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sects of the dynamical properties of phonons on the electronic properties of metals are treated

through the use of the phonon spectral weight function. It is shown that the lewhng behavior of the

electron quasiparticle lifetime is lowered to quadratic in the frequency or temperature from the cubic

behavior which is well known to occur for infinitely sharp phonons. Explicit evaluations of 1/r are

made using an extension of the Debye model which allows for a 6nite phonon lifetime. The

mmmm-enhancement parameter X is discussed and is shown formally to be related to the static phonon

propagator. Thus if there is a difFerence between the phonon relaxation at zero frequency and at the

phonon frequency, it is possible for the phonon frequencies which determine X to c&er si~cantly
from the peak frequencies observed in inelastic neutron scattering. The implications of these results for

superconducting transition temperatures are discussed with particular reference to recent neutron

scattering expemnents I Nb38n.

I. INTRODUCTION

The influence of electron-phonon interactions
on the properties of electrons near the Fermi sur-
face of metals has been the subject of much re-
cent activity. Progress in tunneling spectros-
copy has made possible detailed measurements
of the electron-phonon spectral function a F(&u),
from which one can deduce the effects of phonons
on the electronic properties. FieM- theoretic
techniques has been used to demonstrate that low-
est-order theories are accurate to order (m/M)'~,
where m and M are the electron and ion mass, re-
spectively. s

It is well known that the phonon system itself
has a complicated dynamics and a potential rich-
ness of structure far beyond the capabilities of
harmonic Born-von Karman-type theories to
describe. Field- theoretic techniques have been
developed to aid in the description of phonon dy-
namics when complications such as anharmonic
effects, disorder or impurity effects, electron-
phonon interactions, or structural instability are
present. However, it has usually been considered
adequate to treat the phonons as infinitely sharp
excitations when studying their role in modifying
electronic properties. In this paper, we will
utilize the field-theoretic techniques to include
the complete phonon dynamics in the study of the
behavior of electrons near the Fermi surface. %'e

will demonstrate, in particular, that the leading
behavior in temperature and frequency is modified
from the infinite-lifetime phonon result.

The organization of this paper is as follows.

In Sec. II we describe the phonon spectral weight
function B(g, &g) which contains all the necessary
information on phonon dynamics. %e show that
the phonon density of states F(+), as defined

rigorously in terms of B(Q, &u), scales as &u instead
of (d' as the frequency + goes to zero. %e then
incorporate the function B(Q, cg) into our calcula-
tions of electronic properties. In Sec. III we dis-
cuss the quasiparticle lifetime v for electrons
near the Fermi surface, and in particular the lead-
ing behavior of I/v in temperature (T) and fre-
quency (&u). We find that instead of the usual T
or &u' behavior expected for I/v from electron-
phonon scattering, the inclusion of dynamical
processes in the phonon spectral function alters
the leading behavior to T or &u . In Sec. IV, the
particular case of electron-phonon-limited phonon
lifetimes is discussed. In Sec. V, an extension
of the Debye model is made to allow the inclusion
of finite phonon lifetimes. Detailed calculations
are made for cPF(&o) and I/7 (T, e) in this model.
In Sec. VI, the electron mass-enhancement pa-
rameter A. is discussed.

II. PHONON SPECTRAL WEIGHT FUNCTION

The phonon spectral weight function B(Q, ~}is
defined as (e.g. , Scalapino in Ref. 1}

D(g, i(o„)=J d(uB(Q, (o)(i(u„—(u) ', (1)

where D(Q, i&a„) is the Green's function for phonons

at wave vector Q and imaginary frequency itu„
= 2viv/pk, and p is the inverse temperature (ke T)
In what follows, we will typically set I equal to
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1, except for final formulas, where 8 will be re-
stored. The physical interpretation of the spec-
tral weight function is that a single lattice wave
of wave vector Q is not an eigenstate of the crystal
if interactions (such as anharmonic or electron
phonon) are present. The lattice wave is a super-
position of exact eigenstates with a quasicontinuous
distribution of energies rather than a fixed energy.
The function B(Q, ur) describes this distribution
of energy.

Using the definition of the phonon Green's func-
tion, ' the following expression can be derived
for B(Q, &u) in terms of the exact crystal eigen-
states In) and energies E„:

B(Q, &u) = Z (e ' 0 —e )
~

(m~ yy~ n)
~

'

(4)

Z(k, (u —i5) = Z, (k, (u)+i I;p(k, (u)

i a
dpp' ll dQ o."F(k, Q)

6» 0O "0

f(e') + N(Q) 1 -f (&u ') + N(Q} ij

(X I + g ~ I ~

co —v +0-z5 co-m -0—t5 i

(6)

x5((u —E +E„Z e (2)
N

From Eq. (2) one sees immediately that B(Q, &u)

is an odd function of co. In general, one expects
B(Q, ~) to vary linearly with &u at small ~. For
noninteracting phonons, however, the linear term
vanishes, and B(Q, &u) becomes

Bp(Q, (o) =5((u- ~)- 5(&o+ ~), (2)

where ~ is the phonon frequency and the subscript
zero indicates noninteracting. The phonon den-
sity of states can be defined as

F((o)=Z B(Q, (o) ((o&O) .
For noninteracting phonons, this becomes

Fp((u) =Z 5((o - (vZ, ) . (5)

The leading behavior (at small &u) is &u' (from
phase-space arguments, assuming an acoustic
spectrum} Ther.e are sharp Van Hove singularities
coming from regions of phase space where )V~+)
vanishes. In general, B is linear in ~, and thus
the leading behavior of F is also linear for the in-
teracting case, Eq. (4). Also, the Van Hove sin-
gularities will, in general, be smeared out.

We can now incorporate the phonon spectral
function into calculations of the electronic prop-
erties. According to Migdal's arguments, ' low-
order perturbation theory gives a highly accurate
formula for the self-energy Z(k, &u) of an electron
of wave vector k arising from electron-phonon
interactions. The resulting formula for Z can be
written

In this formula, f and N are the Fermi and Bose
function, respectively. The information about the
phonons and the electron-phonon coupling is all
contained in the electron-phonon spectral function
a F(k, &o) which can be rigorously defined (Scala-
pino, Ref. 1) in terms of the phonon spectral func-
tion B(Q, ~):

a F(k, (a)) =Z
j
M(k- k+ Q)

i
B(Q, (u)5(a„;q),

(&)

(6)u'F((u) =Q a'F(k, (o)6(e„Z 5(~;) .

In Eq. (7), M is the matrix element for an elec-
tron-phonon scattering to occur between electron
states k and k+ Q. The final electron state k+ Q
is compelled to lie on the Fermi surface and the
initial state is fixed. The average of u F(k, &u)

over the Fermi surface gives u F(&u) [Eq. (8)]
which is the function measured in tunneling experi-
ments.

If B(Q, v) is approximated by a 5 function, then
a F(k, ru) and o. F(~) are both quadratic in &u at
small ar, as is the density of states F(~) as given
in Eq. (5}. This happens because the matrix
element M contributes a factor Q while the factor
5(e„;@)contributes a canceling factor, Q '. Ex-
perimentally, it has been observed' that a F(&u)
is remarkably similar to F(&u) in materials like
Pb. The introduction of phonon dynamics through
the spectral function B can be expected to convert
the low-frequency behavior of a F from quadratic
to linear in &u [in precisely the same way as oc-
curs for the density of states F(+)]. In fact, in
amorphous metals, where the lattice wave vector
is no longer a conserved quantity and consequently
the phonon damping is large, the linear region
in o. F(ur) has been observed. The consequences
of the linear behavior of a F for electronic prop-
erties will be discussed in Secs. II-IV.

III. ELECTRON LIFETIME

The quasiparticle lifetime of an electron due
to electron-phonon scattering is given by the
imaginary part of the self-energy of Eq. (6):

g 00

~,(k, ,) = &
l~

dQ o"F(k, Q}
2vk e ' .p

x [2N(Q) +f (Q+ e) +f (Q e)]~-
Measurable electron lifetimes are not given di-

rectly by Eq. (9), but rather by some average of
Eq. (9). This average is taken over a portion of
Fermi surface (such as an external orbit in
Azbel-Kaner resonance), and also over an effec-
tive thickness in energy &. We shall not concern
ourselves with the Fermi-surface average (which
varies with the experiment), but the energy aver-
age has a simple form, which can be deduced
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from rigorous transport theories such as that of
Schex and Holstein. ' Thus,

I/v(k, (u, T) = f (de/2(u)[f(e) f-(&+(o)]

x [I/v(k, e)+ I/v(k, e+ ~)] . (10)

When &o is very small (If&@ «ksT, h&o~) this aver-
aging process acquires a form familiar from the
semiclassical Boltzmann equation

1 " sf 1

v(k, T) ~ se v(k, &)

Inserting the formula for I/7 from Eg. (9), we
can integrate Eg. (11)yielding

I/r(k, T) =4~a(u, T) 'f -dQQa'Z(k, Q)MQ)
0

&&[K(Q)+I] (ff&u«keT; &u«&u~) .
(12}

Another easily treated limiting case is that of
low temperature, k Te«(K~, g&u~}. In this limit
Eg. (9) and (10) can be simplified to yield'

1/v(k, &u) = 2v&u
' f dQ(&u - Q) a'E(k, Q)

{k,T«K(u, S(u, ) . (12)

It is now easy to show from Eqs. (12}and (12)
that the limiting behavior of I/v at low T and &u

is g
' and co~ provided that function n F scales

as Q" for small Q. Thus I/v scales as T' and ro'

for infinitely sharp phonons, but as T and &u

when the linear term in B(g, &g} is finite. More
specifically, the quadratic terms are given by

I/T(k, (u, T) = (w/Sa ')D„.[(2vk T)'+ (K(u)'] .
(14)

This equation is valid for very small T and &.
The coefficient D& is defined by

k&q

k qtV tV
k+q

k'
Ad

]sk
~%sl

pendent of the precise mechanism governing pho-
non decay. %e now specialize to the case of
electron-phonon-limited phonon lifetimes. This
case is particularly simple in several respects.
For one thing, estimates of the magnitude of the
effect are easily made using sum rules. Another
feature of the electron-phonon case is that there
is a particularly simple physical picture of the
origin of the leading quadratic behavior in 7 and

Figure 1 indicates some important electron
and phonon decay processes. Figure l(a} is
Coulomb scattering, where an electron scatters
from one momentum state to another, emitting an
electron-hole pair. This process is well known
from phase-space arguments to lead to uP and T
leading behavior for 1/7 'F.igure I(b) is the
analogous scattering of an electron via the electron-
phonon interaction, where a phonon is emitted
(or absorbed) instead of the electron-hole pair.

In the process illustrated in Fig. 1(c), an elec-
tron scatters by phonon emission (or absorption),
but rather than a real phonon, as in Fig. 1(b),
a virtual phonon, which subsequently decays by
creating an electron-hole pair, is involved. As
first noted, to our knowledge, in Ref. 13, this
process results in the same decay products as
Coulomb scattering [compare Figs. 1(a) and 1(c)],
and thus can be expected to have the same phase-
spa, ce-induced uP and T limitations as Coulomb

D;= „[a'F(k, (o)] „.,
=Z

~

m(k-k+g)~'g(e„;@)
ta'i& 0

(o} (b)

k+q

(»)
where (dB/d&u) [ „.0 is zero for noninteracting pho-

nons, but finite when phonon damping is taken
into account. Moreover, resonant low-frequency
structure in the phonon spectrum, such as has
been observed' in the high-temperature super-
conductor Nb38n, will Lead to a nonzero value of
this quantity and enhance the contributions of Eq.
(14) to 1/v. In Sec. IV, an. explicit model is used
to calculate a~E and 1/v including the effects of
phonon damping.

IV. ELECTRON-PHONON-LIMITED PHONON LIFETIMES

The discussion thus far has made use of general
properties of the phonon spectral function, inde-

FIG. 1. Illustrating various electron scatteri. ng pro-
cesses. In (a) the initial electron k scatters via the
Coulomb interaction (depicted by the dashed line). In (b)

scattering occurs via emission (or absorption) of a real
phonon. In {c) the phonon is virtual, and decays within
a time I'/p~ (where y~ is the phonon width) into an elec-
tron-hole pair. There is a close analogy between (a)
and (c). However, {c)is already included in the process
(b) if the phonons are fully renormalized by their inter-
actions with electrons. This renormalization process is
illustrated in (d) which is the Dyson equation. Single
wavy lines are bare phonons, and double wavy lines are
renormalized phonons. The momenta in all graphs
should be regarded as reduced to the first Brillouin zone,
and conserved modllo a reciprocal lattice vector.
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scattering. We present what we believe to be the
first quantitative theory of this process, including
estimates of the size of the contributions to I/r
The analysis takes the point of view that the virtu-
al-phonon-mediated process of Fig. 1(c) can be
included as a subprocess in a complete treatment
of the real-phonon scattering of Fig. 1(b). This
leads to simple formulas for the lifetimes. We
will find that the subprocess of Fig. 1(c) contrib-
utes notably to the total process of Fig. 1 (b) only
in the limit of small T and co. In this limit, the
inclusion of phonon decays converts the familiar
T or uP behavior of 1/7' into the quadratic forms
T and uP more commonly associated with Coulomb
scattering. Furthermore, the relative magnitudes
of the processes of Figs. 1(a) and 1(b} is fully

comparable, just as the dimensionless parameters
A. and p, which measure virtual phonon and Coulomb
exchange in superconductivity are of roughly equal
size. At large T and ~, however, the contribution
of Fig. 1(c) drops sharply relative to the Coulomb

graph [Fig. 1(a)]. This occurs because of a large
energy denominator when the virtual phonon is far
off resonance.

In order to calculate the electron-phonon con-
tribution. to the phonon lifetime, we use Dyson's
equation~ [shown diagrammatically in Fig. 1(d)]
to give the spectral weight function for phonons as

'(~ ")=-™. ~ 2n, a(q.)) ~

1 2'
where ~ is the phonon frequency in the absence
of interactions and II(Q, &u) is the phonon self-
energy. For the electron-phonon case, it is a
good approximation (as long as &o is small, of the
order of a phonon frequency) to take the real part
of II as constant and the imaginary part as linear
in (d. Then with the identifications

(up= II$+2IIZPg(Q, ~8),
~ = (II@/~)ilz(Q, m@),

Eq. (16) becomes

(~ )
1 Aih h

2(o

w~ ~ —Q —2&&~J

(17a)

(17b)

(18)

From here on (until Sec. VI} the factor (~/&u@}
will be removed from B and incorporated into the
matrix element M . Note that the spectral weight
function (18) is linear in ~ at small frequencies
[as anticipated from Eq. (2)]. The result, from
Eq. (4), that F(ar) scales as &u at small &u expresses
the fact that a phonon in a metal spends part of
its time in the disguise of virtual electron-hole
pairs, as shown in Fig. 1(c). It then follows that
a F(k, ur} and a F(cg) must scale as ~' in the limit
of very small frequencies. In Sec. V, a simple
model will be developed to allow detailed calcula-
tions of these quantities.

F'( )-Z 6( — )-
0 (otherwise),

(18)
where the subscript D is used to denote Debye
and the superscript zero denotes that the phonon
lifetime is infinite (B is approximated by a 6 func-
tion). A simple and fairly realistic extension of
this model can be made to include electron-phonon-
limited phonon lifetime effects. We make the
further assumption

(2o)

where a is a dimensionless constant (of order of
magnitude 10 ~ or 10 ~ in most metals). Equations
(18) and (20) together with the usual Debye model,
define what we call the "extended Debye model. "

The isotropic nature of the model guarantees
that a F(k, &u) is independent of k and equal to
a F(&u) (provided ef is near the Fermi energy e~).
In general, the function a F(~) is considerably
simpler than a2F(k, &o). The formula (8) can be
transformed into a simpler identity, '

a'F(~)=[vN(0)]-'& ~' B(Q, &), (21)

where N(0) is the electronic density of states at
the Fermi surface for both spin orientations.
Within the extended Debye model, Eq. (21) is
particularly simple to evaluate. The result is

a Fn(&o) =[a/vN(0}]Fn(&o} .
The fact that Eq. (22) explicitly reproduces the
observed behavior that e F is proportional to F
is perhaps the strongest argument in favor of Eq.
(20). We feel that Eq. (20) cannot be taken as
highly reliable, especially in transition metals,
but that it does provide a reasonably good first ap-
proximation to real physical systems, while also
permitting numerical estimates of electron-phonon
effects.

Using the above relations we can express the

V. EXTENDED DEBYE MODEL

In this section we introduce a model which retains
the simplicity of the Debye model but includes the
feature that the phonon spectral function B(Q, v)
is linear in & at small &. In principle, we do not
need to identify the mechanism causing the linear
behavior. In practice, however, we will only
make explicit calculations for the case of the
electron-phonon decay mechanism.

The usual Debye model for acoustic phonons
consists of a completely isotropic linear disper-
sion ~= o, I Ql, where v, is the velocity of sound.
The Brillouin zone is approximated by the Debye
sphere of radius q~ = &o~/v, . In this approximation,
the density of states takes the form
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phonon density of states including lifetime broad-
ening, Fc, as a convolution of the density of states
mithout broadening, EOI, and a broadening function
of midth approximately at~. IO

Fo((o) = — ' d(uf} Fc(~)hn s
s

(23)
For small a (as occurs in all known metals}, the
broadened function F~ is very si:milar to the un-
broadened function Fc, and the two agree in the
limit a- 0. The integral in Eq. (23) can be per-
formed analytically, but the precise form is too
complicated to be instructive. Figure 2 contains
graphs of -', &uoFd {&a) plotted versus &u/&od on
logarithmic scales. A reasonable estimate of the
value of e for a particular metal can be made
from the dimensionless mass-enhancement param-
eter X of superconductivity theory. t4 In terms of
Q Ey A, &s given by

IO

IO

IO
Io' IO IO

QJ/QPD

IO

A = 2 f d&o cPF(&u)/v . (24)

If we use Eq. (22), the integral can be done in the
extended Debye model. Because 0. is expected to
be small, it is reasonable to approximate Fo(&o}
by Ss(~) when substituting (22) into (24). The re-
sult is

X= 3a/sN(0) K&oz= Pc . - (25)

TABLE I. Approximate values of 0. for the extended
Debye model calculated from the formula n =QXN(0}ta&z

[Eq. {25)].

X{0)»
states of both spin I'+&»

Metal X» per eV per atom {meV)

Na
Zn
Al
Pb
Nb
W
Cu

0.15~

0.38
0.38
1.5'
0.82
0.28
0.22~

0 509
0.196
0.416
0.55
1.82
0.30
0.265'

13.5
26.6
36.2
8.3

23.9
33.6
26.4

1x 10~
2x 10~
6x 10'
8x10~
4x 10@
3x 10+
2x 10+

»Reference 14 unless otherwise noted.
P. B. Allen and M. L. Cohen, Phys. Rev. 187, 525

{1969).
OJ. M. Rowell and%'. L. McMiGan, Phys. Rev. Lett,

14, 108 {1965).
~J. F. Janak, Phys. Lett. A 28, 570 {1969).

The denominator of Eq. (25) is typically 10 3, so
e is indeed very small. Thus the parameter Xo,
defined as the right-hand side of Eg. (25), is ex-
pected to be very nearly the same as X. Using
Eq. (25}and values of X quoted by McMtilan, "ap-
proximate values of a are given for various metals
in Table I.

FIG 2, Phonon density of states in the extended
Debye model plotted logarithmically vs the normalized
frequency a/vz. The parameter e is a measure of the
importance of phonon decay events, being defined as
V@/rd+ The .usual Debye curve is realised when o = 0.
Note that the behavior switches from g to w at low fre-
quencies when v/fez becomes comparable to ey. Values
of 0. as large as 0.1 or 0.5 are not known to occur in
nature, but are shown here for illustrative purposes.

The analytic behavior of e E~ is particularly
simple in three limiting cases,

4uk. c(d/1Bds ((d « Q(dc) q

a'F, (c)-=&,(~/(u }s (au, «(u&(u, ),
4QXc(do/57f(0 ((ds « |d) .

(25)
In the intermediate regime, a P~ has the familiar
Debye-model form; at both high and lorn frequencies
a E~ acquires tails mhose strength is proportional
to n. The high-frequency tail apparently gives
no observable effects. The lorn-frequency linear
behavior mill affect transport coefficients at lorn

7 and u. The crossover between very-lorn-fre-
quency + behavior and intermediate-frequency
~s behavior occurs at ~-4n~c/v. The three re-
gimes and the crossover point, mhich scales as
at, can all be seen clearly in Fig. 2.

A similar analysis can be carried out for the
temperature dependence of 1/~ by considering
various limits of Eq. (12) in the extended Debye
model. The results are

15s'Xcc.(ooT'/3ec (T«aes),
I!v(T)= 24sf(3h, ~nZ /63o—(aec «T«eo), (2q)

2m X(ocr/ed (T» ed),
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where g(3) = 1.202. .. is the Rieman g function.
The crossover between the very-llaw-temperature
regime and the intermediate temperatuxe regime
occurs when T= 2n8~/9f (3). Analogous results
for the frequency dependence of 1/v are found
from Eq. (13)

IO

IO

4CRXO(d /3(dg ((d «Q(Og) y

1/7'(ro) = v&0(o /R)n (&&g « ~ & &g) i (28)
-,vko&oo (e»vz) .

The crossover between low- and intermediate-
frequency regimes occurs when &u = Ba&u~/v ~

Graphs of (&u~v } ~ as a function of temperature and
frequency are shown on logarithmic scales in Figs.
3 and 4, respectively. For realistic values of
a the low-temperature or frequency regime is
characterized by such long lifetimes and low tem-
peratures and frequencies that observation of the
T or ur behavior will be difficult. However, in
the regime where electron-phonon effects behave
as T and uP, the phonon scattering mechanism
is likely to be at least as important as Coulomb
scattering (which has occasionally been suspected
of being observable). To see this, note that 1/r
in Eqs. (27) and (28) at low T or &u scales as
o.'/&u~. This parameter can be replaced by

-3
IO

IO

-5
IO

IO

IO

IO

IO

-IO
IO

IO IO IO' I IO
40/td 0

FIG. 4. Frequency dependence of the scattering rate
normalized to XocoD in the extended Debye model, for

various values of the phonon decay parameter z. %'hen

e is zero, the usual Debye model fd3 behavior occurs at
small ~g. For nonzero e, the low-oy behavior is =e t~p/

fan) . When & is roughly e~&, the curves change from
.(t) to Q)

2
lo

-I
IO

-2
IO

-3
IO

IO

-5
IO

IO

-8
IO

t5
I

IO IO

FIG. 3. Temperature dependence of the scattering
rate r ' normalized to Rondo in the extended Debye model,
for various values of the phonon decay parameter e.
When cy is zero, the usual Debye model T behavior oc-
curs at small T. For nonzero ry, the low-T behavior is
e (T/8&) . When T is roughly eOD/5, the curves change
from T to T.

—,
'

vP.~(0)if according to Eq. (25}. Then we can
combine Eqs. (27) and (28) to obtain

1/~(~, T) =-4~@V(0)[(a~)'+(2v~, T)']/9a

(T«o.'e~, &u«u&u~), (29)

which is the explicit evaluation of Eq. (14) for the
case of electron-phonon-limited phonon lifetimes.
A reasonable estimate of the strength of Coulomb
scattering would entail replacing A, in Eq. (29)
by p where p, is the dimensionless measure of
Coulomb repulsion used in superconductivity the-
ory. Typically A and g are about the same size
in metals, although in monovalent metals A is
quite a bit smaller than p, ; and in good supercon-
ductors A is quite a bit larger. Therefore, if a
T' or aP behavior of 1/7' is to be sought after, the
phonon mechanism is just as good a candidate as
the Coulomb mechanism. In fact, the largest ef-
fect would be expected to be the phonon effect in
a good superconductor like Pb or Nb.

Finally, it is worth mentioning that the quasi-
particle lifetime v(&, T} for an electron of known
energy e, as given by Eq. (9), can be written
at very low T and ~ in the extended Debye model:

1/~(~, T) =4v~', ~(O)[e'+ (v~, T)']/Ba . {30)
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The factor e + (mals T)' is familiar in Fermi-liquid
theory. ' The observable lifetime, when averaged
over available energies in the manner of Eq. (10).
has the form of Eq. (29) instead of (30). Thermal
averaging enhances the temperature-dependent
scattering rate by 4/3 over the value in Eq. (30)
which is appropriate for electrons right at the
Fermi surface. This occurs because electrons k~T
away from the Fermi surface also contribute and
have faster scattering rates. On the other hand, at
nonmero frequency (d, but T=O, the observable scat-
tering rate is smaller than that given by Eq. (30),
by a factor of —,'. This occurs because all electrons
in the range I &I & (d are probed rather than simply
those with I &! = (d which have the shortest lifetimes.
These conclusions are equally valid for Coulomb
scattering. Analogous averaging effects" '"
occur in the (T', &u') electron-phonon regime, but
the numerical factors are different.

VI. MASS ENHANCEMENT AND SUPERCONDUCTIVITY

&{g(k,k')» =- Z g(k, k'. )5(~„-)5(~„;

(32)

When the full dynamical nature of B(Q, &o) is taken
into account, the integral (24) can no longer be
evaluated by simply using the peak frequency
~j-, „-. of the spectral function. However, the in-
tegral can be done formally, using the identity

J (d(uj&u)B(Q, &u) =- —,'D(g, o) . (33)

This relation between the spectral weight function
B and the static Green's function (or lattice dis-
placement-displacement correlation function, or
susceptibility) follows trivially from Eq. (1), using
the fact that B is odd in &u. Using Dyson's equation
[see Eq. (16)], the static Green's function is

The parameter X defined in Eq. (24) is an im-
portant dimensionless measure of the electron-
phonon coupling. In superconductors A plays the
role of the Bardeen-Cooper-Schrieffer" (BCS)
parameter N(0) V, while in normal metals' I+X
occurs as the mass enhancement which is observed
in specific-heat or cyclotron-resonance measure-
ments. We are now in a position to make some
general remarks on the question of how A is af-
fected by including the dynamical interactions of
the phonons, rather than treating them as infinitely
sharp excltatlons.

If the 5-function approximatiori is used for 8,
then Eqs. (7), (6), and (24) can be combined,
glvlng

a = x(o)((~ m(k-k')~ '/n&; „;)&, (31)

where the angular brackets indicate averaging k
and k' over the Fermi surface, i.e. ,

——,'D(Q, O) = fbi/[n$+2flqli, (Q, O)] . (34)

~ = x(0)((~ ~,(k- k')
~

'/n~. „;(0)&& . (36)

Thus, we have the interesting result that X is
determined by the static frequency re@(0) rath-
er than the measured peak frequency (d@. The
subscript zero on the matrix element M in (36)
is meant to indicate that the static frequency
~@(0) should be used incomputing the displacement
5Rq = [5/2M%~(0)]' which enters 34. Thus A

depends on ~(0) raised to the inverse second
power. This observation might lead one to believe
that the peculiar line shape observed by Shixane
and Axe ' for (110) TA phonons in Nb, Sn would
result in an enhancement of A. , which would have
important consequences in raising T, . The fact
that experimental values of ~ are also available
for these phonons provides hope that the contri-
bution to n E(&u) arising from these phonons can
be numerically evaluated using Eq. (21). However,
such a program is not possible yet because of un-
certainty in the measured values of ~ and dif-

It is conventional to define a frequency, &ug(0),

which describes the frequencies that the phonons
would have if II~(Q, &u) were frequency independent
(i.e. , if the restoring force at the phonon fre-
quency were the same as the restoring force to
static deformations). Thus,

Q(0) = II(+2II~II,(Q, O) . (35)

The frequency ~(0) differs from the experimental
frequency (dq which is defined as the frequency at
whichthe phonon spectralfunctionpeaks. If 112(Q, &o)

varies slowly with (d, then the experimental
frequency &u is defined by Eq. (17a). Usually the
frequencies defined by Eqs. (35) and (17a) have
been regarded as equivalent for metals at low tem-
peratures. If II arises from electron-phonon in-
teractions only, then equality between (35) and

(17a) is a statement of the adiabatic approximation.
The pseudopotential method for calculating pho-
non spectra has been shown to be equivalent to
using (35). However, in principle, (17a) is the
more meaningful frequency, and there is no reason
why (35) and (17a) should agree in more complicat-
ed situations (such as alloys). In fact, in Nb~Su,
an important high-T, material, recent experi-
ments have shown (17a) to differ markedly from
(35) for certain phonons, namely, the (110) TA
branch associated with the 40 K structural trans-
formation. In this case ~u(0) is quite a lot smaller
than ~p because the spectral function B is observed
to contain a central peak" in addition to the usual
phonon sidebands.

If we use the results [Eqs. (33)-(35)]to recom-
pute A. for the general case of an arbitrary spectral
function, we find
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f d(o (ua(Q, (u) = nu. (38)
0

This result holds for the true spectral function,
as well as for the 5-function approximation. Re-
cently, Taylor and Vashishta ' have exploited the
sum rule (38) and a variant of (33}in order to
discuss the superconductivity of alloys.

As a final point, we discuss some implications
of the low-&g linear behavior of n F(&o) on the tem-
perature dependence of the mass enhancement,
specific heat, and other thermodynamic quantities.
It was first pointed out by Eliashberg that the
mass enhancement can lead to higher-order terms
in the temperature dependence of the electronic
specific heat. Specifically, if we write

C» = yT= —,
'

w N(0)(1+ X)keT, (3e)

ficulties in knowing how to extrapolate ~ off
symmetry directions. Nevertheless, we believe
that Nb, Sn must have an unusually large linear
term (in &u) in a F(up) arising from these soft and
peculiar phonons. However, a convincing argu-
ment can be made against the speculation that A

and, thus, T, would be enhanced. Certainly X

could be increased, but the effect of this on super-
conductivity would be much less than a naive ap-
plication of McMillan's' equation would suggest.
The ineffectiveness of low-frequency phonons in
raising T, is omitted in McMillan's simplified
treatment, but has been described by Barisic and
calculated in more detail by Allen ' and by Berg-
mann and Rainer.

In addition to the integral (24) which defines P.,
there is another integral over a F which defines
a mean-square frequency (&o ) of importance to
superconductivity, Thus,

X((o') =2 f, d(u (oe'F((u) . (37)

This integral was shown by McMillan'p (for infinitely
sharp phonons) to be dependent only on the atomic
mass M and the electronic properties of the solid,
i.e. , independent of the phonon spectrum. It is
easily shown that the integral (37) is totally unaf-
fected by the form of the phonon spectral function
B(Q, &u). This follows from the well-known sum
rule4

then X will have a temperature dependence.
Eliashberg's leading behavior was of the type

~=~,+~,7'In(e, /T) (), &0) . (40)

This result follows if quadratic behavior is as-
sumed for a F(&o) at low pp. However, Allen and
CohenPP pointed out that behavior of the type

X = Xp- XpT (Xp&0) (41)

would occur if a F(&u) were linear in pp. Behavior
of the type (40) has been observed for a number of
metals, PP although X,T fits the daia as well as
X~T In(e~/T). Furthermore, the effect is not
directly visible in the specific heat and has been
seen only in Azbel-Kaner resonance where the
theory gives similar expressions. ' ~ At low
enough temperatures, however, the form (41) must
always hold.

Direct measurement of specific heat does not
reveal (40) or (41) because higher-temperature be-
havior is dominated by the lattice specific heat.
However, the electronic specific heat is related
thermodynamically to the superconducting critical
field. Lambert has seen indirect evidence for
(40) in the critical field of mercury. Very large
linear terms in e F occur in amorphous materials,
as previously mentioned. Bergmann has pre-
sented evidence for behavior of the form (41) in
such materials.

Note addedin proof. Professor T. Holstein has
kindly pointed out to us that the electron-phonon-
induced quadratic behavior of r 'on & was in fact first
discussed by Migdal. P Equations (30}and (31) of
Ref. 3 are basically equivalent to Eq. (28}of the
present paper. Professor Holstein has also dis-
cussed this effect.
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