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The specific-heat transition of bulk and thin-film superconductors in a uniform magnetic field is

studied within the Ginzburg-Landau model using a screening treatment of the order-parameter
fluctuations. For the bulk case, reasonable quantitative agreement is obtained with the experimental
results of Barnes and Hake.

I. INTRODUCTION

In this paper we investigate the effect of a uni-
form magnetic field on the specific-heat transition
of bulk and thin-film superconductors. We work
within the Ginzburg-Landau (GL) theory which
starts from the expression for the free energy F«
in terms of the local order parameter g(r),

~(~)
FoL4) ds ( I~I2

+ &I [ iv -2eA—(r)]e I'+ 2 p I&I') (1.1}

where A(r) is the vector potential and n, 5, p are
the usual GL parameters incorporating an extra
factor 1/T. Hence'

so narrow. It also has the advantage of leading to
' a "one-parameter" model. Hence we write for the
entropy S= 8 lnZo~/Bn and for the specific heat C
= sS/sa. We normalize the result by dividing by
the discontinuity in the specific heat at zero field
predicted by mean-field theory. Mean-field theory
gives
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where

$(0) = )o =0.133k„/mT, in the pure limit (l» (p)

=0.99(i)0)'~ in the dirty limit (l«(0) (l. 3)

is the (temperature-independent} coherence length.
(Note that our definition of $0 differs from that
common in the literature. ) Here kz is the Fermi
momentum, l is the electron mean free path, and
n is the electron density; e and rn are the charge
and mass of the electron respectively and we use
units such that 8=k~ =c=1 throughout.

The thermodynamic properties of the system are
obtained from the partition function which is given
by a functional integral (over all order-parameter
configurations) of a Boltzmann factor with Eq. (1.1)
in the exponent:

2or. = J d 0(r)e (1.4)

To calculate the specific heat we will make, as a
first step, the usual assumption that all the tem-
perature dependence enters through the parameter
n, and set any T which appears explicitly equal to
T,. This is usually a good approximation for su-
perconductors since transition widths are typically

=v/P, n&0.
The mean-field discontinuity at the transition is
EC = v/P where v = L„L„L,is the volume of the sys-
tem. To calculate the fluctuation specific heat we
use the following relation for the entropy which
follows from Eqs. (1.1) and (1.4):

The angular brackets have the usual meaning that
for any function A(g),

(A(q))= fd (A(g)e "/Jd Pe

The normalized specific heat becomes

C P BS P 8=- —= -- —t d~r(ly(. )l')6C V BQ V BQ
(1.7)

II. FREE FLUCTUATION THEORY

The effect of a uniform magnetic field on the
specific heat transition was first investigated theo-
retically by Lee and Shenoy. They used "free-
fluctuation theory, " that is they neglected the
fourth-order term in Eq. (1.1), to calculate the
fluctuation specific heat above T,. Their basic
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physical idea is the following. In a uniform mag-
netic field the fluctuating electron pairs move in
Landau orbitals characterized by E, and n. The
transition temperature T,z(H) is the temperature
at which the n =0 Landau orbital becomes stable,
giving rise to the vortex state. Just above T, z( H)

the lowest, n = 0, orbital dominates the fluctuation
contributions and as a result only one degree of
freedom remains, namely, that along the z direc-
tion. A bulk superconductor thus behaves like an
array of one-dimensional rods parallel to the field
with the number of rods per unit area given by
eH/v, the Landau degeneracy factor for particles
of charge 2e. The fluctuation specific heat is then
proportional to the field and becomes one dimen-
sional in nature, diverging within free-fluctuation
theory as + . For a thin film, with the field
perpendicular to thy plane of the. film, the K, de-
gree of freedom is suppressed and the system be-
comes effectively zero dimensional. The specific
heat diverges within free-fluctuation theory as
Q-2.

These results may be derived quantitatively from
Eq. (l. 1) by expanding the order parameter in
terms of the Landau orbitals (rI n, K„q) instead of
the usual plane waves. We write

P(r) = Z P„», , (r~n, K„q),
ns K~q

(2. 1)

where the (r I n, K„q) are the normalized eigenfunc-
tions' of a free particle of charge 2e in a magnetic
field H (assumed in the z direction). Substituting
Eq. (2. 1) into (l. 1), neglecting the term in I g I ',
yields

v„» z (n»+ 5K++ 2Ãll)
(2. 3)

where h=2e6H and ~„=~+ h. The transition tem-
perature T,z(H) is given within the GL theory by the
condition nH =0. In agreement with the general ar-
guments above we see that close to the transition,
when n» «h, the sum over n in Eq. (2. 3) is domi-
nated by the Single term n = 0. The sum over K, is
performed by making the replacement g»-L,f (dK,/2v) and that over q is performed by
merely multiplying by the Landau degeneracy fac-
tor (eH//v)L, L„. Hence for a bulk system we obtain

f(P)= Z {n+M,+(2n+1)2e5H)~P„», ~, (2. 2)
ns Kgsq

and therefore

(~ y„,»„,~') =(n+ t)K.'+ (2n+1)2ef H)

From Eqs. (l. 7) and (2. 1) the specific heat is giv-
en by

= film thickness. (2. 5)

Defining the transition width as that value of
e»l =n»$ (0)/3] for which C=bC we see that the
width varies as H and H' for the three- and
two-dimensional cases, respectively. By broaden-
ing the transition the application of a magnetic field
renders the critical region more accessible to ex-
periment. Note that in the low-field limit, h«nH,
the sum over n in Eq. (2. 3) can be converted to an
integral' to recover the usual zero-field results. 4

Recently, some doubt has been cast on the valid-
ity of Eq. (1.1), notably in connection with the cal-
culation of the fluctuation enhanced diamagnetism. '

The microscopic derivation' of Eq. (l. 1) assumes
that g(r) is a slowly varying function of position in
the sense that I VP/PI «$(0) '. In using the usual
GL free-energy functional we are assuming that
low-energy fluctuations provide the dominant con-
tribution to physical quantities near the transition.
In the case of the magnetization this assumption
does not hold. High-energy fluctuations are im-
portant and consequently a more complete form of
the free-energy functional is required, which turns
out to be nonlocal in character. We refer the read-
er to the papers of Lee and Payne and Kurkijarvi
et al. ~ for further details. For the specific-heat
calculations of this paper we will assume that Eq.
(l. 1) adequately describes the free-energy func-
tional in a magnetic field. The experiments of
Barnes and Hake, ' which we discuss later, were
carried out on very dirty samples for which the
local theory should in any case be valid. '

The obvious next step followU - the free fluctua-
tion theory of Lee and Shenoy is the use of the Har-
tree approximation' to allow for -interactions be-
tween order parameter fluctuations. Such a pro-
gram has been carried out by Grossman et al. '
and by Hassing, Hake, and Barnes. The latter
authors have compared their predictions with the
experimental results of Barnes and Hakea on dirty
bulk superconductors. The results are disappoint-
ing. The theoretical curves show no indication of
the peaking behavior exhibited by the experimental
points. Furthermore, the measured jump in the
specific heat at the transition falls off more quickly
with increasing magnetic field than is predicted by
theory. To overcome the first of these shortcom-
ings we shall apply in Sec. III a variant of the
"screening approximation" of Bray and Rickay-

C eH P(three dimensions)
C

= —4, &),&z
. (2.4)hC m 4n~jetHti

For a thin film the K, degree of freedom is sup-
pressed. The sum over K, is dominated by the
single term K, =0 to give

(two dimensions) = — d = LC eH P
~C n da2 '
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zen. ' ' In this treatment of the GL model, inter-
actions between fluctuations of the order parame-
ter are screened by processes in which virtual
fluctuations are created and destroyed. Since this
approximation gives excellent results when used to
derive the specific heat of "real" zero'- and one-
dimensional' systems (for which exact results are
known), it may be hoped that it does so for the
"pseudo" zero- and one- dimensional systems
considered here. In fact we find that a screening
treatment of the order parameter fluctuations does
indeed produce the peaking behavior observed by
Barnes and Hake. The sharp falloff of the specif-
ic-heat jump with increasing field, however, still
requires explanation.

III. SCREENING THEORY

In this section we present a theory of the specif-
ic-heat transition of bulk and thin film supercon-
ductors in a magnetic field based on a screening
treatment of the order-parameter fluctuations.
Preliminary results have been reported else-
where. ' We summarize below the assumptions
made: (i) All the temperature dependence of the
problem is contained in the reduced relative tem-
perature e =(T- T,)/T, . (ii) Vortex-lattice struc-
ture can be ignored in the critical region. (iii)
Only the lowest, n = 0, Landau orbital is important
in the critical region. (iv) The interacting fluc-
tuation system is well described, even in strong
magnetic fields, by the free-energy-functional
equation (1.1). Assumption (i) is made for sim-
plicity: it ensures that we have essentially a one-
parameter model. In making detailed comparisons

i

Kgge K2ge K3ge K4g
age a2e a3e a4

~~la~&1~I2s~&2

x 0 r„„,&r„„, d'~&r I%.~ qi&*

~&rIK~., q~&*&rIKS., qs&«IK4. , q4&

The Landau eigenfunctions are given by

(r
I K„q) = Ae' "~"+'u(q, x),

where u(q, x) is the ground-state harmonic-oscilla-
tor wave function centered on xo = 6q/h (recall h
= 2e6H), and A is the normalization constant. Ex-
plicitly,

&rI K, q&=Re'"~ '"e '"„q,— e e

Normalization over a cuboid of sides L„,L„,L, gives

A = (1/L~Lg) (h/v6)'

Hence the coefficient of the fourth-order term in
f is given by

with experiment in Sec. IV this assumption will be
relaxed.

Our starting point is the free-energy-functional
equation (1.1). As in the free fluctuation theory of
Lee and Shenoy we expand P(r) in terms of the Lan-
dau orbitals (rln, K„q) according to Eq. (2. 1).
Here, however, we retain the fourth-order term in
the free-energy functional. In accordance with as-
sumption (iii) above we retain n = 0 terms only to
give

f= Z ( „+6K',)IP, „I'
Kge a

—,'p&4 d&d~e&(a3+a4m1~2 ~+~ K3z+K4g-Klz K2z z dxe (h/26)[(x-6ag/h) +(x-6a2/h) +(&~a3/h) +(x&a4/h) 32 2 2 2

1/21 h e (6/2h)L(ay~3) +(a2 a3)
2g Q a],+a2e a3+a4 gg+ 2g 3g+K4z

Our final expression for the GL functional becomes

f= ~ (oH+ 6Kg)
I 0'r, qI + ~ (qy ~ P)~i~k~$~+Q~ 0+a~&g P~r~+Q~&+a ~

Kge a Kz, PgeQ
he Pe a

(3. 1)

D(K.)=&l& ...I'&= rr (d*~, ~I ~,„.l*.-'j
Kze a

J II (d'y .„)e-~
Kge a

where

V(q, k) = P
' exp' —(6/2h) [q'+ k']),

P' = (P/L, L,) (h/2v6)'i2 .
To calculate the entropy it is convenient to in-

troduce the fluctuation propagator

'I
From Eqs. (1.6) and (2. 1) we have

dy' fr = — Q K
——— DKg,

tie Kgea Kge a
(S.2)

since we require the term n=0 only. D(K,) is giv-
en by the usual Feynman graph expansion. ' In-
clusion of only the Hartree self-energy essentially
reproduces the results of Hassing, Hake, and
Barnes. Within the screening approximation' the
propagator self-energy Z(K,) and screened poten-
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+ Z Vg(q', 0, K,')D(K,'+ KK)
q'

~ Kg

4'755

(3.3)

(b)

FIG. 1. (a) Diagrams for the propagator self-energy
Z(Eg) within the screening approximation. A double bold
line represents the dressed propagator and a wavy line
the screened potential. (b) Diagrammatic equation for
the screened potential.

tial Vz(q, k, K,) are given by the diagrams of Fig.
l.. pote that the bare interaction potential V(q, k)
has a complicated momentum dependence so that
the equations are not quite so simple as those of
Ref. 12 where the bare potential is just a constant,
namely, P/v. The analogs for our system of
Eqs. (3) and (4) of Ref. 12 are

Z(KK) = Z V(0, q')D(KK)
q'

~
K'

where

E(KK) =Z D(KK)D(KK+ KK) .
Kg

Equation (3.4) for V~(q, k, K,) can be solved by
Fourier transformation with respect to k. We
first note that the bare potential V(q, k) is factor-
iz able:

(3. 5)

V(q, k) =P' exp[ —(5/2h)(q +k )] = v(q)v(k),

1/2 M@2/2'where v(q) =(p')' 'e ' '". Introduction of the Fou-
rier transforms Vz(q, x, K,) and v(x) through the
relations

V~(q, k, KK) = J dx V~(q, x, KK)e

v(k) = f„dxv(x)e'~"

yields, on substitution into Eq. (3.4),

and

Vz(q, k, KK) = V(q, k) —E(KK) Z V(q, q') Vz(q, k —q', K,),

(3.4)

V~(q, x, K,) = v(q)v(x) — '
v(q) Z dxe '~E KK dx'v(x') e""'

dx" V~(q, x",K,)e" ' " = v(q)v(x) —L,E(K,)v(q)v(x) V~(q, x, K,) .

Hence

v(q)v(x)
1+ L~E(K,)v(q)v(x)

(S.6) &(K,) = E D(K,')

To determine the self-energy Z(K,) we require
[from Eq. (3.3)]

Q V~(q, k=O, KK)=Z I dx Vq(q, x, KK)
a

L.E(K.)v(q) v(x)
2mE(K, ) ~ 1+L,E(K,)v(q) v(x)

+ ln 1+
2 E(0)! ZD(K,') .1 Ph
2m6Lg ) K.

The solution is of the form D(K,) = (()(„+5K', ) ',
where

Ph

g

Substitution for v(q) and v(x) followed by integration
over x and q yields

1 PhE(0) 1 (3.7)

ZV (O, O=O, K,)= K» (n (
O

K(K,))7f g

In order to proceed further for the bulk case we
are forced to approximate. An approximation
which is both mathematically tractable and retaios
the essential features of the screening concept is
to simply neglect the dependence of the screened
potential on Kg. This involves replacing
Vz(q', 0, K,') in Eq. (3.3) by V~(q', 0, 0). Using also

and, from Eq. (3. 5),

E(0) = Z, (3.8)

For the bulk case gr»- L»f (dKK/2v) and Eq.
(3.8) gives E(0) = L, (/4 o[(6& ]'5). Substitution in-
to Eq. (3.7) yields

Ph 1
"'2v5 2(n 5)"'
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~ 2n ln 1 ~ ~„,)
. (3.9)PA, 1

7f QH QH

It is convenient for computational purposes to in-
troduce dimensionless parameters x and y defined

by

8v(o„5)"' 8v "'

In terms of these, Eq. (3.9) becomes

y=x'"[1-2/x-21 (I+ I/x)] .
The entropy is given by Eq. (3.2):

(3.10)
0.5—

S=- Z a(K.)=- Z
qs Kg ps Kg +H+ g

eH L, veH
~ 2(o 5)"' 2v(o 5)'"

The specific heat is therefore given by

I

-10
I

-5

dS veH dBH v 1 dnH

dQH 4vQH(Q~5) dQg p x dQs

Using Eq. (3.9), d&z/dn„ is obtained as

dBH 1 3 |.
= 1+-+ —2ln 1+—

dQH x 1+x x

glvlng

C 1+x
hC 1+5x+x' —2x(1+x)ln(1+1/x) ' (S.11)

The specific heat is obtained as a function of y
= o„5(8v/Ph) ' by numerically eliminating x be-
tween Eqs. (S.10) and (S.11). The result is plotted
lm Fig. 2. Also plotted is the Hartree approxima-
tion, derived from the following two equations
which follow very simply from keeping only the
first self-energy term of Fig. 1(a):

y = x (1 —2/x), C/hC = (1+x)

The width of the transition is proportional to H~l'

through the dependence of the temperature variable
y on h. This result agrees with that of Lee and

Shenoy, based on free fluctuation theory: it is due
in both cases to the inclusion of only the n=0 Lan-
dau orbital which should be a good approximation
provided aH «h since the energy of a fluctuation in
the nth orbital is increased by -2nh relative to the
case n= 0 [see Eq. (2. 2)]. The theory then con-
tains the single dimensionless parameter y
= o„5(8v/Ph)31' so that the H' ' scaling is indepen-
dent of the particular approximation used to evalu-
ate C. The peaking behavior exhibited in Fig. 2 is
very similar to that obtained experimentally by
Barnes and Hake, ' and our theory reproduces the
qualitative features of the transition curve much
better than the Hartree theory used in Ref. 9. De-
tailed comparisons with experiment are not pos-
sible here since the experimental transition widths

FIG. 2. Relative specific heat C/4C vs reduced rela-
tive temperature y = O.HD(8~/ph) for a bulk system.
Continuous line: screening approximation; broken line:
Hartree approximation.

H+
2 5d

+O'Hln 1+
5d ~ ' 3.12

2m5daH 2w5dBH

Introducing dimensionless parameters x and y ap-
propriate to the present case

2g Mot~H 2g Qd ala

pg & y H pg

Eq. (3. 12) becomes

y = x'f3[1 —1/x- ln(1+ 1/x)] . (3.13}

The specific heat is calculated in a manner analo-
gous to the bulk case. The result is

C 1+x
rh, C 1+4x+x —x(1+x) ln(1+1/x) ' (3.14}

The specific heat is obtained as a function of y
= az(2v5d/Ph) by numerically eliminating x be-
tween Eqs, (3.13) and (3.14). The result is plotted
in Fig. 3 together with the Hartree result, derived
for the thin film case from the following two equa-
tions:

are so large that our assumption (i) above breaks
down. We will relax this assumption in Sec. IV in
order to make such comparisons.

We turn now to the case of a thin superconducting
film in a perpendicular magnetic field. The appro-
priate results are obtained from Eqs. (3.7) and

(3.8) by suppressing the K, degree of freedom.
That is, we put L, =d, the film thickness, and eval-
uate the sums by taking the terms X,=0 only. This
gives a fluctuation propagator D = I/n„, where
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Film

l.0 ~——

0.5—

0 I

FIG. 3. Relative specific heat C/4C vs reduced rela-
tive temperature y = 0.'~(2&bd/Pk) for a thin film. Con-
tinuous line: screening approximation; broken line:
Hartree approximation.

strict our comparisons of theory and experiment
to the sets of data at 15, 22, and 29 kG.

Another important fa,ctor is that the experimen-
tal data covers a fairly wide temperature range
(roughly 3-4 K for the sets of data we are consid-
ering). The assumption, therefore, that all the
temperature dependence is contained in the param-
eter & =(T- T,)/T, does not hold here. Instead we
will use the form & = ln(T/To), where To is the
transition temperature in zero field, which follows
from the microscopic derivation of the GL function-
al. ' The standard form e = (T —To)/ To follows from
an expansion about To. In addition we include the
explicit temperature dependence in the relation F
= —TlnZ«and elsewhere; that is we do not set T
= T, everywhere but include T explicitly. As a re-
sult we no longer obtain a one parameter solution.
Finally, we note that $0/I- 100 for the Ti-Mo alloy
used by Barnes and Hake so that we can take the
dirty limit where necessary.

Starting from the relation F= —TlnZ«we obtain
the entropy

$=lnZ + TGL+ BT (4. 1)

y = x (1 —1/x), C/hC= (1+x)

The screening result for thin films is similar to
that for the bulk case except that the peaking behav-
ior is much less marked (C/hC has a maximum
value of -1.02 compared to -1.13 for the bulk
case. ) For films the dimensionless parameter of
the theory is y = n»(2v5d/P h)'1~ so that the transi-
tion width scales as H'

IV. COMPARISON WITH EXPERIMENT

In this section we attempt to fit the prediction of
the screening theory for bulk superconductors in a
magnetic field to experimental data of Barnes and
Hake as reported in the paper of Ha, ssing et al.
Measurements were made at six values of the mag-
netic field: H=O, 3, 8.8, 15, 22, and 29 kG. Our
theory can only be expected to be valid for high
enough fields (k» n„m tushold throughout the re-
gion of interest). For example the H~IS scaling of
the transition width predicted by the theory clearly
breaks down for small H, when the width tends to
a constant. To obtain a rough guide to the region
of validity of the theory we have estimated the ex-
perimental transition widths by measuring the
maximum slope of the specific heat curves in the
region where the specific heat is increasing rapid-
ly. As expected we find that for smail H the width
tends to a constant while for large H it increases
as a power of H. Our very rough estimate gives
this power as -0.8, compared to the theoretical
value of 3. The value of H at which the scaling be-
havior sets in is around 15 kG. We therefore re-

Now

where p= 3.84/k»l in the dirty limit. Hence

cf y cf

dT T da.

glvlng

B$ B$ B lnZGL p B lnZGL
BT BQ

C=T—=y —=y +y
BQ

(4. 2)

Now

a InZoL ~ 1
so q, » Q»+ SKAG 2'F(Q»6)

and we have seen before in our one-parameter
model that

s'InZ, „v
y( )Bn P

where

1+x
1+ 5x+ x ~ —2x(1+ x) ln(1+ 1/x)

(Strictly we should include derivatives with respect
to 8 and P in d/dT but these will give negligible
contributions to S in the critical region. ) Equation
(4. 1) becomes

B lnZGL
GL+ y
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x= «(cx5)"'/Pk .
Equation (4. 2) can therefore be written

2 V V8HC= y
p

Ax) —y 2 ( 5)1/2 ~

We normalize with respect to the mean-field jump
at the transition in zero field

b C = (y v/P )r.r ——9.4 N(0) Tp .
Hence the normalized specific heat can be written

T PhC/~C= —, /(x) 4,(,),t,)

where

x = [(8v)'"/2vy5] (pk)"'

) /3 h in the dirty limit.1.22 3/3

F 0

T,2(H) correctly except for weak fields, we will
regard T,2(15), T,2(22), and T,2(29) as adjustable
parameters to be determined from the experimen-
tal results. Similarly, the expressions for the
constants Ky and 4C were derived on the basis of
the free electron model of a metal —hardly a good
approximation for the Ti-Mo alloy used by Barnes
and Hake. We will therefore regard these too as
adjustable parameters. The results are plotted as
C versus T in Fig. 4. The following values of the
parameters were used: To = 4. 25 K, T„(15)= 3.82
K, T,g(22)=3. 57 K, T,2(29) =3.30 K, and xg ——0.036;
4C was chosen to give the correct peak height at
15 kG. Finally, the base line was lowered by 0. 1
of a unit relative to that of Barnes and Hake in or-
der to fit the high-temperature tail correctly. As
given, the processed data points of Barnes and
Hake actually run into the base line on the high-
temperature side. This is in disagreement with
all present theories ' ' and may be due to a, small
error in the procedure used for subtracting out the
specific heat of the norma, l state.

V. DISCUSSION

Here z is weakly temperature dependent through
the dependence on $0=0. 133k~/mT. Hence we
write

K= K)(T/To)

where aj is defined by evaluating $0 at T= To. We
must also relate our field variable h to the mea-
sured field H. We have k=2e5H=eH/mT. If H is
measured in kG and T in kelvins this gives

k=0. 134H/T .
Finally, we must relate our temperature variable
y, given in terms of x by Eq. (3.10), to the real
tempexature T. From the definitions of X and y
we see that

The results depicted in Fig. 4 show that the
screening theory predicts the shape of the transi-
tion very well —much better than the Hartree theory
used by Hassing et al. There is, however, still
an inadequacy in the theory: it underestimates the
amount by which the magnitude of the specific-heat
jump falls off as the field H is increased. The rea-
son for this inadequacy may lie in the breakdown of
one or more of the assumptions made at the outset:
the neglect of vortex-lattice structure, the inclu-
sion of only the n = 0 Landau orbital and/or the use
of the standard GL functional in strong magnetic
fields. The last of these is certainly open to ques-
tion: the microscopic derivation of the GL func-
tional is only valid'~ provided h«ko-5/$2(0). Ref-

Xy =4c(H/y=4ln[T/T, (H)], (4 3)

where T,(H) is the critical temperature T,2 given
in the present model by the condition o& =0. Equa-
tion (4. 3) yields

H=I5 kG theory

T= T;,e""4 . (4.4)

For convenience we collect together here the other
equations of our solution

y = x"'[1—2/x - 2 In(1+1/x)],
X= x'i(T/To) (0.134H/T)

C/n. C = (T/T, )[f(x) ——,'Xx'/'] .

(4. 5)

(4. 6)

(4 7)

Equations (4.4) -(4. 7) can be solved by numerically
eliminating x and y to give C/nC as a function of
T and H.

Since the simple GL functional (even our modi-
fied version) does not give the field dependence of

hC

E

O
o I

used

36
5K

3.82 K

=3.57 K

= 3.30 K

3.0 3.2 3.4 3.6
T(K)

3.8 4.0

FIG. 4. Fluctuation specific heat C vs temperature T
for various values of the applied magnetic field H. The
open circles are the processed data of Barnes and Hake.
The continuous curves represent the present theory.
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erence 9 gives 5(0)= 48A which yields a maximum
field Ho = Q/2e5-14 kG, from which it is clear that
high-field corrections to the GL functional are in
principle required for the fields of Fig. 4.

If one performs a microscopic calculation to all
orders in the field one finds '6 that the Gor'kov
kernel (essentially the free fluctuation part of the
GL functional) is still diagonalized by the Landau
orbitals but that the eigenvalues are more compli-
cated than the simple GL form. We only require
the eigenvalues for the lowest orbital n = 0. For
small E:, we obtain a renormalization of 5, the co-
efficient of K, in the eigenvalue, together with a
renormalization of n~. The point to note is that
neither of these renormalizations affects the value

of the specific-heat jump. The second has already
been accounted for by our choice of the T,&'s to fit
the data; the first gives a field dependent ~& which
would affect the shape of the transition but not the
specific-heat jump. The correct resolution of this
problem remains an open question at the present
time.
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