP

The models A and B introduced below are based
on the Jasnow-Wagner model, 2 a two-dimensional
compressible Ising model with a horizontal near-
est-neighbor lattice potential »(x) and a fixed verti-
cal separation between neighboring rows. The es-
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sential feature of the Jasnow-Wagner lattice is the
constraint that each column of atoms moves as a
“rigid rod”, i.e., each atom along a column must
have the same horizontal coordinate. This con-
straint leads to a Gibbs free energy per spin, G,
which is identical to that of magnetothermomechan-
ics!315 (MTM):

G(T, P, H) =min [Px+v(x) +f (T, H; J(x))], (2.1)

where x satisfies the equation of state

3f(T, H; J(x))

0=P+v'(x)+
dx

(2.2)
The value of x which minimizes the right-hand side
of (2.1) for a given temperature 7T, pressure P, 16
and magnetic field H, !" is identical with the mean
horizontal lattice spacing (8G/9P)r 4. f(T, H; J(x))
is the free energy per spin of the rigid Ising mod-
el with a horizontal exchange constant J(x) and a
uniform horizontal lattice spacing x.

A qualitative discussion of (2.1) and (2. 2) shows!?
that for realistic lattice potentials v(x) and ex-
change constants J(x) a first-order phase transition
occurs for H=0 and for all P> 0, due to a lattice
instability brought on by the divergent Ising specific
heat. However, a TCP may exist if the rigid spin
system has a finite specific heat'®!® (model A), or

if a special x dependence of J(x) is chosen (model B).

A. Model A

As a particular example, 2° where the rigid spin
system has a finite specific heat, we consider a
classical nearest-neighbor Heisenberg spin sys-
tem on a three-dimensional Jasnow-Wagner lat-
tice with rigid planes instead of rigid columns.
Obviously the macroscopic lattice constraint
again strongly suppresses lattice fluctuations, and
we expect that it also ensures the validity of MTM,
independent of the type of spin system. Indeed,

a discussion of the Laplace method applied to
model A (Appendix A) and the comparison of the
effective Jasnow-Wagner spin Hamiltonian with
the MTM Hamiltonian (Appendix D) strongly sup-
ports the above expectation.

Assuming the validity of MTM, we start from
(2.1) and (2. 2), where now

T, By 9(x)) =1 (T, H; J(x)) +f (T, x), H) (2.3)

is the rigid Heisenberg free energy divided into an
analytic and singular part with

(T, x) =7 (T T - TO[J(x)]} . (2.4)
The functions J(x), 7,(7) and the rigid Heisenberg
transition temperature 72[J] are assumed to be
analytic functions with d72/dJ>0, J>0, dJ/dx<0.
For H=0, we assume f,(1, 0)~ A, |7 |¥"*# with 4 <0,
A, >0, which gives an upward-pointing cusp of the
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FIG. 1. Schematic plot of the curves P +v'(x) (dashed
lines) and — 9f(T, 0; J(x))/0x (full lines) for model A as
functions of x for several values of P and T. The curves
— 9f/ 8x have their maximal slope at the critical spacing
x.(T) (dotted line). For T=T,andP =P, the curves inter-
sect tangentially at the tricritical lattice spacing x;
=x,(Ty). The slope of the dashed curve for P<P; has
been excessively flattened to show the three intersections
more clearly.

specific heat.” As in Ref. 12, the lattice potential
v(x) can be quite arbitrary.

The qualitative behavior of model A can be
understood!? by discussing the possible solutions
x(T, P, H) of (2.2), which are given by the inter-
sections of the curves P+v’(x) and — 8f /8x shown
schematically in Fig. 1. For H=0 and fixed 7,

- 98f/8x is singular at a critical spacing x,(7),
which is uniquely determined by inverting

T= T [J(%)]. (2.5)

Since the slope of —3f/8x is maximal but finite at
%,(T) (ay <0), the number of possible intersections
in the neighborhood of x,(7) depends on the slope
of P+v'(x,). For small P, three intersections oc-
cur near x,(7) when

¥ (T, 0; J(x (1))
9+ >

(4

v"(xc) <

which implies a first-order transition. For suf-
ficiently large P, the curves intersect at small x,
where v'(x) becomes arbitrarily steep. This yields
a unique intersection and hence a continuous phase
transition at x,(7) for H=0. The TCP, where the
transition changes from first to second order, is
defined by the requirement of a tangential intersec-
tion at x,(7). Thus the tricritical temperature T,
and pressure P, are the solutions of

P+ (x, (7)) =~ (T, 02;](xc(T))) (intersection),

(2.6)

2 .
0" () = - LD J}Kxc(r»)

(4

2.7

The qualitative behavior of model A is further il-
lustrated in Figs. 2 and 3.

The existence of the first-order surfaces
(“wings”) for H#0 can be understood from a graphi-
cal solution of (2.2) similar to that shown in Fig.
1.2 Clearly, for P< P, and sufficiently small H

(tangential intersection) .
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FIG. 2. P-x phase diagram of model A for H=0 with
isotherms of various temperatures (qualitatively). The
isothermal compressibility k ~— (8x/8P)r = " +8f/
8x%)™ diverges at the TCP. The boundaries x;(P) and
x7(P) (dashed lines) of the coexistence region (dotted)
meet the second-order line P.(x) tangentially at the TCP
with [xy(P) —xy(P)] ~ (P, — P)™\/*H ag follows from scaling
according to (3.11) and (3.14).

#0, a first-order transition will still occur. As

H and T increase, the maximum slope of - 8f/8x
decreases; thus the jump of the mean lattice spac-
ing becomes smaller and ultimately vanishes for
P=P,(H) and T=T,(H), which defines the wing
critical lines. The location of these lines is de-
termined by requiring that P+v'(x) intersects
tangentially with - 87(7, H; J(x))/8x at the point
where —9f/8x has its maximal slope:

P+’ (%)=~ ¥z ;Ix J(x)) (intersection),

(2.8)
()= = Bzf(TzaHE' J(x))

(tangential intersection), (2.9)
02 (T, By 3(x)
-] ;g
(maximal slope at the tangential

intersection). (2.10)

Owing to the symmetry of f with respect to H, one
obtains two symmetric lines of critical points in
the T-P-H space (Fig. 3). The critical behavior
along these lines will be classical because of the
analyticity of f(T, H; J) for H#0.

B. Model B

In this version of the Jasnow-Wagner model we
choose the x dependence of J(x) such that in a cer-
tain pressure region the Ising spin system is de-
coupled from the lattice and thus displays the
normal rigid-lattice phase transition. For values
of pressure outside this region, however, a first-
order transition will occur for the same reason as
in the original Jasnow-Wagner model.

As a simple example®® we consider a function
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J(x) of the type shown in Fig. 4(a). Near x, we
assume

J(x)=d(x,) = colx=%)"O(x - x,) , (2.11)
where
e(y)={(1) :z:z:g 2.12)

is the step function, ¢,> 0, and, for simplicity,
n>2. The spin system is taken to be the three-
dimensional Ising model with a free energy (2. 3)
where f,(7,0)~ B,I71*%1, @,>0, B,<0. The quali-
tative behavior of this model can be understood
similarly as that of model A by discussing the
graphical solutions of (2.2) [Fig. 4(b)]. The
tricritical temperature 7 is

T, = T2 [J(x)] (2.13)
and P, is given by
Pi=-v'(x), (2.14)

since 8f/8x=0 when x = x,.

III. SCALING FORM OF THE FREE ENERGY NEAR THE
TCP

Throughout the following analysis of critical
and scaling behavior we shall use the field vari-
ables T, P, H. In this field space the A line and
its smooth continuation below the TCP plays the
role of a natural reference line, although it has no
direct physical significance in the first-order re-
gion below the TCP. This line, denoted by 7,(P),
is obtained by solving

FIG. 3. P-T-H diagram for model A. The second-
order lines (full) and the triple line (dashed) are shown.
The first-order phase surfaces are indicated by parallel
markings.
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P+v’(xc(T))= - of (T, 0; J(&(T)))

ox, (3.1)

for T as a function of P. Equation (3.1) follows
from (2.2) by inserting the critical spacing
x=x,(T) defined by (2.5). For model A, T,(P) is
analytic [Fig. 5(a)], whereas for model B the par-
ticular choice (2.11) of J(x) leads to a singularity
of T,(P) at the TCP [Fig. 5(b)].

Expanding the right-hand side of (2.1) in terms
of the variables

A=P-P,, g=T-T,P), t=H, (3.2)
we find for model A
G(T, P, H) =G, (T, P, H)+ G,(\ g, £), (3.3)

where G, is an analytic function and the singular
part G, has the following leading term (Appendix
B):

G,(\, g, £)=min[- a7 + 3 @)+ f (1, £)], (3.4)
with 7 =7(}, g, £) satisfying

0=—a1g+azhr+ﬂ%;-)— . (3.5)

For model B we obtain in leading order (Appendix
B)

G(T, P, H) =G,(g, P)+G,(\, g, £),
with

(3.6)

T

9
Gy(g, P)=G(T,(P), P, 0) +g(—f )
T=TC(P), H=0, x=xc(Tc(P))

and (3.7)
J(x)
(a)
-
]
!
. P<R
A T
!
1/ T>Ty
,’ /
I /
(b)

FIG. 4.(a) Horizontal spin exchange constant J(x) for
model B, J(x) is constant for x <x,. (b) Schematic plot
of the curves P +v’(x) (dashed lines) and — 9f(T, 0;J(x))/
9x (full lines) as functions of x for model B. For x <x;,
the curves — 8f/9x =— (3f/8J)J’ (x) coincide for all T, since
J'(x) =0 for x =x,.
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FIG. 5.(a) P-T phase diagram for model A and (b) for
model B. The triple line (dashed), crossover lines
(dotted), and the A line and its smooth continuation below
the TCP (full line) are shown. For model B, T (P)—T;
~ (Py— P)"©(P,— P) near the TCP.

6.0v g 01=min B0 (3 6,0

(3.8)
where O is the step function and 7 =7(), g, £) is a
solution of

0=7 =g+ b(=2)2"Dg(=2) —L—afa(:’ . @9
The constants a,, a, and b are positive.

Above the TCP (1> 0) near the second-order line
T.(P) (g~ 0), (3.5) and (3.9) simply reduce to g~7,
and the leading singular part of G, becomes

Gs~fs(g¢) (3.10)

for both models. Thus the critical behavior along
the X line is governed by the underlying rigid spin
system.

The singular parts of the free energies (3.4) and
(3.8) satisfy the tricritical scaling relation

- A
G\ g, 8)= A “t)Gs ("Es f_o, LogAt ) s
(3.11)
with L >0, provided that the free energy f,(, ¢) is

a homogeneous function. To show this we assume

for any L >0
- T ¢
1o, 0= 27 5 ) (3.12)
and first verify that 7(), g, £) scales. For model
A this follows from substituting
T(L*A, Lg, L°E) =LT(), g, ) (3.13)

into (3.5) and using (3.12) with ¢ =a,, A=4,. We
obtainthe exponents a=—-ay, b=1-ay, c=4,. Now
inserting (3.13) with these exponents into (3.4), we
recover Eq. (3.11), where

A= , ¢=— (3.14)

o - ay - A 1
¢ l—CYH oz,’

1-ay’

with @;>0 (@, <0). Similarly, for model B, using
(3.13) and (3.12) in (3.9) and (3.8) with ¢ =a; >0,
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A=A, we obtain (3.11) with exponents

2(n-1)

A, =A =
¢=8r, @ .

Q= Qr, (3- 15)
Hence the free energies (3. 4) and (3. 8) satisfy the
tricritical scaling law (3.11) with exponents that
are simply related to the A line exponents, though
apparently unrelated to the classical wing expo-
nents. The asymptotic shape of the triple line and
the wing lines follows from scaling arguments,®
and the relationships among tricritical exponents
implied by scaling are summarized in a paper of
Griffiths.”

The following anomalous behavior of model B
should be pointed out. As mentioned above, the
phase line T,(P) is nonanalytic at the TCP due to
the singular nature of J(x). This singularity ap-
pears both in G, and G, (3.7) and generates, in
addition to the tricritical phase structure, a mathe-
matical singularity in the plane P =P, = const.
Clearly this is an artifact of model B, and we have
ignored G, in the above discussion, since it con-
tains only this type of singularity. If G, is also
considered, tricritical scaling of the full singular

-free energy is not obeyed. However, even in this
case the order parameter ¥(), g, £)=-9G,(7\,g,£)/
8¢ is a homogeneous function of A, g, ¢.

In conclusion, the set of variables (3.2) with the
“floating” variable g= T - T,(P), as used previous-
ly by several authors,*1%2+% jndeed seems to give
a natural description for a certain class of tri-
critical models. There may stillbe, however, the
possibility of using the linear variables of Griffiths,

X=P-P,, g=T-Ty(P), t=H, (3.16)
where T,(P) is the line tangent to 7,(P) at the TCP.

The question as to whether the variables (3.16) and

(3.2) are equivalent with respect to scaling has

been recently discussed.*!° This discussion, how-

ever, is incomplete and can be considerably sim-

plified (Appendix C), yielding the following results. %7

(1) If G, is a homogeneous function of 1, g, £, then
it is also a homogeneous function of A, g, ¢.

(2) If G, is a homogeneous function of A, g, ¢, then
it may or may not be a homogeneous function of
\,&1,¢. More specifically, assuming T (P)~ T,(P)
+AIN | *1(Fig. 6):

(a) If ¢y=¢, G, is also a homogeneous func-
tion of A, g, ¢.

(b) If ¢, > ¢, there exists a neighborhood of
the TCP, where G, is still a homogeneous function
of A, g;, £ with the same exponents [Fig. 6(a)].2®

(c) If ;< ¢, no such neighborhood exists [Fig.
6(b)].

Thus the linear variables (3. 16) can be used
more generally than previously noted, *'1° since on-
ly in case 2(c) are the variables (3. 2) and (3.16)
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inequivalent with respect to scaling. Due to the
analyticity of 7 .(P) (¢, =2), this is just the case for
model A and the constrained systems if @,<3. For
model B, case 2(c) applies also (¢, =n), whereas
for the Landau model?”®° one has ¢ = ¢, =2 [case
2(a)]. All cases may occur in Kortman’s phenom-
enological model® or in the more general equations
(4.11) in Sec. IV. As a final remark we note that
if T.(P) is analytic, the variables (3.2) as well as
(3.16) are a simple example of the scaling fields
£1,82,85 of Wegner and Riedel, *! since (3.2) and
(3.16) are analytic functions of the experimental
fields T-T,, P-P,, H.

IV. TRICRITICAL EQUATION OF STATE IN SYSTEMS WITH
LONG-RANGE INTERACTIONS

In this section we compare the tricritical be-
havior of our models with that of the constrained
systems of Imry, Bergman, and Entin-Wohlman.5
As an example of their theory we consider the
three-dimensional Baker-Essam model,?"* where
the relation P=F/{(a)® between pressure P, force
F, and mean lattice spacing {a) is interpreted as
a macroscopic constraint. For constant F the
transition at 7= T%F) remains of the rigid Ising
type, whereas for given P>0 a renormalized sec-
ond-order transition occurs at 7 =7T,(P), which
turns into first-order for P<0. Near the TCP
[P,=0, T,=T,0), H=0] the relation connecting the
“constrained” and “unconstrained” system is®?

g=AT+B7\(——-5—_ A D) , (4.1)
14

aT
where f; is the singular part of the rigid Ising free
energy, (7, F)=T - T(F), g=T- T,(P), A=P,
£=H, and A, B are positive constants. Using (4.1)
it can be shown that the leading singular part
G,(7, g, ) of the total free energy obeys the tri-
critical scaling law (3.11) with o, =y, A, =4,

Te(N)
Al @) A

Te(A)

0 T (A

TZ00 T T

T-T T-T,

FIG. 6. The relationship between the crossover lines
T3\ ~T,(\) +B*|A|® (dotted), the second-order line
T,(\) ~T{(A) +A | A1®! and its tangent at the TCP, Ty(\).
(a) When ¢, > ¢, the difference between Ty and T, goes
to zero more quickly than the distance between T'% and
T, (as A—0), thus T, and T, are equivalent reference
lines. (b) When ¢y <¢, T lie asymptotically closer to
the scaling reference line T, than T, thus 7, cannot re-
place T, as a reference line.



4780

and ¢ =1/q,, provided that £,(r, ¢) is a homogene-
ous function of 7 and ¢ with normal critical expo-
nents q; and A,

To simplify the comparison of the Baker-Essam
model with our models and to provide a simple way
for generalizing the tricritical equations of these
models, we turn to the parametric scaling repre-
sentation of Josephson and of Schofield.?*'3% Thuswe
first describe f,(r, ¢) via the order parameter

¥=r°"1y,(6) (4.2)

using the “polar” coordinates » and 9 [“distance”
from and “angle” around the normal critical point of
fs(™, £)], which are defined by the relations

T=7r7(6%), (4.3a)

t=r*1g(0) . (4. 3b)
The specific form of the §-dependent functions is of
minor interest and is briefly discussed in Appen-
dix E. Now inserting (4.3a) into (4.1) and writing
- 8f, /87 =r'"45,(6%), we obtain from (4.1), (4.3b),
and (4. 2) the Baker-Essam tricritical equation of
state in terms of “cylindrical” coordinates A, 6,
and R=»'" (Fig. 7)%:

g=\RBS;(6%)+ RY " *P A7(9?),
t=RA/ 1D E(g),
w = RBI/(l-at)wI(g) .

For the constrained systems the tricritical equa-
tions are the same, except that X is replaced by
A*, with & odd positive.3 The order parameter
is related to f,(r, ¢) and G,(}, g, £) according to

(4.4)

FIG. 7. “Cylindrical” coordinate system used in Sec.
IV. Curves for constant Schofield parameters R and 6
in the plane A=const,. >0 are shown. The local Cartesian-
coordinate system refers to the in-plane scaling variables
g,%. By varying 0 from +1 to —1 one turns from the
‘“positive” (H=+0) to the “negative” (H=-0) sheet of the
first-order surface (parallel markings). For A<0, the
first-order surface (6 =+1) extends to the triple line
(dashed), and the corresponding curves R = const. and
0 =const. are more complicated.
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Y 2 c>=_(*’f (T(;E 8 8), c))

T

=_<ac,(>\,g, :)) , 4. 5)

1

which also holds for our models.3®

For model A the corresponding equations are
similarly obtained by introducing R and 6 accord-
ing to 7 =R7(6 %), ¢=R*#Z(6), and using 9f,/oT
= RY"*#S, (%) in (3.5):

- I |
g=AR%7(9?)+ Rl 2 5,(0?),
aQ a

¢=R*HE(9),
»=RPHP,(0)

(the subscript H refers to the Heisenberg model).
For model B we use (4.2) and (4. 3) and obtain
from (3.9), with - 9f, /87 =»!"*15 (%) and R=r'"",

g=- (_ A)Z(n-l)e(_ X)RbS,(G 2) + Rl/ (I-aI).F(e 2),
¢ =RAV1-eD £ (g), (4.7)
w=RBI/(l-ul)wI(e) .

The above parametric representation clearly
shows the formal similarity of these TCP’s. In
particular, (4.4)and (4.6) have an identical struc-
ture apart from unimportant differences in the 6-
dependent functions (Appendix E). This becomes
more apparent when the Ising exponents appearing
in (4. 4) are rewritten in terms of the renormalized
exponents a, §, A defined by

(4.6)

. (4.8)
1

Equation (4. 4) then has the form of (4.6) where the
Heisenberg exponents a, <0, B,, A, are replaced
by a<0, B, A.

We thus reach the interesting conclusion that the
macroscopic Hamiltonian constraint in model A—
the requirement of rigid planes—combined with a
spin system of finite specific heat leads to the
same tricritical behavior as found in the thermo-
dynamic theory of constrained systems. This re~
sult is surprising, since model A cannot be viewed
as an example of this theory. Indeed, in model A
there is no underlying transition corresponding to
the “ideal” transition in the constrained system,
as, for example, the Ising transition in the Baker-
Essam force ensemble. Furthermore, the finite
specific heat along the X line (a,<0) is not induced
by the Jasnow-Wagner lattice constraint.

The similarity of the tricritical equations sug-
gests that the existence of a macroscopic constraint,
though different for each system, leads to a com-
mon mechanism governing the tricritical behavior.
In fact, the essential property which induces the
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TCP both in model A and in the model of Rudnick
et al.,'! an example of the constraint theory, is
the presence of a Curie-Weiss-like interaction be-
tween pairs of spins (Appendix D). The effective
spin Hamiltonian of both models (and also of MTM)
is essentially of the form

Hye= ¢ Ho+ (co/ N)(Hp)? , (4.9)

where Hy=2¢; » S; - §, is a nearest-neighbor spin
interaction and N is the number of spins coupled
through the four-spin term (H,)2. The coupling
constants ¢; and ¢, depend on the secondary field
variable (pressure in the case of model A). In the
model of Rudnick ef al. the four-spin term (“quar-
tic pairing term”) is formally introduced by a
transformation of variables, whereas in model A—
as well as in B and generally in MTM—it is an ef-
fective interaction arising from the spin-lattice
coupling (Appendix D). In all cases this four-spin
term induces the first-order transition below the
TCP, and its relative strength c,/c, determines the
magnitude of the first-order jump in various ther-
modynamic quantities. Hence the nature of the
instability in the model of Rudnick et al., and thus
presumably in the Baker-Essam model and in the
constrained systems, is identical to that of the
well-known MTM first-order transition.

Of course, imposing a macroscopic constraint
is only one possible way of generating such long-
range interactions. There are probably other sys
tems where short-range and long-range interac-
tions combine to produce a similar TCP, though
the presence of a constraint is not apparent. We
summarize the essential properties of this class
of tricritical systems as follows.

(1) Short-range and long-range interactions are
present. .

(a) The short-range interaction leads to non-
classical critical exponents along the X line. The
specific heat is finite along the X line.

(b) The interactions combine to produce a
TCP with exponents that are simply related to the
A line exponents through the dimension independent
relations of Fisher’s renormalization.® In particu-
lar, the specific heat diverges at the TCP (a,>0).
The crossover exponent is ¢ =1/a,.

(c) The instability at the triple line and on the
wings is induced by the long-range interaction.
The wing exponents are classical.

(2) Tricritical scaling holds in terms of the
“floating” variable set g= T~ T,(}), A=P-P,,
¢ = H, provided that normal critical scaling along
the X line is fulfilled.

(3) The explicit X dependence in the equation of
state as well as the function 7,() are analytic at
A=0.

Evidently, due to case 1(b), the above tricritical
properties represent only a small class of tricriti-
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cal systems. We expect in general, that the pres-
ence of long-range forces need not lead to such
special exponent relations. A simple example of
this is the Landau tricritical model,? 3° which has
the parametric equation of state®

g£=2Rz;(6%) +R%3,(62),
§ = )\Ra/azl(e) + RS/ZEZ(Q),
v=RY%,(0),

as can be verified by inserting (4.10) into ¢ =Agy
+BxpR+9°. If we now look at (4.4), (4.6), and
(4.10) in a phenomenological way and use these
equations as a guide, we are immediately led to
the following generalizations:

g=2"Rg (0% + R™*g,(69),
£=2A"R,(8) + RA*£,(0),
Y=\"RPY,(8) + R*9,(6),

with Greek exponents positive and integers &, m, n
nonnegative with 2 odd. These tricritical equa-
tions have the following properties (Appendix E):
The normal critical exponents (A>0) and tricriti-
cal exponents (A=0) are A, Band A, =(A+p)/(1+¢),
B, =(B+v)/(1 +¢), respectively. Normal critical
scaling is implied by (4.11), and tricritical homo-
geneity of ¥(}, g, £) holds if u=me/k and v =ne/k,
leading to a crossover exponent ¢ =(1+¢€)k/e>1.
Since ihe parametric representation (4.11) is an-
alytic for R>0, the wing critical behavior should
be classical.

The tricritical equations of the constrained sys-
tems and model A are recovered from (4.11) if
m=n=§,=,=0. Similarly, the Landau model
(4.10) is obtained if k=m =1, n=y,=0, and Kort-
man’s equation of state® is obtained for k=m =1,
p=€, n=¢,=0.

We conjecture that the asymptotic phenomeno-
logical equations (4.11) describe a general class of
tricritical scaling systems, where some sort of
long-range interactions play an important role as
suggested by the classical wing behavior. On the
other hand we suspect that such systems again
have similar artificial features as the Baker-Essam
and the Jasnow-Wagner model or are subject to
special macroscopic constraints.

(4.10)

(4.11)

V. SUMMARY

We have examined two elastic spin models A and

B which exhibit nonclassical tricritical points.
Both models have singular parts of the free ener-
gies which obey tricritical scaling. However,
model B has an additional singular part due to the
nonanalytic x dependence of the exchange constant
J(x). For both models tricritical scaling must be
formulated in terms of the same curvilinear co-
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ordinates as in the constrained systems of Imry et
al.*%1% Thus these types of variables, which are
simple examples of the g fields of Wegner and
Riedel,® seem indeed to be appropriate for a
certain class of tricritical scaling systems. If,
however, the crossover exponent is sufficiently
small, the linear variables of Griffiths” or Riedel®
can equivalently be used.

The tricritical exponents of our models, though
unrelated to the classical wing exponents, are
simply related to the normal critical exponents.
This relationship [see (3.14) and (3.15)] does not
explicitly depend on the dimensionality of the sys-
tem which enters only through the values of the
normal critical exponents. Thus the exponent re-
lations do not agree with those obtained from the
theory of Bausch.?® The exponents differ also from
those of Kortman’s phenomenological model® and
of the nonscaling®® model of Riedel and Wegner.*

The comparison of model A and the theory of
constrained systems shows that the structure of
their tricritical equations is identical, although
model A is not an example of this theory. This
similarity can be explained on the basis of a Curie-
Weiss-like interaction between pairs of spins,
occurring both in model A and in the model of
Rudnick, Bergman, and Imry,!! an example of the
constraint theory. A comparison of the effective
spin Hamiltonians reveals the magnetothermo-
mechanical nature of the first-order instability in
the model of Rudnick ef al. and thus presumably in the
Baker-Essam model andin the contrained systems.

Finally, a more general set of tricritical equa-
tions has been suggested which, besides model A
and the constrained systems, also contains the
mean field and Kortman’s phenomenological mod-
el. We conjecture that these equations represent
a general class of tricritical scaling systems
where long-range interactions play animportant role.

Note added in proof. Within the Wilson theory,
F. J. Wegner [J. Phys. C (to be published)] has
very recently considered the effect of long-range
four-spin interactions of the type discussed above.
For the case of a finite specific heat of the rigid
spin system, his analysis leads to the possibility of
a tricritical point with the same exponent relations
as for model A [ see Eq. (3.32) of Wegner and Eq.
(3.14) above]. Since our thermodynamic analysis
of model A applies generally to magnetothermome -
chanicsin case of @ < 0, the resultingtricritical equa-
tion of state (3.5) or (4.6) should also describe Weg-
ner’s “modified magnetothermomechanical ” model.
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APPENDIX A: LAPLACE METHOD FOR JASNOW-WAGNER
LATTICES

To make apparent which assumptions are re-
quired to obtain the MTM result (2.1) and (2. 2) for
model A, and generally for spin systems on Jas-
now-Wagner lattices, we discuss briefly the evalu-
ation of the partition function by using the Laplace
method.*

We consider a d-dimensional Jasnow-Wagner
lattice with M vertical “rigid” planes (d=3) or
columns (d=2) and N Ising or classical Heisenberg
spins §k, = il each plane or column (m=1,2,..., M;
k=1,2,..., N). The first plane is held fixed at x,
=0, and an external force NP is applied to the Mth
plane. The Hamiltonian in zero magnetic field is
given by H=H; + H, with a lattice part

M1 :
HL=N<PxM+ 2 v(x,,,,,l—x,,,)) , (A1)
N m=1 .
where v(x) is the horizontal nearest-neighbor lat-
tice potential, and with a spin part
M-1 N
H,= 2 J(xml - xm) Z §k.mol . §k,m + E I}(’n) ”
m=1 k=1 m=l (AZ)
where x,, is the horizontal position of the mth plane
and A is the spin interaction within this plane.
By using the iteration procedure of Jasnow and
Wagner!? and performing the trace over the spins,
the partition function can be written as

2T, P)= [ dg; -+ [ dt
Xexp[— BNMGM (51, 52’ ey Eu-l)]’

with . (a3)
M—
Gully, Ep oo oy Eper) = ‘1]‘7 :2/1 [PE,, +v(E,)]
+fM(T;EI’ "',EM-I)s (A4)

where f, is the free energy per spin of the rigid-
spin system with separations ¢, between the planes
(columns) m and m+1.

We first consider (A3) for fixed M and N. Since
the form of the integrand suggests using the Laplace
method, we look for the extrema of G, at fixed T
and P:

an(T; ‘E[l)’ e ey 524-1)

Gy _
g,

[P+ (£%)] +

=0 (m=1,2,...,M-1). (A5)

We consider a realistic lattice potential v(x) with
v"(x)== as x—0. Hence the solutions %, of (A5)
become arbitrarily small for sufficiently high P
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and any finite M, as follows from a qualitative plot
similar to that given in Fig. 1. Since the matrix

Gy _1 0% (T5 Epy o v vy Eyey)

5-‘5—5‘&— 7? (£)8;,+ TR (A6)
is positive definite for sufficiently small £, (and
thus G, is convex in this region), G, has a unique
minimum for sufficiently high P and all tempera-
tures T (and for an arbitrary magnetic field). The
location of this minimum is given by the uniform
solution of (A5)

g=t3=- = &5, = yu(T, P), (A7)
where y, satisfies
0= M-1 [P+v'(y,)]+ T3 Iyy) (7; J(yy)) (A8)

M 3y y

with £,(T; J(y))=fi(T; Y, .-, ). We note that
so far no specific properties of the spin system
have been used.

The assumption that the uniform solution (A7)
gives the absolute minimum of G, for all pressures,
seems to be correct at least in the case of the two-
dimensional Ising model (outside the first-order
coexistence region) in the limit N, M~ . Indeed,
if the Laplace method is applicable to (A3) for
fixed M and N- «, this assumption leads directly
to the Gibbs free energy per spin

. InZ
Gy (T, P)= }Il-rg <— kg T—ﬁ)

[Pyus o]+l T TaD),

(A9)
where y,(7, P) is a solution of (A8). By now taking
the limit M- =, the MTM result (2.1), which is
rigorous for the two-dimensional Ising model,!? is
recovered. Note that the applicability of the La-
place method in case of a finite number of inte-
grals should not require analyticity of G, as N— «,
but should only depend on the convexity property
of G, (see Ref. 41).

For the three-dimensional Ising model the same
result is expected,!? since the dimensionality of
the spin system enters only through the form of
the rigid free energy, which should be qualitative
similar to that of the two-dimensional case. In-
deed, we expect that only general qualitative fea-
tures of the rigid free energy f,, in particular of
the matrix 8%f ,/5£,8¢,, are required to establish
that the uniform solution (A7) gives the absolute
minimum of the function G, (A4) in the thermody-
namic limit. Since the over-all functional depen-
dence of the rigid three-dimensional Heisenberg
free energy on J(£,) should be qualitatively similar
to that of the two- or three-dimensional Ising mod-
el, we expect the MTM result (2.1), (2.2) to be

= min M-1
- M
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valid also for model A.

An analysis of the effective spin Hamiltonians
for general spin systems on Jasnow-Wagner lat-
tices is given in Appendix D. These Hamiltonians
turn out to have the same form—independent of the
type of spin system—which is essentially the same
as in the case of MTM. This provides strong sup-
port for the above qualitative discussion.

APPENDIX B: SINGULAR PART OF THE FREE ENERGIES
OF MODELS A AND B

In the following expansions of the free energy

G(T, P, H) = min[Px+ v(x) +£,(T, H; J(x))

+£f(r (T, x), H)] (B1)

we consider only a small neighborhood of the TCP
and therefore retain only the lowest-order terms.
Besides g= T - T,(P) and A= P — P, we use the no-
tation x,[P]= x,(7,(P)), Ax=x - x,[P], and x,=x,(T,).
For simplicity we ignore the analytic function

To(T) in (2. 4).

For H=0, f,(r(T, x),0) in (B1) is singular along
the line 7(7, x) =0 or T= T2[J(x)] in the T-x plane.
The natural appearance of the “floating” variable
7(T, x) in (B1) suggests using the corresponding
“floating” variable g= T - T,(P) in the T-P plane.
Thus expanding the first three terms in the Gibbs
free energy (B1) and the corresponding terms in
the equation of state (2.2) around T= T,(P) and
H=0 for fixed P and using (3.1), we obtain

G(T, P, H) = G(T,(P), P,0) +g %f; +G(g, P, H),

- (B2)
G(g, P, H)
=min[k(P)gAx +3h(P)Ax% +f,(r (T, x),H)],
and ) (B3)
0=, (P)g + ho(P)AX + %’a@ Z—; , (B4)

with ,(P)=28%, /8 Tox, h,(P)=v" +98%,/3x? taken
at T=T,(P), H=0, x=x,[P]. In order to eliminate
Ax in favor of T, we expand 7(T, x)= T~ T2[J(x)]
around x,[P] using T?[J(x,[P])] = T,(P). Thus
T=g+hy(P)Ax, (B5)

where /i3(P)=~ (dTJ/dx);es,1p1 - From (B4) and
(B5) we obtain

.1 3fs(T,H)) B6
Ax= T =T (hl‘r +hy =5 . (B6)

The final step in obtaining Eqs. (3.3)-(3.9) is to
expand &, (P), hy(P), and hs(P) around P=P, .

A. Model A

According to (2.7) and the analyticity of 7.(P),
hy(P) reduces to
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ho(P)=ax, (B7) gy in terms of the variables (3.16):
. x 1
with . G (L fﬁ) WGS(X, &1) (C1)

- 9%, (T, (P),0; I(x, [P])),)
a-L (v G [P+ TlZLE) "
Inserting (B6) into (B3) and replacing &, (P) and
hy(P) by hy(P,) and he(P,), respectively, yi: lds the
following leading term of G:

Gs()\; & H) =min [— a!.gT + %027\72+fs(7', H)]; (BB)
T

where, according to (B3), 7 =7(), g, H) satisfies

0—-a1g+aa7\7+—5———f(: H) R (B9)

with a, = = b (P,)/hy(P,), a»=a/[hs(P;)]2. For <0
and sufficiently small | Hl, the solution 7(), g, H) of
(B9) is triple valued. This follows from g, >0,

ay> 0 because of ,(P,)<0, hy(P,)>0, a>0 and from
8f,(r, 0)/a1 = c,| 71" % sgn(r) with ¢,>0 (upward-
pointing cusp of the specific heat).

B. Model B

Both 7,(P) and h4(P) are proportional to J'(x,[P]),
which is zero for P > P,; h,(P) can be replaced by
v"(x,) since 3%, /8x2=0 at the TCP. Inserting (B6)
into (B5) yields, in lowest order,

gor s P 2 )

v (%) o7 (B10)

Now substituting (B6) into (B3) and using (B10) to sort
out the lowest-order singular terms of G, one obtains

G\, g, H)= mm[2 —%(af ) +f,(r, H )], (B11)

where 7 =7(), g, H) satisfies (B10). For P< P, and
sufficiently small |H 1, 7()\, g, H) is triple valued,
since #%/v" >0 and 8fs('r 0)/87==c,IT|¥% sgn(r)
with ¢,>0.

Finally, in order to calculate J'(x,[P]) we sub-
tract (2.14) from (3.1) and expand v'(x,[P]) around
x; to linear order:

0=1+0" ()5 [P] - )+ Lo S (e [P).  (B12)
Since according to (2.11)
J'(x) = = ncy(x = x,)"10(x - AR (B13)

with -1>1, we find from (B12), in lowest order,
%[P] = %, == X/v"'(x,) and thus, by inserting this
into (B13),

ne gy

J'(x,[P] -—(—”Ff( Arle(-a). (B14)

APPENDIX C: EQUIVALENCE OF TRICRITICAL SCALING
VARIABLES

In order to verify case (1) in Sec. III, we assume
homogeneity of the singular part of the free ener-

where L>0. The ¢ dependence has been dropped,
since it is irrelevant to our discussion. Equation
(C1) implies that since T,(P) is a line of singulari-
ties, it is a crossover line, i.e., T,(P)- T,(P)
~CIxl®, which yields the transformation g,~g
+CIAl®. Inserting this into (C1) we see that G, is
also a homogeneous function of g and A with cross-
over exponent ¢.

To prove case (2) in Sec. III, we assume the
scaling form

Aog 1
Gs(i ) z:) = Towan Gs 8) (c2)
for any L>0. In this case T,(P) is a reference

line, and its shape is not deter mined by scaling
properties. Thus we have T,(P) - T,(P)~A|X|*,
where the exponent ¢, need not be equal to the

crossover exponent ¢. This yields g~g; —AlX[®1 or
£ & _ |A|°’l 0170 c3
75 "o — Al L. (C3)
Thus

A g L g 1
Gs(f, f; -A|f| L*1 °): Tozap Gshgy
—Alx%1), (C4)

Evidently G, is not a homogeneous function of g,
and X unless ¢, =¢.

However, the scaling property (C2) is expected
to be an asymptotic property which holds only in
the limit A~ 0, g~ 0, L—0 with \/L~¢,, g/L°
-~ Cy Where |cyl<o, |cyl<o, Assuming ¢,> ¢
and going to this limit® in (C4), the terms pro-
portional to A can be neglected. Thus in a neigh-
borhood of g=0 and A=0, G, becomes a scaling
function of g, and X with crossover exponent ¢.

On the other hand, if ¢, < ¢ and taking the above
limit in (C3) with ¢; #0, we see that since c, is
bounded and L®1°® diverges, both terms of the
right-hand side of (C3) mustbe retained. Hence the
inhomogeneity of G, as afunctionof g, and X remains.

APPENDIX D: CURIE-WEISS FOUR-SPIN INTERACTION
A. Model A

For the sake of simplicity we consider the three-
dimensional Jasnow-Wagner lattice with classical
Heisenberg spms S g, m i0 the harmonic approxima-
tion v(x) =vy+3 v,(x — ay)? and with the interplanar-
horizontal nearest-neighbor exchange constant
J(x) = = Jy+Jy(x = a,). The Hamiltonian in zero
magnetic field is given by

N
H=21(=JH™ +J,H'™ &, + N*PE, + AN%0,t2),  (D1)
m=1
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where £,,= x,, = ag, H™ =3 X2§, ..+ §, 1 and m in-
dexes the rigid planes in the NXNXN lattice. The

in-plane spin interaction has been dropped for
simplicity. The partition function is

il
ud (my (+ 1ar2, £2 ( 2
z(7, P)oc'{i'r( IT 7o f dt mexp{— B[zN *v,t2 + (J,H'™ + N P)sm]}) . (D2)
{81 \m=1 -
I
By completing the square in the exponent, the in- ume V:
tegrals are easily performed, yieldi
¢ y:; » yielding F(T, V)=£, (N +f(T, V) . (D5)
Tr eBHett
(T, P) (gl; e (D3) In (D5) the lattice free energy is assumed to be
with V= V,)?
fun= = Tal (06)
ok

. .
Hypp =~ Z [(ay + b, PYH'™ +(cy/N®)(H'™)?], (D4)
m=1

where a;=dy, by =dy/vy ¢ =J%/2v,. The second
term is a Curie-Weiss interaction between all
pairs of horizontally coupled nearest-neighbor
spins in two neighboring rigid planes. The result
(D4) clearly holds also in two dimensions and for
Ising spins.

B. Magnetothermomechanics

Following Wagner and Swift,** we start from the
Helmholtz free energy of a cubic lattice with vol-
J

(V, is the reference volume, « is a constant iso-
thermal compressibility), and the spin free energy
is

f{T, V)==FzTln ("1‘1}' e'““””o) s (D7)
8

where Hy=2;p §,- §,, is a nearest-neighbor Ising or
classical Heisenberg spin Hamiltonian and J(V)

== Jo+J}(V = Vy)/V,. Thus the partition function
in the pressure ensemble is given by

Z(T, P)x ’(I‘.I)' (e"""”"ﬁfn dvexp{ - Bf, (V) + (J,Hy+ PV )V = V,)/ Vo]}) ) (D8)
8 0

yielding (D3) with
Hee = = (az+byP)Hy — (ca/N)(H,) (D9)

where a,=Jy, by=kdy, c,=(kN/2Vy)J% and N is the
total number of spins. The second term in (D9) is
a Curie-Weiss interaction between all pairs of
neighboring spins. Thus the MTM Hamiltonian
(D9) and the Jasnow-Wagner Hamiltonian (D4) have
the same types of interactions.

C. Model of Rudnick, Bergman, and Imry (Ref. 11)

For completeness and the purpose of comparison
with Secs. A and B of this appendix, we include the
model of Rudnick et al. and reformulate it in a
space representation with discrete Ising spins o;.

The Hamiltonian is taken as
H(\) == (a+NH,, (D10)

where Hy=2;, 00, is the nearest-neighbor Ising

Hamiltonian and X is some thermodynamic variable.

Defining the function
w 2
Z(T, 9)=f ar Z() exp(‘%’;‘—) ,

with Z(3)=Tr(,, ¢®#» and §<0, one obtains Z(T,6)
S Trm e"‘”’", with

(D11)

Hye=—aHy+(6/N)(H,)? . (D12)

The effective Hamiltonians (D9) and (D12) are of

the same type if 6 <0, revealing the MTM nature

of the first-order instability in the model of Rud-
nick et al.

APPENDIX E: PARAMETRIC REPRESENTATION
A. 6 dependence

Without losing generality one may define the
“polar” coordinates » and 6 used in Sec. IV by
the relations 7 = »7(6%) and ¢=»2£(6), with

7(6%) =1 - ab?, (E1)
£(6)=b6(1 - 6?) , (E2)

where a>1, >0, -1 <6 <+1. Within the simple
“linear model” of Schofield, Litster, and Ho,*® the
scaling equation of state ¥ = »#3(6) is specified by
the linear ansatz

B(e)=co , (E3)

with C>0. For the singular part of the entropy
one obtains for this model - 8f,(r, £)/87 = +'"*§(6?)
with =2 ~-A - g and

5(6%) = s50(1 - 5,69, (E4)



41786

where s, and s, are constants (s, >1). Note that
(E1) and (E4) are of the same form.

For the three-dimensional Ising and Heisenberg
model $(6) and S$(§%) are unknown polynomials which
are odd and even in 6, respectively; in addition,
#(9) must vanish only for §=0, and S(6%) must van-
ish only at two values, +6,. Thus the functions
7(6%) and S(6%) used in (4.4), (4.6), and (4.7) are
expected to be qualitatively similar. A simple ex-
ample for the mean field functions in (4.10) is

45-’1(92):1 —a192 P §2(92)=1—a292;
£,(0)=0,6(1-062), £,(6)=b,0(1-6%?;
$,(8)=c,8,

with a;, a,>1; by, by ¢;>0.

(E5)

B. Tricritical equations

In the following discussion of the tricritical
equations (4.11),

&=2"Rg(6%) + R™g,(6?), (E6a)
§:)\MRA§1(9)+RAW§2(9); (EGb)
b= K"Ra%(e) +R8wd)z(9) ’ (E6c)

we consider the general case where the Greek ex-
ponents are positive and the §-dependent functions
do not vanish identically. An analogous discussion
holds when some of the exponents or #-dependent
functions vanish as in the case of model A, the
constrained systems, the mean field, and Kortman’s
model.

Case (a) A>0. Near the second-order line
(R—0), (E6) reduces to the usual Schofield scaling
equations with critical exponents g and A, where
the functions g, ¢,, and ¥, have the same quali-
tative properties as (E1), (E2), and (E3), respec-
tively.

~<e_ |
A
%
]
]
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BYAY-RI
1
i
L /6=O
0 9t 9n 9

FIG. 8. Order parameter (A, g,¢) as a function of g
for fixed A<0 and £ =0. The abscissa for g =0 corre-
sponds to 6 =0; the curved line which has an infinite slope
at g=g,, corresponds to 6 =+1, as obtained from Eqs.
(E7). The equilibrium value of ¢ is positive for g<g;,
jumps at A(g=g;), and is zero for g>g;.
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FIG. 9. Order parameter y(A, g,¢) for fixed A<Oas a
function of ¢ for g=g; (full line). The plane g=g;=con-
stant is indicated by parallel markings. The heavy
dashed line indicates the jump of the order parameter.
The loop (full line) and the dashed line are the boundaries
of two equal areas, The dotted line in the plane £ =0
(dark markings) corresponds to the curved line in Fig. 8.

Case (b) x=0. In this case (E6) again reduces
to Schofield equations with tricritical exponents
By =(B+v)/(1+¢€) and A, = (A + n)/(1 +€) and with
functions g, ¢, and ¥, similar to gy, ¢,, and ¥,.
Since G,(}, g, £) and thus ¥(), g, ¢) are expected to
be analytic at A=0 if g>0, the explicit X depen-
dence in (E6) must be analytic, i.e., &, m, n must
be non-negative integers; for the same reason the
second-order line T,(\) must be analytic at x=0
[case (3) in Sec. IV].

Case (c) A<0. Clearly at least one of the inte-
gers k, m, n must be odd,* otherwise the phase
structure would be identical for x>0 and A <0. We
consider the case where %k and m are odd and » is
even. As follows from the symmetry properties
of the #-dependent functions [see cases (a) and (b)
above], the first-order phase structure is sym-
metric with respect to the plane £{=0 (=0, +1).
Therefore we may confine our discussion to non-
negative values of 6.

First we show the existence of the triple line
in the plane ¢ =0 by considering (), g, +0) for fixed
A<0. For #=0, =0, since 9,(0)=9,(0)=0. For
6=+1 we obtain from (E6a) and (E6c)

g=AR—- AR, (E7a)

Y=A4RP + AR, (E7b)
with positive constants A; since g,(1), g,(1)<0,

and ¥,(1), ¥,(1)>0. As shown in Fig. 8, this yields
a continuous function (1, g, +0) which, however, is
triple valued for 0<g<g,(x). In order to obtain a
uniquely defined order parameter ¢ corresponding
to the minimum value of G,(, g, 0) for given X and
g, a jump in ¥ must occur at some value g.(}) with
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0 <g,(\) <g,()). By varying A, a line g=g,(}) of
first-order transitions in the plane ¢ =0 is gener-
ated.® We expect that the location of this first-
order line can alternatively be obtained by a Max-
well construction on the triple-valued function
111(7\, g,.()\), ¢). Indeed, the triple-valued nature of
(), g, £) (viewed either as a function of g or of £)
should remain in a neighborhood of ¢ =0 due to the
analyticity of the parametric representation (E6)
for R>0, and loops may occur as in the special
case of Kortman’s equations (Fig. 9). Note that
in order to obtain continuous loops, one must
allow for 6 >1 leading to nonstable segments simi-
lar as in the normal critical Schofield representa-
tion.

To discuss the existence of the wings we con-
sider small ¢>0 (6>0) and fixed A<0. Since
¥(), g, £) is expected to be triple valued (see above),
the minimum requirement on G,(}, g, ¢) will again
yield a first-order transition, but now for ¢> 0.

LONG-RANGE INTERACTIONS 4787

As ) increases, this transition must disappear,
since there is no singularity for A=0, g>0 [see
case (b) above]. Due to the analyticity of the 6-
dependent functions, this disappearance of the jump
is expected to occur continuously, which suggests
the existence of second-order lines terminating the
wing surfaces. The critical exponents at these
lines should again be classical due to the above-
mentioned analyticity for R>0.

A conclusive discussion of the first-order struc-
ture, of course, requires a more detailed specifi-
cation of the §-dependent parts, which is beyond
the scope of this paper.

Finally, we note that y(}, g, ¢) as obtained from
(E6) need not be a homogeneous function. The
tricritical scaling law ¥(), g, £)= L°**p(\/L,g/L°,
¢/ L*™t) is only satisfied when p and v are chosen
as u=me/k and v =ne/k, leading to a crossover
exponent ¢ = (1 +€)x/€ as can be easily verified
in (E6).
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